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Echo states for detailed fluctuation theorems
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Detailed fluctuation theorems are statements about the probability distribution for the stochastic entropy
production along a trajectory. It involves the consideration of a suitably transformed dynamics, such as the
time reversed, the adjoint, or a combination of these. We identify specific, typically unique, initial conditions,
called echo states, for which the final probability distribution of the transformed dynamics reproduces the initial
distribution. In this case the detailed fluctuation theorems relate the stochastic entropy production of the direct
process to that of the transformed one. We illustrate our results by an explicit analytical calculation and numerical
simulations for a modulated two-state quantum dot.
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I. INTRODUCTION

The discovery of detailed and integral fluctuation theorems
is arguably one of the most significant recent advances
in nonequilibrium statistical mechanics [1–3]. The best known
examples are the Jarzynski equality [4] (integral fluctuation
theorem) and the Crooks relation [5] (detailed fluctuation
theorem). The Crooks relation implies the consideration of
the time-reversed dynamics. As was already pointed out by
Crooks himself [5,6], the application of the theorem involves
a stringent condition on the initial condition of the reverse
process, namely, that it be such that the final distribution of
this reverse process is the initial distribution of the forward
process; see also [7,8]. In that sense, the integral fluctuation
theorems appear to have a broader range of validity, a point
made particularly clear in the work by Speck and Seifert [9,10].

The fluctuation theorems derive from time-symmetry prop-
erties of the underlying microscopic dynamics. It was however
realized that one can, at least in the context of Markovian
processes, consider two types of symmetry operations related
to time-irreversible behavior. Besides the time inversion of
the driving, one can perform the time inversion of the
dynamics associated to nonequilibrium boundary conditions.
This is technically done by considering the adjoint of the
Markov operator. It was thus found by Esposito and Van den
Broeck [11] that there are three different types of integral
and detailed fluctuation theorems. Each of these fluctuation
theorems is associated to one of the three combinations of the
two symmetry operations, corresponding to the total entropy
production, the nonadiabatic entropy production (loosely
speaking associated to relaxation processes), or the adiabatic
entropy production (loosely speaking related to the dissipation
of the nonequilibrium steady states). This discovery clarified
the status of the Speck-Seifert and Hatano-Sasa [12,13]
fluctuation theorems and of the H theorem familiar from
the theory of stochastic processes [14]. In the adiabatic
fluctuation theorem, the same initial condition is considered
for both the original and transformed processes. For the total
and nonadiabatic fluctuation theorem the transformed process
starts with the final distribution reached in the forward process.
The question can be raised whether the final distribution of
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this transformed process reproduces the initial distribution of
the forward process, as this has a direct consequence on the
interpretation of the fluctuation theorems. The main purpose
of this paper is to show that there is indeed a, generically
unique, initial distribution for which this property holds. We
call such an initial distribution an “echo state.” As we will see,
the echo state depends in an intricate manner on the details
of the dynamics and is, in general, different for the total and
nonadiabatic entropy productions.

The identification of the echo states is of particular interest
in the case of time-periodic driving, which we discuss in more
detail. In the experiments considered so far, the measurements
were restricted to the case in which the steady state was, for
symmetry reasons, trivially identical to the echo state [15–17].
This need not be the case. We will show how to identify
the echo states in a general setting, and how to extract
the proper statistics even when not operating with an echo
state as the initial condition, by an appropriate “shadowing
operation.” Finally, we illustrate how our prescriptions can be
implemented with the analytic and numerical discussion of a
modulated two-state quantum dot.

II. NOTATION AND DEFINITIONS

We consider systems with Markovian dynamics and a
discrete space of states. The transition rates from a state m′ to a
state m are denoted by W

(ν)
m,m′ (λt ), where λt is a time-dependent

control variable that describes the external driving and ν

specifies the mechanism that causes the transition. Transitions
are caused by contact with equilibrium reservoirs. The total
transition rate from m′ to m is denoted by Wm,m′ (λt ) =∑

ν W
(ν)
m,m′ (λt ). The probability to be in state m at time t obeys

the following master equation:

ṗm(t) =
∑
m′

Wm,m′ (λt )pm′(t), (1)

or ṗt = W(λt )pt in vector notation. The initial condition is
given by the probability distribution p0. The diagonal elements
of the rate matrix satisfy Wm,m(λt ) = −∑

m′ �=m Wm′,m(λt ). In
the absence of driving (λt = λ), a system in contact with a
single reservoir ν will relax to the equilibrium distribution
peq,(ν)(λ). When the system is in contact with multiple
reservoirs, it will relax to a nonequilibrium steady state
(NESS) ps(λ). The time evolution of the system is described
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by a trajectory � = {m(t),t ∈ [0,T ]}. The time of the ith
jump is denoted by ti (1 � i � N ), with N the number of
jumps. The trajectory starts at t0 = 0 and ends at tN+1 = T .
A trajectory is completely specified by its jump times ti , state
prior to the jump mi−1, state after the jump mi , and reservoir
that causes the jump νi . The probability to observe a trajectory
�, given p0, is equal to

P(�|p0) = pm0 (0)e
∫ T

tN
dτWmN ,mN

(λτ )

×
⎡
⎣ N∏

j=1

e
∫ tj
tj−1

dτWmj−1 ,mj−1 (λτ )
W

(νj )
mj ,mj−1

(
λtj

)⎤⎦ .

(2)

In order to define the total trajectory entropy production (EP)
we need to introduce the time-reversed trajectory �̄ ≡ {m̄(t) =
m(T − t),t ∈ [0,T ]}. Also, with the (forward) driving λt we
can associate the time-reversed driving λ̄t ≡ λT −t . For later
reference, we introduce the following (stochastic) matrices:

WF = −→exp
∫ T

0
W(λt )dt ; WR = −→exp

∫ T

0
W(λ̄t )dt, (3)

where −→exp stands for the time-ordered exponential. These
matrices describe the time evolution from t = 0 to t = T of,
respectively, the forward and reverse dynamics.

The probability to be in state m at time t under the reverse
dynamics is written as p̄m(t), or in vector notation p̄t . The
probability for a trajectory �̄ during the reverse dynamics and
starting from p̄0 is

P̄(�̄|p̄0) = p̄mN
(0)e

∫ T

T −t1
dτWm0 ,m0 (λ̄τ )

×
⎡
⎣ N∏

j=1

e

∫ T −tj

T −tj+1
dτWmj ,mj

(λ̄τ )
W

(νj )
mj−1,mj

(
λ̄T −tj

)⎤⎦ .

(4)

The total trajectory EP is then defined as (kB = 1)

�stot(�|p0) = ln
P(�|p0)

P̄(�̄|pT )
(5)

= ln
pm0 (0)

pmN
(T )

+
N∑

j=1

ln
W

(νj )
mj ,mj−1

(
λtj

)
W

(νj )
mj−1,mj

(
λtj

) (6)

= �ssys(�|p0) + �sr(�), (7)

where the first term is the change in system entropy and the
second term is the change in reservoir entropy. It is important
to note that the end probability of the forward dynamics pT =
WFp0 is taken as the start probability of the time-reversed
dynamics, i.e., p̄0 = pT .

As outlined in [11,14,18], the total EP can be separated
into adiabatic and nonadiabatic components. The adiabatic
trajectory EP is defined as

�sa(�) =
N∑

j=1

ln
W

(νj )
mj ,mj−1

(
λtj

)
ps

mj−1

(
λtj

)
W

(νj )
mj−1,mj

(
λtj

)
ps

mj

(
λtj

) (8)

=
N∑

j=1

ln
p

eq,(νj )
mj

(
λtj

)
ps

mj−1

(
λtj

)
p

eq,(νj )
mj−1

(
λtj

)
ps

mj

(
λtj

) , (9)

where we used detailed balance:

W (ν)
mi,mj

(λ)peq,(ν)
mj

(λ) = W (ν)
mj ,mi

(λ)peq,(ν)
mi

(λ). (10)

The nonadiabatic trajectory EP reads

�sna(�|p0) = ln
pm0 (0)

pmN
(T )

+
N∑

j=1

ln
ps

mj

(
λtj

)
ps

mj−1

(
λtj

) . (11)

The definitions of �sa and �sna are equivalent to [11]

�sa(�) = ln
P(�|p0)

P+(�|p0)
, (12)

�sna(�|p0) = ln
P(�|p0)

P̄+(�̄|pT )
, (13)

where + denotes that the system undergoes the adjoint
dynamics with rates

W
(ν)+
m,m′ (λt ) = W

(ν)
m′,m(λt )ps

m(λt )

ps
m′(λt )

. (14)

The adjoint dynamics W+(λt ) has the same NESS ps(λt ) as
the original dynamics W(λt ). The dynamics P+ starts with
probability distribution p0, while the dynamics P̄+ starts
with pT . The adiabatic EP is a measure of the difference
between the instantaneous steady state ps(λt ) and the equi-
librium distributions peq,(ν)(λt ) of the reservoirs that cause
the transitions. It is zero if the system is in contact with
a single reservoir. Physically, it can be understood as the
part of the total EP associated with nonequilibrium boundary
conditions, i.e., coupling with different equilibrium reservoirs.
The nonadiabatic EP is zero if the system undergoes no
external driving λt = λ, and if it starts in the steady state p0 =
ps(λ). It is therefore seen as the part of the total EP associated
with time-dependent driving and relaxation to the steady state.

III. THREE DETAILED FLUCTUATION THEOREMS

Having defined the different EPs on the trajectory level,
we now move on to the detailed fluctuation theorems which
deal with probability distributions of the entropy production.
We start by calculating the probability to observe a total EP
�stot in the forward dynamics, given the initial distribution p0.
Using the definition Eq. (5) one finds

P (�stot|p0) =
∑
�

P(�|p0)δ

(
�stot − ln

P(�|p0)

P̄(�̄|pT )

)
(15)

= e�stot
∑
�

P̄(�̄|pT )δ

(
�stot − ln

P(�|p0)

P̄(�̄|pT )

)

(16)

= e�stot
∑
�

P̄(�|pT )δ

(
−�stot − ln

P̄(�|pT )

P(�̄|p0)

)
,

(17)

with δ(·) the Dirac δ function. The sum appearing on the right-
hand side of Eq. (17) is a normalized function with respect to
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the variable �stot, so it is tempting to regard it as the probability
to observe a total EP −�stot during the reverse dynamics. This
is, however, not correct; the distribution for the total EP during
the reverse dynamics, in analogy with Eq. (15), is

P̄ (�stot|p̄0) =
∑
�

P̄(�|p̄0)δ

(
�stot − ln

P̄(�|p̄0)

P(�̄|p̄T )

)
, (18)

where we have used that ¯̄P(�̄|p̄T ) = P(�̄|p̄T ), since ¯̄λt = λt

by definition. The initial distributions appearing inside the δ

function are related via p̄T = WRp̄0. It is clear that such a
relation is not satisfied in general for Eq. (17), but only when
p0 = WRpT . Hence only for initial conditions p0 satisfying
the condition

p0 = WRWFp0. (19)

The requirement is that the end probability of the time-reversed
process is equal to the start probability of the forward process.
Initial conditions satisfying this requirement are called echo
states, and are denoted by pecho

0 . We can then write the detailed
fluctuation theorem (DFT) for the total EP as follows:

P
(
�stot

∣∣pecho
0

)
P̄

(−�stot

∣∣WFpecho
0

) = e�stot . (20)

If one starts from an echo state the entropy production is odd
under time reversal [cf. Eq. (5)]:

�s̄tot
(
�̄

∣∣WFpecho
0

) = ln
P̄

(
�̄

∣∣WFpecho
0

)
¯̄P
( ¯̄�

∣∣WRWFpecho
0

)

= ln
P̄

(
�̄

∣∣WFpecho
0

)
P

(
�

∣∣pecho
0

) = −�stot
(
�

∣∣pecho
0

)
.

(21)

The requirement Eq. (19) is equivalent to requiring that the
EP is odd under time reversal for all paths �. Indeed, from
Eq. (6) it is clear that the reservoir EP is always odd under time
reversal: �sr(�) = −�s̄r(�̄). The system EP is odd under
time reversal only if p̄m(T ) = pm(0) for all m, i.e., if the initial
condition is an echo state.

Echo states can be found by obtaining the eigenvector of
WRWF with eigenvalue 1. Since WRWF is the product of two
stochastic matrices, it is itself again a stochastic matrix. Hence
there is at least one such eigenvector pecho

0 . If the matrix is
furthermore irreducible and aperiodic, which we consider to
be the typical case, the Perron-Frobenius theorem dictates that
there is exactly one eigenvector with eigenvalue 1.

We next turn to the DFTs for the adiabatic and nonadiabatic
EP [11]. For the adiabatic EP we have

P (�sa|p0) =
∑
�

P(�|p0)δ

(
�sa − ln

P(�|p0)

P+(�|p0)

)

= e�sa
∑
�

P+(�|p0)δ

(
−�sa − ln

P+(�|p0)

P(�|p0)

)

= e�saP +(−�sa|p0), (22)

where we have used that P++(�|p0) = P(�|p0). Hence we
can write

P (�sa|p0)

P +(−�sa|p0)
= e�sa , (23)

for any initial distribution p0.
For the nonadiabatic EP we find

P (�sna|p0) =
∑
�

P(�|p0)δ

(
�sna − ln

P(�|p0)

P̄+(�̄|pT )

)

= e�sna
∑
�̄

P̄+(�̄|pT )δ

(
−�sna− ln

P̄+(�̄|pT )

P(�|p0)

)
,

(24)

and for the time-reversed adjoint process:

P̄ +(�sna|p̄0)

=
∑
�̄

P̄+(�̄|p̄0)δ

(
�sna − ln

P̄+(�̄|p̄0)

P(�|WR,+p̄0)

)
, (25)

where we use that ¯̄P++(�|WR,+p̄0) = P(�|WR,+p̄0), and
where we have defined

WR,+ =
[
−→exp

∫ T

0
W+(λ̄t )dt

]
. (26)

Initial conditions satisfying

p0 = WR,+WFp0 (27)

are again called echo states, and are denoted as pecho+
0 . The

DFT for the nonadiabatic EP can be written as

P
(
�sna

∣∣pecho+
0

)
P̄ +(−�sna

∣∣WFpecho+
0

) = e�sna . (28)

The derivation of this condition is completely analogous to
the one for the total EP Eq. (19). For the echo states pecho+

0 ,
the nonadiabatic EP is odd under the adjoint time-reversed
dynamics:

�s̄+
na

(
�̄

∣∣WFpecho+
0

) = −�sna
(
�

∣∣pecho+
0

)
. (29)

Starting from the echo state pecho+
0 ensures that the system

entropy is odd under the adjoint time-reversed dynamics, while
the other term of the nonadiabatic EP is always odd under the
adjoint time-reversed dynamics; see Eq. (11). Equation (27)
is therefore equivalent to requiring that Eq. (29) holds for all
paths �.

IV. PROCESSES STARTING FROM THE ECHO STATE

Consider a process λt between t = 0 and t = T . The echo
state for the total EP can be calculated from Eq. (19), with WF

and WR given by Eq. (3). As such, pecho
0 depends in an intricate

manner on the dynamics of both the forward and the reverse
processes. It is therefore difficult to make general comments
on its properties. For some relevant special cases, the echo
state can however be determined by a simple calculation.

An important class of processes which always start from
the echo state for the total EP is nonequilibrium steady
states [19–30]. Since λt = λ one has that λ̄ = λ and WR =
WF. Equation (19) then reduces to p0 = exp[W(λ)2T

]
p0,

012101-3



BECKER, WILLAERT, CLEUREN, AND VAN DEN BROECK PHYSICAL REVIEW E 91, 012101 (2015)

whose solution is pecho
0 = ps(λ). In this case the nonadiabatic

EP is zero, so the adiabatic and total EPs are equal.
The echo state for the total EP can also be easily calculated

for processes with periodic time-dependent rates that are
symmetric under time reversal [5,31,32]. Consider a system
subject to a periodic driving λt+τ = λt , with τ the period. In
the long-time limit the system is in a time-dependent periodic
steady state pps(λt ) [33]:

pps(λt+τ ) = pps(λt ). (30)

Consider the situation where T = τ , with a driving symmetric
under time reversal: λ̄t = λτ−t = λt . In this case WR = WF

and pps(λ0) is the echo state:

WFWFpps(λ0) = pps(λ2τ ) = pps(λ0). (31)

The DFT for the total EP has been verified experimentally for
this situation [15–17]. We stress that pps(λ0) is, in general, not
the echo state for the nonadiabatic EP.

In the limit t ↑ ∞ the contribution of the initial condition to
the EPs can become negligible. More precisely, the conditions
Eqs. (21) and (29) are violated because of the contribution of
the system entropy in, respectively, Eqs. (6) and (11). The
reservoir EP typically grows with time. Hence, when the
system EP is bounded, its contribution becomes negligible
in the limit t ↑ ∞. In this limit one recovers the asymptotic
fluctuation theorem for the total EP [20,34,35]. If the state
space is infinite, the asymptotic fluctuation theorem can be
invalid [36].

Finally, we mention a particular scenario for the total EP
described in [37] which reproduces the echo state. A system
in contact with several reservoirs is prepared so that its initial
state is the equilibrium distribution of one particular reservoir
at λ0. When the forward process is finished, the system is
allowed to relax to the same equilibrium distribution but now
at λT . This distribution is the start for the reverse process,
after which the system relaxes again to the initial equilibrium
distribution at λ0.

V. ECHO STATES FOR A MODULATED QUANTUM DOT

We illustrate our results on a modulated quantum dot. The
stochastic thermodynamics of this model has already been
discussed for various modes of operation; cf. [38–41]. The
model consists of a quantum dot with a single energy level
exchanging electrons with two reservoirs; see Fig. 1. The
energy level is either empty (0) or occupied by a single electron
(1). The transition rates are

W
(ν)
10 (λt ) = aνf

(
xν

t

)
, W

(ν)
01 (λt ) = aν

[
1 − f

(
xν

t

)]
, (32)

where ν denotes the left l or right r reservoir, f (x) =
[exp(x) + 1]−1 is the Fermi distribution, and aν is the system-
reservoir coupling. The chemical potential and temperature of
the reservoirs are denoted by, respectively, μν and Tν , and the
control variable is the value of the energy level λt = εt . The
variable in the Fermi distribution is xν

t = (λt − μν

)
/Tν .

We consider a piecewise constant periodic driving of the
form:

λt =
{
εI , 0 < t mod τ � ατ

εII , ατ < t mod τ � τ,
(33)

FIG. 1. Sketch of the model: a single energy level with energy ε,
connected to two electron reservoirs at different chemical potentials
and temperatures.

where εI and εII are constants, 0 � α � 1, and τ is the period.
Since for this model W(λt ) = W+(λt ), both echo states pecho

and pecho+ are identical. The forward dynamics is run over n

periods, with n an integer. The start time is denoted by t0 =
α0τ , with 0 � α0 � 1. The echo state is written as follows:

pecho = {
pecho

0 ,pecho
1

} =
{

1

1 + y
,

y

1 + y

}
. (34)

By identification with the eigenvector with eigenvalue 1 in
Eq. (19) or (27), one finds the explicit expression:

y =
{
z(α0,α,wI ,wII ,n), α0 � α,

z(α0 − α,1 − α,wII ,wI ,n), α0 > α,
(35)

with a = al + ar , wI = W10(εI ), wII = W10(εII ), and

z(α0,α,wI ,wII ,n)

= wI sinh(naτ ) + (wI − wII )g(α0,α,n)

(a − wI ) sinh(naτ ) − (wI − wII )g(α0,α,n)
, (36)

g(α0,α,n)

=
n−1∑
k=0

[sinh (aτ (k + α0)) − sinh (aτ (k + α0 + 1 − α))] .

(37)

0.2

0.4

0.6

0 0.5 1 1.5 2
t0

pps
1 (λt0)
n = 1
n = 2
n = 3

FIG. 2. (Color online) pecho
1 (t0,n) for n = 1 (blue double dotted

line), n = 2 (black crosses), n = 3 (red line), and p
ps
1 (λt0 ) (black

dotted line).
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−5 0 5 10 15 20

Δstot

0

0.2

0.4

0.6

P (Δstot|pecho
t0 )

P̄ (Δstot|WFp
echo
t0

)

−20 −10 0 10 20
−20

−10

0

10

20

ln
P (Δstot|pecho

t0
)

P̄ (−Δstot|WFpecho
t0

)

FIG. 3. (Color online) Probability distributions for the total EP
for the forward and time-reversed dynamics, starting from, respec-
tively, pecho

t0
and WFpecho

t0
. The verification of the DFT for the total EP

is shown in the inset.

Equation (35) was checked analytically for n = 1,2,3 for all
parameter values, and numerically for n > 3 for different sets
of parameter values.

From here on we consider the following choice of
parameters: μl = 2,μr = −2,al = ar = 1,Tl = Tr = 1,εI =
−4,εII = 4,α = 0.4, and τ = 1. We plot in Fig. 2 pecho

1 (t0,n)
as a function of t0 for n = 1,2, and 3. It is clearly very different
from the periodic steady state p

ps
1 (λt0 ). In the limit of large n,

one finds from Eq. (35) that

lim
n→∞ pecho(t0,n) = p̄ps

(
λ̄τ−t0

)
. (38)

−5 0 5 10 15

Δsa

0

0.4

0.8

P (Δsa|pecho
t0 )

P+(Δsa|pecho
t0 )

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

ln
P (Δsa|pecho

t0
)

P+(−Δsa|pecho
t0

)

FIG. 4. (Color online) Probability distributions for the adiabatic
EP for the forward and adjoint dynamics, both starting from pecho

t0
.

The verification of the DFT for the adiabatic EP is shown in the inset.

−5 0 5 10 15

Δsna

0

0.2

0.4

0.6

P (Δsna|pecho
t0 )

P̄ +(Δsna|WFp
echo
t0

)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

ln
P (Δsna|pecho

t0
)

P̄+(−Δsna|WFpecho
t0

)

FIG. 5. (Color online) Probability distributions for the nonadia-
batic EP for the forward and reverse adjoint dynamics, starting from,
respectively, pecho

t0
and WFpecho

t0
. The verification of the DFT for the

nonadiabatic EP is shown in the inset.

For large n the time-reversed process is in its periodic steady
state p̄ps(λ̄t ), where λ̄t = λτ−t . If one starts from t0 the final
distribution of the time-reversed process is, in this limit,
equal to p̄ps(λ̄τ−t0 ). The echo state is therefore equal to
this distribution. Note that pps(λt0 ) coincides with pecho(t0,n)
for t0 = 0.2 and t0 = 0.7. For these start times the driving
is symmetric under time reversal. In this case the model
falls under the “trivial” category of time-symmetric drivings
discussed in Sec. IV.

Having identified the echo state, we determined the various
entropy productions via numerical simulations using the
algorithm from [42], for the specific choice t0 = α0τ = 0.3

0 0.2 0.4 0.6 0.8 1.0

t − t0

0

0.2

0.4

0.6

0.8

1.0

p1(t − t0)

p̄1(t − t0)

0 0.1 0.7 1.0

−4

0

4

(t
−

t 0
)

FIG. 6. Probabilities to be occupied p1(t − t0) and p̄1(t − t0),
starting from, respectively, pecho

t0
and WFpecho

t0
, with t0 = 0.3. The

time dependence of the energy level is shown in the inset.
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and n = 1. The thus obtained distributions P (�stot|pecho
t0

) and
P̄ (�stot|WFpecho

t0
) are shown in Fig. 3. The two δ peaks of

both distributions around �stot = 0 are for the trajectories
that have no transition. The four other large δ peaks are for
trajectories with one transition. The DFT is satisfied; cf. the
inset of Fig. 3. P (�sa|pecho

t0
) and P +(�sa|pecho

t0
) are represented

in Fig. 4, and P (�sna|pecho
t0

) and P̄ +(�sna|WFpecho
t0

) in Fig. 5.
The DFTs Eqs. (23) and (28) are both satisfied; see the insets.
The probabilities p1(t) and p̄1(t) starting from, respectively,
pecho

t0
and WFpecho

t0
are shown in Fig. 6.

VI. SHADOWING THE ECHO STATES

A. Total entropy production

Suppose one wants to produce experimentally the echo state
for the total EP, for the driving λt between t = 0 and t = T .
This can be done by applying the following driving λ′

t to the
system:

λ′
t =

{
λt , 0 < t mod 2T � T ,

λ̄t , T < t mod 2T � 2T .
(39)

As is specified by the modulo 2T prescription, this driving is
periodic with period τ = 2T . The echo state is the periodic
steady state at λ′

0: pecho
0 = pps(λ′

0).
It is, however, not necessary to prepare the system in the

echo state. It is well known that one can reconstruct probability
distributions from measurements under a different distribution,
for example, via umbrella sampling [43]. We introduce here a
procedure that, starting from any initial condition, reproduces
the distribution of the total entropy production when starting
from the echo state. This procedure could be applied to already
existing experimental data.

Consider a collection of experimentally measured paths
{�} ({�̄}) starting from some arbitrary initial distribution p0

(p̄0), measured under the forward (reverse) dynamics. One
can find WF and WR from, respectively, {�} and {�̄}, at
least if all transitions are possible [pm(0) �= 0 and p̄m(0) �= 0
for all m]. The transition matrix WRWF can then be used
to find the echo state pecho

0 . Suppose now one has measured
the reservoir entropies �sr(�), which are independent of the
starting probability. The trajectory entropies starting from the
echo state are found by

�stot
(
�

∣∣pecho
0

) = �sr(�) + ln
pecho

m0
(0)

pecho
mN

(T )
. (40)

If instead one has measured the total EP, the original system
EP ln pm0 (0)/pmN

(T ) must be subtracted in Eq. (40), where p0

can be found from the collection of paths {�}. The corrected
EPs from Eq. (40) can be used to create the probability
distributions for the total EP when starting from the echo
state as follows. Consider each collection of paths that start
with the same state m0 separately. For each such collection, cal-
culate the probability distribution for the EPs of Eq. (40). These
probability distributions are denoted by Pm0 (�stot|pecho

0 ). The
probability distribution of the total EP when starting from the

echo state is then found by

P
(
�stot

∣∣pecho
0

) =
∑
m0

pecho
m0

(0)Pm0

(
�stot

∣∣pecho
0

)
. (41)

A completely analogous procedure can be followed for the
time-reversed process. Figure 3 was reproduced with this
procedure, for p1(0) = 0.5 instead of pecho

1 (0) = 0.3808.

B. Nonadiabatic entropy production

The echo state for the nonadiabatic EP can be found by
producing the periodic steady state of the dynamics where
the evolution over each period is described by WR,+WF. The
experimental realization of the WR,+ dynamics is in general
not a trivial exercise, since all transition probabilities W

(ν)
m,m′ (λt )

have to be separately changed according to Eq. (14). For
the modulated quantum dot the adjoint dynamics is readily
obtained, since one only has to change the chemical potentials
of the reservoirs. We are not aware of a general scheme
to produce the adjoint dynamics experimentally, given the
original dynamics. Since the adjoint dynamics is needed for
both the adiabatic and nonadiabatic DFT, this is an interesting
question for further research.

VII. CONCLUSION

As was pointed out by Seifert [23], the inclusion of the
so-called stochastic system entropy production allows one to
derive integral fluctuation theorems valid for finite times. The
situation is more delicate for the detailed fluctuation theorems.
If one wants to interpret the quantities associated to the reverse
(reverse adjoint) process as the total (nonadiabatic) entropy
of that process, one needs to make a specific choice of the
initial condition, which is typically unique. For these so-called
echo states, the starting probability distribution of the original
dynamics and final probability distribution of the transformed
dynamics are equal. Starting from an echo state ensures that the
system entropy is odd under the transformed dynamics. As a
result, both the total and nonadiabatic entropy productions are
odd under their respective transformed dynamics; cf. Eqs. (21)
and (29). Stochastic quantities such as heat, work, and entropy
production have by now been measured experimentally in
a wide variety of systems. Our prescriptions should thus
be easily verifiable, either by choosing the echo states as
proper initial conditions in the experiments, or by applying
our shadowing operation when starting from other initial states
that are more easily implemented, such as a long-time periodic
steady state.
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