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The Ziff-Gulari-Barshad (ZGB) model, a simplified description of the oxidation of carbon monoxide (CO)
on a catalyst surface, is widely used to study properties of nonequilibrium phase transitions. In particular, it
exhibits a nonequilibrium, discontinuous transition between a reactive and a CO poisoned phase. If one allows a
nonzero rate of CO desorption (k), the line of phase transitions terminates at a critical point (kc). In this work,
instead of restricting the CO and atomic oxygen (O) to react to form carbon dioxide (CO2) only when they are
adsorbed in close proximity, we consider a modified model that includes an adjustable probability for adsorbed
CO and O atoms located far apart on the lattice to react. We employ large-scale Monte Carlo simulations for
system sizes up to 240 × 240 lattice sites, using the crossing of fourth-order cumulants to study the critical
properties of this system. We find that the nonequilibrium critical point changes from the two-dimensional
Ising universality class to the mean-field universality class upon introducing even a weak long-range reactivity
mechanism. This conclusion is supported by measurements of cumulant fixed-point values, cluster percolation
probabilities, correlation-length finite-size scaling properties, and the critical exponent ratio β/ν. The observed
behavior is consistent with that of the equilibrium Ising ferromagnet with additional weak long-range interactions
[T. Nakada, P. A. Rikvold, T. Mori, M. Nishino, and S. Miyashita, Phys. Rev. B 84, 054433 (2011)]. The large
system sizes and the use of fourth-order cumulants also enable determination with improved accuracy of the
critical point of the original ZGB model with CO desorption.
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I. INTRODUCTION

Statistical mechanics has been well developed for equilib-
rium systems in the sense that one can, in principle, calculate
the partition function and use it to calculate all the equilibrium
thermodynamic quantities of a system. On the other hand,
the unavailability of the analogy of a partition function for
nonequilibrium systems means that nonequilibrium statistical
mechanics remains a field in rapid development, attracting
researchers to seek its fundamental principles.

In 1986, Ziff, Gulari, and Barshad introduced the ZGB
model [1] to study the phase transition properties of a particular
nonequilibrium process: the formation of carbon dioxide from
oxygen and carbon monoxide at a catalyst surface,

CO(g) + ∗ → CO(ads),

O2(g) + 2∗ → 2O(ads), (1)

CO(ads) + O(ads) → CO2(g) + 2 ∗ .

Oxygen (O2) and carbon monoxide (CO) gases (g) are supplied
to a catalytic surface (Pt). Here, the surface is modeled as a
square lattice. When the oxygen molecule (O2) gets close to
the surface, it decomposes into two oxygen atoms (O). Each O
atom and each CO molecule independently forms a weak bond
with an empty lattice site (∗) to become adsorbed (ads). If a
CO molecule and an O atom are adsorbed at nearest-neighbor
lattice sites, they immediately react and form a carbon dioxide
molecule (CO2) that leaves the surface. Each lattice site can
either be empty, occupied by one O atom, or occupied by
one CO molecule. The only control parameter in the model
is the partial pressure of CO in the supplied gas, denoted as
y. The reaction was simulated by a dynamic Monte Carlo
algorithm, revealing the occurrence of nonequilibrium phase

transitions on the catalyst surface. It was found that the steady
state of the catalyst surface strongly depends on the partial
pressure of CO in the feed gas. In this original ZGB model,
when the CO partial pressure is small, the catalyst surface
becomes completely occupied by O atoms in the long-time
limit (oxygen-poisoned phase). If the CO partial pressure is
increased to a value, y1, a continuous phase transition occurs,
beyond which the catalyst surface is covered by a mixture
of O, CO, and empty sites (mixed phase). If one continues to
increase the CO partial pressure y, a first-order phase transition
occurs at y2. Beyond this transition, the catalyst surface is
completely covered by CO in the long-time limit (CO poisoned
phase).

It has further been noticed in experiments that adsorbed
species can desorb from the surface without reacting. The
reason for this is that when the temperature is sufficiently
high, an adsorbed particle can gain enough energy to break its
bond with the catalyst surface. As a consequence, desorption
rates increase with temperature. It was also found that the
desorption rate of CO (denoted as k) is much higher than
that of O atoms [2]. The desorption rate k of CO can be
added to the model as a second control parameter [2–5]. If
a very small value of k is chosen, there is no qualitative
difference in the region of small CO partial pressure. But
when y > y2, the positive desorption rate reduces the CO
coverage, producing a nonzero density of vacancies. If the CO
desorption rate k is increased, a higher CO partial pressure,
y2(k), is required for the first-order transition to occur. Similar
to an equilibrium lattice-gas system, moving along this first-
order transition line in the phase diagram eventually leads
to a critical point. It has been found that this critical point
belongs to the two-dimensional equilibrium Ising universality
class [6].
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Soon after the ZGB model was introduced, a num-
ber of groups were attracted to study its phase transition
properties [4,7–14]. Some modeled the catalyst surface as a
hexagonal lattice instead of a square lattice [15,16]. Some
studied the effects of oxygen atoms adsorbing at two non-
neighboring sites (“hot” dimer adsorption) [17–21] or as
a result of nearest-neighbor repulsive interactions [22–25].
Others considered diffusion of the adsorbed species [3,22–28],
co-adsorption of the gas molecules (meaning that the gas
molecules can react directly with adsorbed species) [29], and
the effect of using a periodic CO pressure [30–33]. Some
researchers also studied the effects of impurities present on
the catalyst surface [34,35] or in the gas phase [12,13,36–38].
Others again considered the detailed processes happening
on the catalyst surface, building lattice-gas models including
energetic effects, with energy barriers calculated from quan-
tum mechanical DFT calculations and/or comparison with
experiments [25,39–44]. A recent, comprehensive review of
lattice-gas models for CO oxidation on metal (100) surfaces is
found in [45], and a review of critical behavior in irreversible
reaction systems is found in [46]. Other nonequilibrium
lattice-gas models with similar phase properties have also been
studied [47].

In equilibrium Ising and lattice-gas models it is well known
that the presence of sufficiently long-range interactions in the
Hamiltonian will change the universality class of the critical
point that terminates the line of first-order transitions from
the Ising class to the mean-field class. Given the similarity of
the phase diagram of the ZGB model with CO desorption to
that of a liquid-gas system (which also belongs to the Ising
universality class), it is natural to ask whether the presence
of a mechanism for long-range reactivity would change the
universality class from Ising to mean-field in the same way
as long-range interactions do for the equilibrium case. A few
studies indicate that this is the case.

In one study [17], the “hot dimer adsorption” idea was
handled by assuming that oxygen molecules are dissociated
and adsorbed as nearest neighbors, but the nonreacted adsorbed
oxygen atoms are allowed to undergo a ballistic flight for up
to 20 lattice sites and react with any CO located next to the
trajectory. However, the conclusions of this study regarding
universality did not appear very clear.

Much clearer results were obtained in a study by Liu,
Pavlenko, and Evans (LPE) [26], who considered a lattice-gas
reaction-diffusion model similar to the ZGB model with CO
desorption, in which adsorbed CO molecules were allowed to
diffuse to adjacent empty sites at a finite rate, h. This leads
to an effective diffusion length ∼h1/2. In analogy with earlier
studies of equilibrium Ising systems of linear size L with equal
interaction constants of range �R, which derived a crossover
parameter L/R2 for two-dimensional systems [48–53], LPE
obtained “effective critical exponents” from finite-size scaling
analysis of Monte Carlo simulations. When plotted vs L/h,
their results showed good data collapse and a monotonic trend
over about two decades of the crossover parameter from Ising
exponents for L/h � 1 to mean-field for L/h � 1. In order
to approach the mean-field limit L/h → 0 in a computa-
tionally manageable way, they resorted to a hybrid model in
which the CO molecules were replaced by a uniform mean
field.

In the present paper we approach the problem of determin-
ing the universality class of the critical point in a ZGB model
with CO desorption and long-range reactivity along a different
path that enables us to unambiguously extrapolate our results
to the limit of infinite-range reactivity and infinite system
size. For this purpose we utilize an analogy with an approach
to the study of phase transitions in Ising-like equilibrium
systems with weak long-range interactions, which has recently
been pursued in connection with modeling of spin-crossover
materials with both local and elastic interactions [54–58].
In this approach, long-range interactions were added as a
perturbation of adjustable magnitude to an equilibrium Ising
system. Nakada et al. [57,58] considered a Hamiltonian with
both a ferromagnetic nearest-neighbor interaction part (Ising
model) and a long-range ferromagnetic interaction part (the
Husimi-Temperley or equivalent-neighbor model in [57] and
elastic interactions in [58]). In both cases they found that,
upon the addition of long-range interactions of any nonzero
magnitude, the universality class of the critical point changed
abruptly from Ising to mean-field.

Here we modify the original ZGB model analogously by
introducing an adjustable probability that an O atom and a
CO molecule adsorbed far apart on the surface can react to
form CO2 and desorb. We use the random selection method of
dynamic Monte Carlo [59] and the crossing of the maximum
fourth-order cumulants [60] to study any resulting changes
of the critical properties of the system. In agreement with
the results for equilibrium Ising systems [57,58], we find that
the universality class of the critical point changes from the
Ising class to the mean-field class. In the process, we also
obtain an estimate for the critical point of the ZGB model
without long-range reactivity which we believe to be more
accurate than, but essentially consistent with, those obtained
previously [4,6,59].

The long-range reactivity effect that we introduce here is
not intended to model any particular, physical mechanism, but
rather to provide a numerically tractable method to explore
the effects of such long-range effects in general. However, it
could be viewed as a simplified version of a rapid diffusion
effect [3,22–28]. Alternatively, practical catalysts are usually
made as highly porous materials resembling folded, crumpled
surfaces, so that the supplied gas encounters a larger surface
area per unit volume. In this kind of geometry, it may be
possible that an adsorbed species desorbs and moves to another
site, which is far away along the lattice surface, but close in the
three-dimensional embedding space. Our long-range reactivity
model could also be viewed as a simplified model to describe
such situations.

The rest of this paper is organized as follows. In Sec. II,
we describe our Monte Carlo scheme and show in detail how
we introduce a tunable, long-range reactivity into the ZGB
model. In Sec. III, we show how the phase diagram changes,
how we locate the critical point through the crossing of
cumulants [3,31,57–60], and how the universality class of the
critical point changes. In Sec. IV we provide snapshots for the
visualization of the change of the adsorbate configurations over
time, measure the sizes of the largest cluster in corresponding
configurations, obtain the order-parameter distribution and the
cluster percolation probabilities as functions of CO coverage,
and measure correlation lengths and the critical exponent ratio
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β/ν. Finally, in Sec. V, we summarize our results and state
our conclusions.

II. MODEL AND SIMULATION

Our study is based on the original ZGB model described
in Eq. (1) [1], modified to allow desorption of CO (i.e.,
k > 0) [4,5]. In order to include a long-range reactivity of
adjustable strength, the model is modified in the following
way. When a newly adsorbed particle (CO or O) cannot find
any partner particles among its nearest neighbors to react with
(O for CO or CO for O), it has a nonzero probability, a, to
check a randomly chosen site anywhere on the lattice. If this
site is occupied by a partner particle, the two react to form CO2

and desorb. In other words, a long-range reaction is considered
only after the the possibility of a short-range reaction has been
tested and found impossible. For a = 0, our model reduces to
the standard ZGB model with CO desorption [4]. (Although
it is known that the unphysical continuous phase transition at
y1, i.e., the presence of the oxygen poisoned phase, can be
eliminated by considering next-nearest neighbor adsorption
instead of nearest- neighbor adsorption [11,21], here we stick
to the original nearest-neighbor approach as our focus is
the effect of introducing long-range reactivity on the phase
transition at y2.) The details of our simulation algorithm are
given below.

A. Simulation algorithm

Our algorithm is based on the implementation of the random
selection method of dynamic Monte Carlo used in Ref. [59] to
simulate the standard ZGB model with CO desorption. In this
method, the whole reaction process is divided into several
processes. For each process, there is a separate transition
probability. We compare the probability with a random number
to decide whether the particular process proceeds or not. A flow
chart of the whole process is shown in Fig. 1. It can be broken
down into several steps as follows. The long-range reactivity
mechanism is step 6, which can be reached from step 4a if the
newly adsorbed particle is a CO molecule, or from step 5 if
the newly adsorbed particle is an O atom.

Step 1 (choose a site). One lattice site is chosen randomly
among the L × L sites. We do this by drawing a random
integer, r1, for the x direction and another random integer,
r2, for the y direction.

Step 2 (desorption). Draw a random real number, r3 ∈ [0,1].
If it is smaller than the CO desorption rate (r3 < k ∈ [0,1]),
and if there is a CO adsorbed at the chosen site, the CO is
removed, and this site changes to empty. Then, return to step 1
for the next trial. On the other hand, if r3 � k and if this site is
empty, go to step 3. Otherwise, return to step 1. The desorption
rate k is usually small. (For this work, 0 � k � 0.2.) (Note that
only the desorption rate of CO is considered, as experiments
suggest that it is much greater than the desorption rate of O
atoms [2].)

Step 3 (choosing a species to adsorb). Draw a random
number, r4 ∈ [0,1]. If it is smaller than the CO partial pressure
(y ∈ [0,1]), then go to step 4a. Otherwise, go to step 4b.

Step 4a (adsorption of CO). If any one of the four nearest-
neighbor sites of this vacant site contains an O atom, the

FIG. 1. (Color online) Flow chart for the reaction process. The
algorithm is based on that used in [59] for the ZGB model with
CO desorption. The framed region contains the added long-range
reactivity of strength a (step 6).

adsorbed CO immediately reacts with O to form CO2, which
desorbs. If more than one nearest-neighbor site is occupied
by O, draw a random number, r5, to choose one of them, and
then set both sites to empty (the original chosen site and this
new chosen site). On the other hand, if no O is found at a
nearest-neighbor site, go to step 6.

Step 4b (testing for adsorption of O2). The O2 molecule is
a dimer. In the ZGB model, it requires two vacant nearest-
neighbor sites for adsorption. To account for the random
orientation of the O2 molecule, we therefore draw a random
number, r6, to choose one site among the four nearest neighbors
of the originally chosen, vacant site. If the chosen neighbor is
not empty, no adsorption takes place, and we return to step 1.
If the site is empty, go to step 5.

Step 5 (dissociation and adsorption of O2). The O2 molecule
is dissociated into two O atoms and adsorbed. If any one of
the nearest neighbors of the first O atom is CO, draw a random
number, r7, to choose one CO among them to react, and then
evacuate both sites. If no CO neighbor is found, go to step 6.
Then test the same thing for the second O atom. The trial ends.
Return to step 1.

Step 6 (long-range reaction). Draw a random number, r8 ∈
[0,1]. If it is smaller than the long-range reaction probability,
a ∈ [0,1], choose another random site in the lattice. If the two
sites contain opposite species (O and CO), they immediately
react to form CO2, which desorbs. The trial ends. Return to
step 1.

In every Monte Carlo step per site (MCSS), we make
L2 iterations of the above algorithm with periodic boundary
conditions. We choose sufficiently long simulations that the
system reaches a steady state, between 5 × 105 and 4 × 108

MCSS depending on the parameters, before statistics are
taken.
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B. Steady state and some properties along the phase boundary

A steady state does not mean that the system does not
react. Particles can still be adsorbed and react, but certain
physical quantities have approached and fluctuate around a
steady value. If we consider a region far away from the first-
order phase transition region or phase boundary, a steady state
means that the coverage of CO (θCO), which is the ratio of
lattice sites occupied by CO and is also the order parameter of
the system, has reached a steady value. But if we are moving
along the first-order phase transition line, due to finite-size
effects, the system will jump back and forth between two
degenerate stationary states, and thus the CO coverage will
repeatedly switch between a high value and a low value. For
k � kc, this switching time can be extremely long. As we
increase k towards kc, the switching time and the difference
between the high and low CO coverages are reduced, while the
fluctuations about each stationary level increase. For k ≈ kc,
the fluctuations about the two stationary CO coverages are
roughly equal to their separation. This indicates that the system
is close to the critical point. Two good quantities to characterize
these fluctuations for an L × L system are

χL = L2
(〈
θ2

CO,L

〉 − 〈θCO,L〉2
)

(2)

(a nonequilibrium analog of equilibrium magnetic susceptibil-
ity or fluid compressibility [29,31,59]), and the fourth-order
reduced cumulant of the order parameter [59–63],

uL = 1 − μ4,L

3μ2
2,L

, (3)

where

μn,L = 〈(θCO,L − 〈θCO,L〉)n〉 (4)

is the nth central moment of θCO. The “susceptibility” and the
cumulant show maxima on the first-order transition line in this
system. (Results based on χL and uL are consistent. Here we
explicitly show only the latter.) Steady state means the system
has jumped back and forth many times and has spent the same
amount of time at the high level and the low level, so that the
susceptibility and the cumulant have been stabilized, but not
the coverage.

This switching between the two levels is a finite-size effect.
The smaller the system, the easier for the switching to occur
and thus the easier it is for the system to stabilize. For an
L × L system, the above simulation process will be repeated
L2 times. As a larger lattice also makes the physical quantities
require more time steps to stabilize, doubling the system size
L will make the required running time increase by a factor
of more than 4. The run times used include 5 × 105, 5 × 106,
5 × 107, and 4 × 108 MCSS. The complicated Monte Carlo
process and the long time required to stabilize the cumulants
make the computation very intensive. More than 600 cores
were used for several months to obtain our major results.

C. Initial conditions

We chose an initial state with the right half of the lattice sites
mainly covered with CO and the left half of the lattice sites
mainly covered with O. This unstable configuration enabled
the system to easily jump very quickly into one of the steady
states (around 2000 MCSS for L = 60).

III. CUMULANTS AND PHASE DIAGRAM

Figure 2 shows the coverages and CO2 production rate
obtained by our long-range reactivity model for a small
desorption value, far below the critical point (k � kc). We
see that increasing the long-range reactivity parameter a from
0 to 1 increases the transition point y2 by about 7% and the
maximum reaction rate by about 36%.

Figure 3 compares the phase diagrams for several values
of the long-range reactivity parameter a ∈ [0,1]. The critical
point (black dot) moves to a higher desorption rate k and higher
CO partial pressure y as the long-range reactivity parameter a

is increased. Below the critical point (k < kc), hysteresis [64]
is found across the first-order phase-transition line.

The first-order phase-transition line and the critical point
both lie at the value of y that shows a maximum in the
cumulants, as shown in Figs. 4(b)–4(d) for the case with
long-range reactivity, and in Figs. 7(b)–7(d) for the case
without long-range reactivity.

A. a > 0

We first consider the case with long-range reactivity param-
eter a = 1. All the nonzero long-range reactivity cases were
found to have similar behavior. Plotting the cumulants against
the CO partial pressure, y, shows approximately parabolic
shapes [Figs. 4(b)–4(d)]. The maxima of the cumulants for
different system sizes L occur at nearly the same values of
y. For CO desorption rate k < kc, the cumulants of different
sizes cross each other [Fig. 4(b)], whereas for k > kc, the
cumulants do not cross [Fig. 4(d)]. At k ≈ kc, the cumulants
roughly touch each other [Fig. 4(c)]. Due to the fluctuations of
the data, we adopted a polynomial fit (second order or fourth

FIG. 2. (Color online) Coverage ratios of (a) carbon monoxide
(θCO), (b) oxygen, (c) empty sites, and (d) CO2 production rate on the
surface, plotted vs CO pressure in the supplied gas, y, using several
different values of the long-range reactivity strength a. Parameters
chosen are CO desorption rate k = 0.02, system size L × L = 60 ×
60, and run time 106 MCSS. The CO2 production rate is obtained
by averaging the CO2 produced every 1000 MCSS. The lines for
a = 0 show the results obtained by the original ZGB model with CO
desorption, keeping all the other parameters unchanged. Data points
are taken at intervals �y = 0.01.
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FIG. 3. (Color online) Phase diagram of the system (a) without
(a = 0) and with (a > 0) long-range reactivity [(b) a = 0.1, (c)
a = 0.3, (d) a = 0.5, (e) a = 0.7, and (f) a = 1.0], using 300 × 200
(k,y) points, 5 × 104 MCSS, and L = 40. Every point in the phase
diagram is composed of three different colors, with red representing
CO coverage, green representing O coverage, and blue representing
empty coverage. A point in the (k,y) plane with, e.g., CO coverage
0.7, O coverage 0.2, and empty coverage 0.1, is represented by a
point with color intensities 0.7 red, 0.2 green, and 0.1 blue. The black
dots show the location of the critical point as L → ∞, obtained from
the crossing of cumulants (Fig. 5). In gray scale, the sharp dark line
below the black critical point in every diagram is the phase transition
line. The right-hand side of this line is the region where the surface is
mainly covered by CO, whereas the left-hand side is the region where
it is mainly occupied by oxygen and empty sites with a small density
of sites occupied by CO.

order) to a narrow range of data near the maxima, and used
the maxima of the fitting curves as the maximum values of
the cumulants. Figure 4(a) shows these maximum values of
cumulants (uLmax) plotted against the desorption rate k for
different system sizes L. The line for L = 40 crosses that for
L = 60 at one point. We picked the two desorption rates just
bounding the crossing point, k1,k2, and used them to form
two linear equations that were solved to obtain the crossing
point. This crossing point (kc,L,uc,L) is regarded as the critical
desorption rate and its corresponding cumulant found using
these two system sizes [60], and the index L is taken to be the
larger among the two system sizes [65]. The critical CO partial
pressure yc,L found using these two system sizes is obtained
from

yc,L = y2 − (k2 − kc,L)(y2 − y1)/(k2 − k1), (5)

where y1,y2 are the corresponding values of y for system size
L, at which the cumulants show maximum values at k1,k2. We

FIG. 4. (Color online) The search for the critical point (kc,L,yc,L)
for different system sizes L, through the crossing of the maximum
of the cumulants uLmax, for long-range reactivity parameter a =
1.0, using 5 × 107 MCSS, �y = 10−5, with (a) �k = 10−3, (b)
k = 0.147 < kc,L, (c) k = 0.149 ≈ kc,L, and (d) k = 0.150 > kc,L.
The actual critical point for the infinite-size lattice is found by
extrapolation to 1/L = 0 to be kc = kc,∞ = 0.15061 ± 0.000 09,
yc = yc,∞ = 0.604 02 ± 0.000 03, as shown in Fig. 5. (As kc,L

increases with L, for the system sizes shown here, L = 40, 60, and
100, we get 0.147 < kc,L < 0.150.) Error bars for the data points in
(a) are comparable to the size of the plotting symbols. They were
estimated from the differences between the fitting curve and a narrow
range of data points near the cumulant maximum.

recorded the crossing points between every two successive
system sizes, and obtained the critical point for L → ∞
through extrapolation to 1/L = 0 as shown in Figs. 5(a), 5(c),
and 5(e). Figures 5(b) and 5(d) show that K ≡ kc,∞(a) −
kc,∞(0) and Y ≡ yc,∞ − yc,∞(0) both increase in a power-law
fashion with the long-range reactivity parameter a. [kc,∞(0)
and yc,∞(0) are obtained in Sec. III B]. For the equilibrium
Ising model with long-range interaction of strength α, the
critical temperature is known to increase as α4/7 [57,58]. (4/7
is the Ising critical exponent ratio ν/γ .) The powers of a

observed here are 0.435 ± 0.004 and 0.450 ± 0.008 for K

and Y respectively if we use all the data points in Figs. 5(b)
and 5(d), which are somewhat smaller than 4/7 ≈ 0.571. We
initially suspected this might be due to the relatively large
minimum value of a used here, so we also found the exponents
from the line formed between every two successive data points
as shown in Figs. 5(b) and 5(d). The exponents show a clear
increasing trend when a decreases. A polynomial fit was
applied to these data as shown in Fig. 6. The y intercepts are the
exponents we should get when a is nonzero but infinitesimal,
which are found to be 0.448 ± 0.003 and 0.499 ± 0.001 for kc

and yc respectively, still deviating from 4/7. Indeed we found
that we can obtain 4/7 only if we use kc,∞(0) = 0.0515 and
yc,∞(0) = 0.5472, which are very far away from the values
of kc,∞(0) and yc,∞(0) we obtain in Sec. III B below (see
Table I). One explanation for these results could be that our
long-range reactivity parameter a might not be linearly related
to the equilibrium Ising interaction strength α. The results for
kc could be reasonably reconciled if a ∼ αx with x ≈ 1.3.
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FIG. 5. (Color online) The search for the critical points (kc,yc)
and the corresponding cumulants uc,L as L → ∞, for the cases of
nonzero long-range reactivity. Lattice sizes L = 40, 60, 100, 160,
and 240 are used for long-range reactivity strength a = 0.1, 0.3, 0.5,
0.7, and 1.0 with 5 × 107 MCSS, �y = 10−5, and �k = 10−3. Parts
(a), (c), and (e) show the case for a = 1. The crossing point between
L = 40 and L = 60 in Fig. 4 was recorded as the kc,L, yc,L, uc,L for
L = 60. Similarly, data for L = 100 is the crossing point between
L = 60 and L = 100. The y intercepts of the three graphs are the
critical point (kc,yc) = (kc,∞,yc,∞) and the corresponding cumulant
uc,∞ for L → ∞, and these y intercepts for different values of a

were used to obtain the data in parts (b), (d), and (f). The values of
kc,L(0) and yc,L(0) used were obtained in Sec. III B. Note that too
small system sizes sometimes can deviate greatly from the trend for
L → ∞, so here we did not use the crossing point between L = 40
and L = 60 to find kc,∞ and yc,∞. In (b) and (d), the equations next to
the trend lines are obtained by using every two successive data points,
whereas the equations Kall and Yall are obtained by using all the data
points. The horizontal line in (f) is the exact value (2.7052 . . .) of the
cumulant for the mean-field universality class [57].

FIG. 6. (Color online) The search for the exponents in Figs. 5(b)
and 5(d) when a is close to 0. The x axis is the geometric mean (GM)
of the values of a used in Figs. 5(b) and 5(d). The y intercepts are
the resulting exponents, which are quite different from the behavior
α4/7 found in the equilibrium Ising model with weak long-range
interaction strength α [57,58]. See discussion in the text.

TABLE I. Critical points and the corresponding cumulants for
different values of the long-range reactivity strength a. Uncertainty
in the last digit given in parentheses. The asterisks are explained in
the Endnote [65].

a kc,∞ yc,∞ uc,∞

0 0.0371(2) 0.54052(9) 0.624(3)
0.1 0.0783(4) 0.5623(2) 0.26(1)
0.3 *0.1044(1) *0.57758(4) 0.267(7)
0.5 0.1215(2) 0.58750(7) 0.268(2)
0.7 *0.1348(1) *0.59513(3) 0.267(2)
1.0 *0.1506(1) *0.60402(3) 0.266(3)

(Because of the high symmetry of the Ising model, its critical
point remains at zero field for all values of α, so comparing
the exponent value for yc to 4/7 may not be relevant.)

It is known that in the absence of long-range reactivity,
the critical point of the system would correspond to the two-
dimensional equilibrium Ising universality class, which has
cumulant uc,∞ ≈ 0.61 [66]. Figure 5(f) shows clearly that for
all nonzero values of the long-range reactivity parameter a con-
sidered here, the cumulant uc,∞ ≈ 0.2675 ± 0.0009, consis-
tent with the exact value, 1 − 	4(1/4)/24π2 = 0.270 52 . . . ,

for the mean-field universality class of the equilibrium Ising
system with long-range interactions [54,57,67,68]. Table I
summarizes the critical points and the corresponding cumu-
lants obtained for different long-range reactivity strengths a.
The longest run time we used for the a = 0 case is 4 × 108

MCSS and for the a > 0 cases it is 5 × 107 MCSS.

B. a = 0

Figures 7 and 8 show graphs corresponding to Figs. 4
and 5, respectively, for the case without long-range reactivity.
Plateaus were found around the maximum regions of the
cumulants for all system sizes as shown in Figs. 7(b)–7(d).
Note that even L = 240 has a plateau. When the system
size increases, the plateau moves to a larger value of y,
and its width decreases. The data points on the plateau also
fluctuate more strongly as L increases. For CO desorption rate
k < kc, the maximum value of the cumulant increases with
increasing L [Fig. 7(b)], whereas for k > kc, the maximum
value decreases with increasing L [Fig. 7(d)]. At k ≈ kc, the
maximum cumulant value is approximately independent of L

[Fig. 7(c)]. The absence of long-range reactivity (a = 0) leads
to larger critical fluctuations that make the system much more
difficult to stabilize. The data we obtained in this case were not
stabilized as well as those in the long-range reactivity cases.
For the data points shown on the plateaus in Figs. 7(b)–7(d),
the change of the cumulants with time were checked one by
one. By looking at the trend of the fluctuating cumulant, we
estimated the final stationary value of the cumulant with an
error bar for each individual data point (not shown). Then we
selected a group of data points near the largest data point,
and used the square of the reciprocal of the error as the
weight of each data point to find the weighted mean and
its standard error. We took these as the maximum value of
the cumulant (uLmax) of each curve and its corresponding
error bar in Fig. 7(a). The idea in Fig. 7(a) is exactly the
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FIG. 7. (Color online) The search for the critical points (kc,yc)
through the crossing of the maximum of the cumulants uLmax, for
the case without long-range reactivity, i.e., a = 0. System sizes L =
40, 60, 100, 160, and 240 with �k = 10−3 were considered. �y =
2 × 10−6 was used for L = 40 and 60, and �y = 10−6 was used for
L = 100, 160, and 240. For L = 40 and 60, 5 × 107 MCSS were
used. For L = 100, 4 × 108 MCSS were used for k = 0.037, and 5 ×
107 MCSS for k = 0.038. For L = 160 and 240, 4 × 108 MCSS were
used. Panel (a) shows the crossing of the maximum of the cumulants
uLmax. The numbers shown are the data points and error bars at
k = 0.037 and k = 0.038. The maximum regions of the cumulants
for different system sizes are shown in (b) for k = 0.036 < crossing
point, (c) for k = 0.037 ≈ crossing point, and (d) for k = 0.038 >

crossing point. Plateaus were found around the maximum regions of
the cumulants for all system sizes in (b), (c), and (d). Error bars in (a)
were estimated from the fluctuations of the data points in the plateau
regions.

same as that in Fig. 4(a). The crossing point between lines
for every two successive system sizes L is regarded as the
critical point (kc,L,yc,L) and the corresponding value of uc,L

is found using these two system sizes [60], and the critical
point for L → ∞ is obtained through extrapolation to 1/L = 0
as shown in Figs. 8(a) and 8(b). (kc,yc) = (kc,∞,yc,∞) =
(0.0371 ± 0.0002, 0.540 52 ± 0.000 09) was finally obtained
as the critical point for the case without long-range reactiv-
ity. This estimate should be more accurate than previously

obtained values [4,6,59], as we used the method of cumulant
crossings and the maximum system size was increased to
L = 240. Figure 8(c) shows that the maximum value of the
cumulant for L → ∞, is uc,∞ = 0.624 ± 0.003. Given the
numerical difficulties of the simulations of this model for
a = 0, we feel this value is in reasonable agreement with the
Ising value of approximately 0.61 [66].

In the process of comparing our numerical estimate for kc

at a = 0 with previous studies, we realized that the algorithms
used in different studies lead to slightly different definitions
of the desorption rate [69]. While our definition is the same
as in [59], it is different from the one used in [4] and also
in [6]. Calling the definition used in [4] P , the relationship is
P = k/(1 − k). Consequently, our estimate for kc corresponds
to Pc = 0.0385 ± 0.0002. This is close to the approximate
lower bound obtained in [4] from the fractal interface structure,
Pc > 0.039.

IV. CLUSTER CONFIGURATIONS, CLUSTER-SIZE,
AND CORRELATION LENGTH MEASUREMENTS

It has previously been demonstrated that the critical
configurations are dramatically different in equilibrium Ising
models with short-range interactions (Ising universality class)
and long-range interactions (mean-field universality class).
While the correlation length diverges at the critical point in the
former case, it remains finite in the latter (see, e.g., [57,58]).
Visually it is also clear that the Ising critical clusters are larger
and more compact than the mean-field ones (see, e.g., Figs. 5–
7 of [57]).

We would like to determine whether analogous differences
can be observed in the present nonequilibrium system. How-
ever, the high symmetry of Ising lattice-gas models ensures that
the time-averaged critical coverage is always 1/2, regardless
of the strength of the long-range interactions. This symmetry
does not exist in the model discussed here. Rather, we find
that the critical CO coverage is a decreasing function of the
long-range reactivity strength a, as shown in Fig. 9. Since
cluster properties are strongly dependent on the coverage, this
makes it more difficult to compare critical cluster properties
for different values of a.

To solve this problem, we ran simulations of up to 108

MCSS for a = 0 and 107 MCSS for a > 0 at their respective
critical points, sampling snapshots every 200 or 20 MCSS, and

FIG. 8. (Color online) The search for the critical point (kc,yc) and the corresponding cumulant uc,∞ for L → ∞ for the case without
long-range reactivity, a = 0. Lattice sizes L = 40, 60, 100, 160, and 240 were considered with �k, �y, and simulation times chosen as in
Fig. 7. Similar to Fig. 5, the crossing point between L = 40 and L = 60 in Fig. 7 was recorded as the data point of L = 60. The y intercepts of
these three graphs are the critical point (kc,yc) and the corresponding uc,L for L → ∞. Again, too small systems can deviate greatly from the
trend for L → ∞, so the crossing point between L = 40 and 60 (data at 1/L = 0.0167 in the graphs) was not used to obtain the y intercepts
of these graphs.
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FIG. 9. (Color online) Time-averaged, critical CO coverage,
shown vs the long-range reactivity strength a, for L = 60, 100, and
160 near their corresponding critical points (at the 60/40, 100/60,
and 160/100 cumulant crossings, respectively). 107 MCSS were used
for a > 0 and 108 MCSS for a = 0. The error bars, not shown, are
smaller than the symbol size. The dashed curves represent exponential
fits to the a > 0 data points for different system sizes.

classified the snapshots according to their CO coverage in bins
of width 0.01. This enabled us to compare the nonequilibrium
Ising and mean-field critical cluster structures at similar CO
coverages. The results are discussed below.

A. Cluster configurations

Figure 10 compares snapshots without and with long-range
reactivity near the critical point for a 100 × 100 system at
CO coverages close to 0.5. We see that with the long-range
reactivity parameter a = 1, the clusters are in general smaller
or have more empty sites inside big clusters, compared to the
case without long-range reactivity, a = 0. This effect can be
easily understood. If a big cluster is formed in the a = 0 case,
the cluster can only change at its boundary, whereas in the
a = 1 case particles in the interior of the cluster can also react
with the opposite species outside the cluster to form CO2 and
desorb. Therefore, in the a = 1 case an original big cluster will
easily be broken up into many small clusters or become a big
cluster with many holes. Moreover, the additional long-range
reactivity makes the time required to switch between the high
CO state and the low CO state much shorter, as shown in
Figs. 11(a) and 11(b). These results are consistent with those
obtained by Nakada et al. [57] for the nearest-neighbor Ising
ferromagnet and the Ising ferromagnet with weak long-range
interactions, respectively.

B. Cluster-size measurements

A cluster that has infinite size under periodic boundary
conditions is called a spanning or percolating cluster (here
defined as one that wraps around the system in one or both
directions). It is interesting to compare the probabilities of
finding spanning clusters at comparable CO coverages in
the two cases of a = 0 (Ising) and a = 1 (mean-field). To
answer this, we labeled all the CO and O clusters in every
configuration using the Hoshen-Kopelman algorithm [70,71].
After the labeling, we measured the sizes of the the largest
CO and O clusters vs time as shown in Figs. 11(a)–11(d).
Meanwhile, we measured the radius of gyration of the largest

cluster in every configuration as

Rg =
√√√√ 1

2N2

∑
i,j

(ri − rj )2, (6)

where N is the size of the cluster, and ri is the coordinate of
a lattice point inside the cluster. Note that due to the periodic
boundary conditions, (x,y) and (x ± L,y ± L) refer to the
same lattice point. We therefore have to choose the coordinates
such that the lattice points are connected through the cluster.
To do this, we picked one lattice point inside the cluster and
performed a restricted random walk, such that the walker could
only walk inside the cluster. Whenever the walker reached a
site that had not been visited before, we would assign it a
consistent coordinate. Figures 11(e) and 11(f) show the radii
of gyration of the largest CO clusters vs time for a = 0 and
a = 1. While spanning clusters were easily found in the a = 0
case (around 45%), only around 0.05% were found to contain
spanning clusters in the a = 1 case.

The large probability of spanning clusters for a = 0
can of course be easily explained by the large number of
configurations with high CO coverages in this case [see
Fig. 11(a)]. To get a meaningful picture, we must therefore
compare critical clusters in the a = 0 and a > 0 cases at the
same CO concentration. This is done in Fig. 12, which shows
the probability of finding spanning clusters at the critical point
vs the CO coverage for the a = 0 and three a > 0 cases. This
was obtained by sorting the snapshot configurations according
to their CO coverage in bins of width 0.01 and plotting the
relative number of spanning clusters in each bin. The most
striking feature of the figure is that percolation is rarer for
configurations with a given CO coverage at a mean-field
critical point than at the Ising critical point (a = 0), an effect
that becomes more pronounced with increasing a.

Results are shown in Fig. 12 for two system sizes, L = 60
and 100. The finite-size effects are seen to be quite modest in
the Ising case (a = 0). The CO coverage distribution for a = 1
is a unimodal distribution (Fig. 13) of mean CO coverage
(〈θCO〉) near 0.33 and with the average deviation from the
mean CO coverage (〈|θCO,L − 〈θCO,L〉|〉) expected to decrease
with increasing L (see details in the next paragraph). Very long
simulations are therefore needed to obtain reasonable statistics
for CO coverages above 0.5. As a result, we obtained results
for CO coverages up to 0.61 for L = 60 in a run of 107 MCSS,
but only up to 0.55 for L = 100 using the same run length.
For a = 0.1 and 0.3 the data for the two system sizes display a
clear crossing, as is also the case for random percolation [72].
We interpret this as a sign that in the mean-field case the
system develops a sharp percolation threshold that appears to
approach the random percolation threshold with increasing a.

The order-parameter distribution functions shown in Fig. 13
deserve some further discussion. In the mean-field case
(a = 1), the distribution quickly approaches a unimodal form
with an average near 0.33 as L increases. Its width is
expected to decrease with L as L−β/ν with the mean-field
critical exponents β = 1/2 and ν = 1. Numerically we ob-
tained β/ν = 0.609 ± 0.009, 0.557 ± 0.006, 0.553 ± 0.004,

0.555 ± 0.008, and 0.549 ± 0.006 for a = 0.1, 0.3, 0.5, 0.7,
and 1.0, respectively. We consider this consistent with the exact
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FIG. 10. (Color online) Snapshots of the adsorbate configurations for L = 100 near the corresponding critical point (i.e., at the 100/60
cumulant crossing) at different times (t in MCSS) when the CO coverage is near 0.5 (between 0.48 and 0.52). The upper two rows show the
case of a = 0 (k = 0.037 601 3,y = 0.540 699) at t = (a) 1 062 400, (b) 2 326 000, (c) 4 541 200, and (d) 5 518 200. The bottom row shows
the case of a = 1 (k = 0.149 209,y = 0.603 602) at t = (e) 2 081 640 and (f) 2 081 660. Lattice sites occupied by CO, O, and empty sites are
colored as red (dark gray), green (light gray), and white, respectively. All four snapshots for a = 0 contain a spanning CO cluster. For a = 1
in (e) and (f), snapshot (f) was taken just 20 MCSS after (e). While the CO coverage of (e) is 0.4848 and of (f) is 0.4869, there is a spanning
cluster in (e) but not in (f). Indeed, the radius of gyration of the largest CO cluster in (f) is only 19.2. This is essentially impossible to distinguish
by visual inspection alone.
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FIG. 11. (Color online) Measurement of the areas and the radii
of gyration (Rg) of the largest clusters vs time for a 100 × 100 lattice
near its critical point (i.e., at the 100/60 cumulant crossing). The area
is the fraction of the surface occupied by the cluster. Parts (a), (c),
and (e) show the results for a = 0, whereas (b), (d), and (f) show the
results for a = 1. Clusters that span the lattice (infinite size under
periodic boundary conditions) are recorded as having Rg = ∞ in (e)
and (f). Data are taken every 200 MCSS for a = 0 and every 20
MCSS for a = 1, so that there are 45 000 or 450 000 data points in
each graph. In (a) and (b), the green (light gray) line shows all the
data, whereas the blue (dark gray) line and dots show the size of the
maximum CO cluster only when the system has a CO coverage in the
range 0.50 ± 0.02. Among all the samples, 20118 (44.71%) have a
spanning cluster for a = 0 (a), and only 23 (0.051%) have a spanning
cluster for a = 1 (b). All the spanning clusters are found to be CO
spanning clusters, i.e., there are no oxygen spanning clusters. The
time-averaged CO coverage for a = 0 over 108 MCSS is 0.522 35
and for a = 1 over 107 MCSS is 0.327 13.

value of 0.5 for the mean-field universality class. In contrast,
the Ising case (a = 0) shows bimodal distributions with the two
peaks shifting slowly toward a central point as L increases. The
narrowing is expected to go as L−β/ν with the Ising critical
exponents β = 1/8 and ν = 1. Numerically we obtained
β/ν = 0.0977 ± 0.0007 for a = 0 using L = 60, 100, and
160. We consider this consistent with the exact value of 0.125
for the Ising universality class. At the critical point, the two
peaks should have equal weight of 50% each. Numerically we
find that 48.7%, 49.1%, and 44.0% of the data points have
a CO coverage of less than 0.5 for L = 60, 100, and 160,
respectively. These results are close to the expected value of
50%. L = 160 has a relatively larger deviation compared to
L = 60 and 100 even though according to Fig. 8, the critical
point for L = 160 should be more accurately determined than

FIG. 12. (Color online) Dependence on the CO coverage of the
probability of finding a spanning cluster for a = 0, a = 0.1, a = 0.3,
and a = 1 for 60 × 60 and 100 × 100 lattices near their critical points
(i.e., at the 60/40 and 100/60 cumulant crossings, respectively),
using a bin width of 0.01. Data were taken every 200 MCSS for
a = 0, and every 20 MCSS for a > 0. 108 MCSS were performed
for a = 0 and 107 MCSS for a > 0. For a = 1 and L = 60, 59 532
snapshots were found to have CO coverage between 0.45 and 0.61,
and among those 3714 spanning clusters (6.24%) were found. For
a = 1 and L = 100 only 17 258 snapshots were found to have CO
coverage between 0.45 and 0.61, and among them there were only
23 spanning clusters (0.13%). For a = 1 we did not obtain useful
data for CO coverages above 0.55. This effect is due to the narrowing
with increasing L of the critical CO-coverage distribution about its
average at approximately 0.33. See Fig. 13 and further discussion in
the text. Results for random percolation on 60 × 60 and 100 × 100
lattices are shown for comparison. For a = 0.1 and 0.3 the data for
the two system sizes display a clear crossing. This suggests that the
system in the mean-field case develops a sharp percolation threshold
that appears to approach the random percolation threshold with
increasing a.

FIG. 13. (Color online) Critical probability distributions for the
CO coverage plotted with a bin width of 0.01. The same sets of raw
data were used for L = 60, 100, and 160 at the critical points as
in Fig. 9. Data were taken every 200 MCSS for a = 0 and every
20 MCSS for a = 1. The mean-field case (a = 1) shows unimodal
distributions that narrow as L increases. In contrast, the Ising case
(a = 0) shows bimodal distributions with the two peaks shifting
slowly toward a central point as L increases. See further discussion
in the text.
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that for L = 60. The reason is that the width of the critical
region in the direction perpendicular to the coexistence line
(i.e., approximately in the y direction) shrinks with L as
L−βδ/ν = L−15/8 [73,74]. As a result, even a small deviation
from the critical point can have a large deleterious effect on
the symmetry of the order-parameter distribution. This can be
seen in the data point for a = 0, L = 160 in Fig. 9, and it is
even more pronounced for L = 240 (not shown).

We suggest that a qualitative explanation for the differences
between the finite-size effects in Fig. 12 for the Ising and
mean-field cases can be found by considering the form of
the spanning probability function for random percolation on a
square lattice of linear size L [72],

RL(p) = exp[−cL(pc − p)νp ]. (7)

Here, p is the site occupation probability, pc is the random
percolation threshold (≈0.593 [72]), and νp is the critical
exponent for the connectance length of the percolation problem
(=4/3 [72]). Ignoring the effect of correlations on the
percolation threshold, we approximately map our correlated
percolation problem onto random percolation by replacing
the system size L by the effective size L̂ = L/ξ , where
ξ is the critical order-parameter correlation length of the
interacting model (not to be confused with the percolation
connectance length). For the Ising universality class, ξ ∼ L

at criticality, indicating that the spanning probability for
CO coverages below the (modified) percolation threshold
should be (approximately) independent of L. In contrast,
the correlation length in the mean-field universality class
approaches a constant value as L increases [57,58]. Conse-
quently we expect that the L dependence of Eq. (7) should
also qualitatively describe the behavior for a = 1. The rarity
of large clusters is a well-known feature of mean-field critical
points in equilibrium models [54,57,58]. These observations
therefore further strengthen our conclusion that any nonzero
long-range reactivity induces mean-field behavior in this
nonequilibrium system. In Sec. IV C below we confirm that
the correlation lengths in the models studied here indeed
obey the L dependence postulated in this paragraph on the
basis of the known behaviors in the corresponding equilibrium
models.

C. Correlation function and correlation-length measurements

In order to verify the correlation-length scaling relations
postulated in Sec. IV B above, we define the CO disconnected
correlation function as [57]

c(r) = 〈σiσj 〉, (8)

where σi is 1 if site i is occupied by CO and is 0 otherwise, r is
the distance between site i and site j , and the spatial average is
taken along the horizontal and vertical directions. The critical
correlation length is estimated by integration as

ξ (L) =
∫ L/2

0 [〈c(r)〉 − 〈c(L/2)〉]rdr∫ L/2
0 [〈c(r)〉 − 〈c(L/2)〉]dr

. (9)

As shown in Fig. 14, ξ ∼ L at the a = 0 critical point, while
it remains at approximately L-independent values for a > 0.

FIG. 14. (Color online) Correlation length for a = 0, 0.1,

0.3, 0.5, 0.7, and 1 at their corresponding critical points (at the 60/40,
100/60, and 160/100 cumulant crossings, respectively), shown vs
system size L. 108 MCSS were used for a = 0 and 107 MCSS for
a > 0. Without long-range reactivity (a = 0), the correlation length
increases linearly with L, whereas in the presence of long-range
reactivity (a > 0), it is roughly independent of L and decreases with
increasing a.

These results are consistent with Ising critical behavior in the
former case and mean-field criticality in the latter.

V. CONCLUSION

We employed large-scale Monte Carlo simulations using
the crossing of fourth-order cumulants to study the critical
properties of the ZGB model with desorption, with and
without long-range reactivity. We obtained improved esti-
mates for the critical point and the corresponding cumulant
for the original ZBG model with CO desorption (kc =
0.0371 ± 0.0002, yc = 0.54052 ± 0.000 09, uc,∞ = 0.624 ±
0.003), through the crossing of cumulants up to a system size of
240 × 240 and run times of 4 × 108 MCSS. With the definition
of the desorption rate used by Brosilow and Ziff [4], P =
k/(1 − k), our result corresponds to Pc = 0.0385 ± 0.0002,
close to the result obtained by those authors.

By adding long-range reactivity to the model, we find that
the critical point of this nonequilibrium system changes from
the two-dimensional Ising universality class to the mean-field
universality class. This change occurs even if the long-range
reactivity is quite weak. Our conclusion is supported by the
fixed-point values of fourth-order cumulants, as well as by the
finite-size scaling behavior of the critical correlation length and
by estimates of the critical exponent ratio β/ν. Moreover, while
spanning clusters are easily observed near the critical point
in the case without long-range reactivity, spanning clusters
are seldom found near the critical point in the case with
strong long-range reactivity. This is so even when the cases
are compared at the same value of the CO coverage. The
results of adding long-range reactivity to this nonequilibrium
model are thus fully consistent with what has previously
been observed for weak long-range interactions in equilibrium
Ising ferromagnets, providing an example of the intriguing
equivalence of critical phenomena in some equilibrium and
nonequilibrium systems.
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