
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 91, 010202(R) (2015)

Internal friction and absence of dilatancy of packings of frictionless polygons
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By means of numerical simulations, we show that assemblies of frictionless rigid pentagons in slow shear
flow possess an internal friction coefficient (equal to 0.183 ± 0.008 with our choice of moderately polydisperse
grains) but no macroscopic dilatancy. In other words, despite side-side contacts tending to hinder relative particle
rotations, the solid fraction under quasistatic shear coincides with that of isotropic random close packings of
pentagonal particles. Properties of polygonal grains are thus similar to those of disks in that respect. We argue that
continuous reshuffling of the force-bearing network leads to frequent collapsing events at the microscale, thereby
causing the macroscopic dilatancy to vanish. Despite such rearrangements, the shear flow favors an anisotropic
structure that is at the origin of the ability of the system to sustain shear stress.
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One of the most basic properties of slowly deformed
solidlike granular materials is their dilatancy, i.e., their
propensity to change volume under shear strain (or, more
generally, deviatoric strain). In particular, initially dense
granular assemblies will dilate under shear, and since its
introduction by Reynolds in 1885 [1], this property is regarded
as stemming from steric constraints [2], as one may expect
from the naive image of Fig. 1, often relied upon in pedagogical
documents.

In simple shear (see Fig. 1), with the convention that
shrinking strains are positive, this property is conveniently
expressed by dilatancy angle ψ , defined through the ratio of
normal expansion rate −ε̇yy to shear rate γ̇ :

tan ψ = −ε̇yy

γ̇
. (1)

This angle may be regarded as the kinematic dual of the friction
angle ϕ or friction coefficient μ∗, defined as the ratio of shear
stress to normal stress (coordinates are defined as in Fig. 1):

μ∗ = tan ϕ = |σxy |
σyy

. (2)

An alternative definition of a friction angle ϕ relies on principal
stresses σ1 > σ2, mean stress p = (σ1 + σ2)/2, and deviator
q = (σ1 − σ2)/2:

sin ϕ = q

p
. (3)

Definitions of ϕ in (2) and (3) coincide within the Mohr-
Coulomb model (which does not exactly apply to granular
materials [3]).

Dilatancy implies that the shear strength partly stems from
the work against pressure that is necessarily spent in order to
shear the granular material. The idea is often invoked to justify
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semiempirical stress-dilatancy relations [4] between ϕ and ψ ,
which numerical and micromechanical investigations [5–9]
sought to support and to relate to internal state characteristics
(such as fabric or force chains). In dense granular assemblies
subjected to quasistatic shear under constant normal stress σyy ,
ϕ, as a function of growing shear strain γ , first increases to
a maximum (the peak deviator stress, typically reached for
strain γpeak of the order of 10−2), and then decreases to a final
plateau (in the so-called critical state of soil mechanics [4]).
Meanwhile, ψ , often negative in a small initial strain interval,
increases to a positive maximum (reached near γpeak), and then
decreases until it vanishes, as the critical state is characterized
by steady plastic flow at constant volume. Such a complex
behavior is essentially determined, in the practically relevant
limit of rigid undeformable grains, by packing geometry
and contact sliding friction coefficient μs [10], with quite a
significant effect of rolling friction too, if present [11,12].
How macroscopic rheological characteristics such as ϕ and ψ

emerge as collective properties of disordered packings is by
no means trivial.

In this context, assemblies of rigid particles with frictionless
contacts are a particularly interesting limit case in which all
mechanical properties are of purely geometric origin [13–20].
Moreover, if assembled under an isotropic state of stress, rigid
frictionless grains stabilize with positions realizing a local
minimum of volume in the configuration space [13,17], and
as a consequence it is a common procedure to set μs = 0 in
numerical simulations in order to produce disordered packings
of maximum density, for spheres [17,21], or other particle
shapes, in two [22,23] and three dimensions [20,24–27]. Such
frictionless isotropic packings have recently been studied
for their specific, barely rigid structure [15,24], or simply
used as convenient reference initial states [21–23], as they
are relatively well reproducible and exhibit little dependence
on assembling procedure [17]. Their structure is the one
classically referred to as the random close packing (RCP) state
[15–17].

Most often, in numerical simulation practice, such initial
isotropic states are subjected to shear tests with a finite level
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FIG. 1. (Color online) A classical representation of dilatancy
mechanism in quasistatic simple shear test: Some expansion in
direction y is necessary for adjacent layers to flow past one another.

of friction μs introduced in the contacts, which causes a
strong dilatancy [6,21,23,28]. But different observations are
made if spherical rigid grains are kept frictionless as the
shear response is probed [19]. As the internal friction is
(monotonically) growing with shear strain to its critical state
value (ϕ = 5.76 ± 0.22◦ [18,29]) no appreciable change in
solid fraction is observed. The material is therefore constantly
devoid of dilatancy (ψ = 0) [18,19]. The RCP density is
thus observed in shear zones in frictionless bead assemblies
[30]. Two-dimensional (2D) assemblies of frictionless rigid
disks also exhibit a finite macroscopic friction angle [14,31],
and various observations suggest that they are devoid of
dilatancy (no clear-cut dilating or contracting tendency in [14],
smaller and smaller dilatancy in the limit of μs → 0 in [6]).
With frictionless spherical grains, or circular ones in 2D, no
density change—no dilatancy—occurs while ϕ monotonically
increases to its plateau value. Dilatancy angle ψ , for beads
or disks, thus depends on contact friction coefficient μs , and
vanishes for μs = 0, rather unexpectedly, given that the simple
picture of Fig. 1 ignores the role of intergranular friction.

We tested for the generality of such conclusions by
investigating the internal friction and dilatancy properties of
rigid, frictionless angular particles, in the simple case of
a polydisperse collection of rigid pentagons in 2D. Unlike
circular objects, any pair of polygons in side-to-side contact
will exhibit some kind of “local dilatancy,” causing their
centers to move further apart, if a relative rotation occurs,
as sketched in Fig. 2. A “local dilatancy” angle might thus be

(a) (b)

FIG. 2. (a) A polygon rolling on another polygon in side-to-side
contact, whence (b) an effective dilatancy angle ψloc.

FIG. 3. A simple (vertex-side) contact and a double (side-side)
one between polygonal grains, with corresponding normal forces.

identified as ψloc = π
2ns

in an assembly of regular polygons
with ns sides [32]. One might therefore wonder whether a
macroscopic nonvanishing dilatancy angle ensues, and how
the internal friction angle is affected by such angularity effects.

We addressed these issues by means of simulations using
the contact dynamics (CD) method, which is suitably applica-
ble to large assemblies of undeformable particles [10,33–35],
in inertial flow [36], as well as in quasistatic evolution
[7]. In this method, the rigid-body equations of motion are
integrated and the kinematic constraints due to contacts are
taken into account, using an implicit time-stepping scheme
to simultaneously update the contact forces and the particle
velocities. Contact interactions are characterized by three
parameters: the coefficient of friction and the coefficients
of normal and tangential restitution. The CD method has
repeatedly been applied to the simulation of assemblies
of angular grains, polygons in two dimensions [32,37] or
polyhedra in three dimensions [27,38]. A small tolerance
on grain overlaps enables contact detection (resulting in
relative error on ν of order 10−4), and polygons might
interact by vertex-side or side-side contacts (vertex-vertex
contacts are statistically irrelevant). A side-vertex contact is a
“simple” contact, as between disks, and corresponds to a single
unilateral constraint, with the normal direction orthogonal to
the side (Fig. 3). A side-side contact is a “double” contact
in the sense that it can be represented by two unilateral
constraints. It is equivalent to two simple contacts between
the same polygons, and the normal direction is the normal to
their common side, as shown in Fig. 3. In practice, two forces
are calculated at each side-side contact, but only the resulting
total force and torque are physically meaningful [39].

The packings of frictionless pentagons or disks dealt with
in the present study comprise 15 000 objects. Particle sizes
are randomly chosen according to a uniform distribution in
surface area, the diameter d of the circumscribed circle varying
between Dmin and Dmax = 2Dmin = 〈d〉/ ln(2), 〈d〉 denoting
the average value of d. First loosely arranged, with random
orientations, in a laterally periodic (i.e., along the x axis)
rectangular box, particles are then compressed between the
smooth walls parallel to direction x. The normal restitution
coefficient is equal to zero (no tangential forces or momentum
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transfer exist in contacts, due to vanishing friction). In a second
stage, both walls acquire some roughness as all pentagons
with center at distance below 2〈d〉 are rigidly tied to them.
A prescribed normal stress σyy is applied through those rough
parallel walls. The solid fraction ν is evaluated in a bulk region,
of thickness H , conventionally limited by the y coordinate
of the centers of mass of both walls. Starting from either a
loose initial configuration, or from an equilibrium state under
the applied stress, shear flow is driven by moving the upper
wall with prescribed velocity Vx , while the lower one remains
immobile. The position (coordinate y) of the top wall, and
thus the thickness H of the sheared layer, are free to fluctuate
while stress σyy is maintained constant. Vx linearly increases
in a first stage and is then maintained at a constant value.
As in many previous studies of normal-stress controlled shear
flow [18,31], shear stress σxy and solid fraction ν, after an
initial transient (corresponding to strain γ � 0.2), fluctuate
about a steady state average value which depends on the

inertial number [3,18,31,36], defined as I = Vx

H
〈d〉

√
ρ

σyy
(ρ

is the mass density of the grains). I is the ratio of inertial
time 〈d〉√ρ/σyy to shear time H/Vx . It characterizes inertial
effects, and vanishes in the quasistatic limit. All values of
friction angles or coefficients indicated in the following pertain
to the steady state. The averages of the time series provide
estimates of macroscopic friction angle ϕ and solid fraction
ν, which depend on I , as plotted in Fig. 4. Error bars are
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FIG. 4. (Color online) Steady shear flow results. (a) sin ϕ = q/p

versus I , with(red) squares for pentagons and (black) dots for disks.
(b) ν versus I (same symbols and colors). The horizontal straight line
corresponds to isotropic equilibrium (RCP) values, hashed regions
indicating the error bar.

deduced from rms. variations about averages. The present
study focuses on the quasistatic limit of I → 0 (approached
with good accuracy for I � 10−4). Our measured value of
q/p, q/p = sin ϕ = 0.183 ± 0.008, yields a larger friction
angle, ϕ = 10.5 ± 0.4◦ [40], for pentagons than for disks,
in which case our result q/p = 0.099 ± 0.002 corresponds
to ϕ = 5.7 ± 0.15◦. As to solid fractions, we estimate their
quasistatic limits as ν = 0.854 ± 0.003 for pentagons, and
ν = 0.8425 ± 0.0008 for disks. Our results for ν and ϕ in
disk assemblies agree with previously published ones [12,31],
despite the different diameter distributions.

For comparison, RCP configurations are assembled in
separate simulations of isotropic compression tests, with the
same number of particles, as in [41]. Bulk solid fractions
equal to 0.8530 ± 0.0013 for pentagons, to 0.8433 ± 0.0003
for disks are then measured on correcting for wall effects and
averaging over several samples. These values coincide, within
statistical uncertainties, with the ones observed in the limit
of slow steady shear flows. No significant density change,
either, was observed in shear flow in the transient evolution
between initial state and steady state (while the shear stress
increases monotonically to its steady state value [42]). Hence
the conclusion is that pentagons, like disks, are as densely
packed in steady quasistatic shear flow as in the isotropic
RCP state. Within statistical uncertainties, such assemblies
of angular particles, just like packs of disks (or of spherical
beads in three-dimensional [18,19]), despite the local dilatancy
at contact scale (Fig. 2), are devoid of macroscopic dilatancy
if contacts are frictionless.

Some insight on the origins of this discrepancy between
microscopic and macroscopic dilatancy behaviors might be
gained on investigating particle motions and local density
changes. Packs of frictionless particles, in which stresses are
barely supported by isostatic contact networks, are notoriously
unstable and prone to collective rearrangements [14,19]. The
effect of such events on the system volume fluctuate strongly
in space (as apparent in Fig. 5) and in time, and average
zero. Figure 5 illustrates the local volume changes around
each polygon, identified on using a local measure proposed in
[43] for strain rate ε̇. While the spatial average of its trace is of

FIG. 5. (Color online) Each polygon is colored according to the
sign of the local area change: orange (or darker gray) for a local
dilation; light blue (or gray) for a local contraction. The inset shows
a smaller scale detail.
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FIG. 6. (Color online) Polar diagrams of P (θ ) (black dots) and
〈fn〉(θ ) (red squares).

order 10−2, values of rms fluctuations are typically of several
units. No long-range organization is apparent (in particular, no
dilatant shear band is observed).

A comparison of local and global frictional properties
reveals a similar discrepancy, yet in the opposite direction:
while friction is absent at the contact scale (μs = 0), the
material has friction (μ∗ > 0) at the macroscopic scale. Its
origin, as in the case of spheres [19], can be ascribed to
force network anisotropy. Angle θ denoting the orientation of
normal directions to contacts, with respect to the x axis (flow
direction), let P (θ ) denote the probability density function
(p.d.f.) of θ among all contacts and 〈fn〉(θ ) the mean normal
force among contacts with orientation θ (the global average
normal force is 〈fn〉). Both functions are fitted by a similar
form (as checked in Fig. 6):

P (θ ) = 1

2π
[1 + a cos 2(θ − θc)], (4)

〈fn〉(θ ) = 〈fn〉
2

[1 + an cos 2(θ − θn)]. (5)

For the lowest I values we measured a � 0.12, an � 0.25,
while θc = θn = 3π/4. As previously reported [22,27,44,45],
q/p is in excellent approximation expressed as

q

p
= sin ϕ = 1

2
(a + an). (6)

Note that side-side contacts represent 38% of the total number
of contacts, and they carry 80% of the shear stress. A more
detailed study of the rheological properties of frictionless, rigid

FIG. 7. (Color online) An improved schematic representation of
dilatancy. As grains of the upper row, on average, flow past the bottom
ones, some displacements (left; color code as in Fig. 5) increase the
volume; others (right) decrease it. Friction favors the effects of the
former.

pentagons, in relation to microscopic state variables and force
networks, is presented in a forthcoming publication [42].

To conclude we now recall the essential results of this Rapid
Communication. Assemblies of rigid, frictionless polygonal
particles, like disks, (i) have a finite friction angle in simple
shear due to fabric and force anisotropies; but (ii) do not
have any measurable dilatancy, despite side-side contacts,
due to the effects of rearrangements and to the inability of
configurations looser than random close packing to support
static stresses. Interestingly, frictionless polygon packs exhibit
a larger friction angle than disks but a similar solid fraction.

Such results stress the importance, and the seemingly
counterintuitive consequences, of packing geometry and
contact network instabilities in granular mechanics, which
should be further investigated. The properties of frictionless
grains might be correctly described by constitutive models
involving numerically measured relations between stresses and
microscopic variables such as coordination and fabric [46].
They are nevertheless expected to set an important constraint
to first-principle approaches attempting to predict internal fric-
tion and dilatancy properties from microscopic rheophysical
mechanisms [5,8,9] (see [42] for more comments).

Going back to the schematic representation of dilatancy
in Fig. 1, the above findings suggest an alternative picture
for dilatancy intrinsically bound to friction between particles.
Namely, in a dense assembly, the intergranular friction tends
to hinder compacting rearrangements more than dilating ones,
thereby causing a positive global dilatancy. This picture is
illustrated in Fig. 7.
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Lett. 2, 61 (2012).

[10] Discrete-Element Modeling of Granular Materials, edited by
F. Radjaı̈ and F. Dubois (Wiley, New York, 2011).

[11] K. Iwashita and M. Oda, ASCE J. Eng. Mech. 124, 285 (1998).
[12] N. Estrada, A. Taboada, and F. Radjaı̈, Phys. Rev. E 78, 021301

(2008).
[13] J.-N. Roux, Phys. Rev. E 61, 6802 (2000).
[14] G. Combe and J.-N. Roux, Phys. Rev. Lett. 85, 3628 (2000).
[15] Corey S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.

Rev. E 68, 011306 (2003).
[16] A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev. E 71,

011105 (2005).
[17] I. Agnolin and J.-N. Roux, Phys. Rev. E 76, 061302 (2007).
[18] P.-E. Peyneau and J.-N. Roux, Phys. Rev. E 78, 011307 (2008).
[19] P.-E. Peyneau and J.-N. Roux, Phys. Rev. E 78, 041307 (2008).
[20] S. Torquato and F. Stillinger, Rev. Mod. Phys. 82, 2633 (2010).
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[22] E. Azéma and F. Radjaı̈, Phys. Rev. E 81, 051304 (2010).
[23] B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu, J.-Y.
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(1989).
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