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Anomalous diffusion in a quenched-trap model on fractal lattices
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Models with mixed origins of anomalous subdiffusion have been considered important for understanding
transport in biological systems. Here one such mixed model, the quenched-trap model (QTM) on fractal lattices,
is investigated. It is shown that both ensemble- and time-averaged mean-square displacements (MSDs) show
subdiffusion with different scaling exponents, i.e., this system shows weak ergodicity breaking. Moreover,
time-averaged MSD exhibits aging and converges to a random variable following the modified Mittag-Leffler
distribution. It is also shown that the QTM on a fractal lattice cannot be reduced to the continuous-time random
walks if the spectral dimension of the fractal lattice is less than 2.
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Anomalous diffusion has received much attention in recent
years [1,2] because it has been reported in many single-particle
tracking experiments in biological systems [3] and molecular
dynamics simulations [4]. In particular, much effort has been
devoted to theoretical studies to elucidate what kind of anoma-
lous diffusion is consistent with these experiments [3–5].
Among these studies, models with mixed origins of anomalous
diffusion are found to agree well with some experimental
data. For example, continuous-time random walks (CTRWs)
on fractal lattices reproduce well the diffusion of potassium
channels on plasma membrane [6,7] and a mixed model of
fractional Brownian motion (FBM) and CTRWs explains
well the diffusion of insulin granules in cells [8] as well as
molecular dynamics simulations of water molecules on the
membrane surface [9]. However, these theoretical models are
almost phenomenological and their underlying mechanisms
still remain to be elucidated.

As biological origins of these mechanisms, fractal struc-
tures are considered to be generated by molecular crowd-
ing [6,10]; the FBM is believed to be due to viscoelasticity
of the cytoplasm [8]. On the other hand, energetic disorder
due to transient traps to binding sites is considered to generate
the CTRW dynamics [6,8]. In fact, such energetic disorder is
a physical origin of CTRWs for the case of nonfractal lattices
with the spacial dimension larger than 2 [11,12]. However, lit-
tle is known about such a reduction for the diffusion on fractal
geometry. Here we study random walks in a random energy
landscape—the quenched trap model (QTM) [11–14]—on
fractal lattices and show that the reduction to CTRWs is
impossible for systems with a spectral dimension lower than 2.
The results in this Rapid Communication are a generalization
of Ref. [14], which studied the QTM on hypercubic lattices.

We consider random walks on a fractal lattice with fractal
dimension df and spectral dimension ds . The fractal dimension
df characterizes a static property (the configuration of the
lattice points), while the spectral dimension ds , originally
defined through the spectral density of state, characterizes
a dynamic property. Even the discrete-time random walks
(DTRWs) on fractal lattices show anomalous diffusion [15].
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We denote the position of the DTRW at time n by r̃(n) ∈
Rd . Then, the ensemble-averaged mean-square displacement
(EMSD) of DTRWs on fractals is given by

〈δ r̃2(n)〉 ∼ nβ, (1)

where δ r̃(n) ≡ r̃(n) − r̃(0) and β ∈ (0,1] (anomalous subd-
iffusion). The angular brackets denote the ensemble average
over both the thermal history and random environment [15].
Furthermore, the spectral dimension ds is related to the number
of visited sites until time n, Sn, as

〈Sn〉 ∼ nds/2 (2)

and thus ds � 2. For the hypercubic lattice (df = 1,2,3, . . . ),
ds = 1 if df = 1 and ds = 2 if df = 2,3, . . . . [More precisely,
a logarithmic correction appears in Eq. (2) for df = 2
(see [12,14] for details).]

In the DTRW on fractal lattices stated above, all the
lattice points are energetically identical, while the QTM is
the diffusion model on random potential landscapes. Because
the QTM is a continuous-time model, we denote the particle
position on the fractal lattice by r(t) ∈ Rd . In the QTM, a
particle that arrives at a site k is trapped at that site for a time
τk before jumping again. The trap time τk is assumed to follow
a power law

p(τ ) � c0

τ 1+μ
as τ → ∞ (0 < μ < 1), (3)

where μ is the stable index. Also, c0 is defined by c0 =
c/|�(−μ)|, where c is the scale factor and �(−μ) is the
Gamma function. We assume that the trap time τk of the site k

is the same for each visit to this site, i.e., the random trap time
τk is a quenched disorder. The origin of the power-law trap time
distribution [Eq. (3)] is random potential landscapes with the
potential depths following an exponential distribution [12].
This Rapid Communication also presents numerical results
for the QTM on a two-dimensional Sierpinski gasket, for
which exact values of β and ds are known: ds = 2 ln 3/ ln 5
and β = 2 ln 2/ ln 5 [15].

On the basis of the analysis reported in [14], we approxi-
mately derive the probability density function (PDF) of the
number of jumps until time t , Nt , which is an important
quantity because Nt connects the DTRW and CTRW. The
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following equation plays a central role:

Prob(Nt < n) = Prob(Tn > t), (4)

where Tn is the time when the nth jump occurs and is called
the nth renewal time.

We start with the derivation of the PDF of Tn and then derive
the PDF of Nt through Eq. (4). Let l′k (k = 1,2, . . . ) denote the
site index visited just after the (k − 1)th jump. Then the nth
renewal time Tn is expressed as

Tn =
n∑

k=1

τl′k . (5)

Note that the same integers can appear in the sequence of site
indexes {l′k}k=1,2,...,n since the particle can visit the same site
repeatedly. Accordingly, the trap times {τl′k }k=1,2,...,n are not
mutually independent.

To handle this interdependence between trap times, we
rewrite Tn as follows [12]:

Tn =
Sn∑

k=1

Nn,kτlk , (6)

where Sn is the number of visited sites. The indices of these
visited sites are denoted by {lk}k=1,...,Sn

and Nn,k is the number
of visits to the site lk . Note that the same integers do not appear
in the sequence of site indices {lk}k=1,2,...,Sn

and thus the trap
times {τlk }k=1,2,...,Sn

are mutually independent.
Here let us approximate Nn,k as Nn,k ≈ n/Sn (i.e., we

neglect fluctuations of the number of visits to each site).
Moreover, in order to use the generalized central limit theorem,
we rewrite Eq. (6) as

Tn ≈ n

Sn

Sn∑
k=1

τlk = n

S
1−1/μ
n

1

S
1/μ
n

Sn∑
k=1

τlk ≡ anYn, (7)

where an and Yn are defined as an ≡ n/S
1−1/μ
n and Yn ≡

1/S
1/μ
n

∑Sn

k=1 τlk , respectively. By neglecting the fluctuations
of Sn as Sn ≈ 〈Sn〉 and using Eq. (2), we further approximate
an as

an ≈ Kn1+ds (1−μ)/2μ, (8)

where K is a constant. Since {τlk }l=1,...,Sn
are mutually indepen-

dent, we can use the generalized central limit theorem [12,16]
and find that Yn converges to a random variable Y as n → ∞,
which follows the one-sided stable distribution lμ(y). Thus,
Tn also follows the lμ(y) after a suitable rescaling. A series
expansion of lμ(y) is given by [16]

lμ(y) = − 1

πy

∞∑
k=1

�(kμ + 1)

k!
(−cy−μ)k sin(kπμ). (9)

Next, we derive the PDF of Nt . First, let us define a rescaled
variable Xt as

Nt = btXt with bt �
(

t

K

)μ/α

, (10)

where α ∈ [(1 + μ)/2,1] is defined by

α = μ + ds(1 − μ)/2. (11)

This parameter α is important because it characterizes the
deviation of the QTM from the CTRW. The PDF of Xt is the
same as that of Nt except for the difference in the scale factor,
thus we derive the PDF of Xt instead of Nt . By using these
rescaled variables Xt and Yn, Eq. (4) can be rewritten as

Prob(Xt < x) = Prob(Yn > x−α/μ), (12)

where x is defined by

x ≡ n

bt

=
(

t

an

)−μ/α

. (13)

Because Yn converges to the random variable following
lμ(y), the right-hand side of Eq. (12) tends to an integral of
lμ(y) in the scaling limit n → ∞ (with x being fixed):

Prob(Yn > x−α/μ) �
∫ ∞

x−α/μ

lμ(y)dy. (14)

Thus we obtain the PDF of Xt by taking derivatives of Eqs. (12)
and (14) with respect to x:

gμ,α(x) = − α

πμx

∞∑
k=1

�(kμ + 1)

k!
(−cxα)k sin(kπμ). (15)

There are two remarks. The first remark is that, since Xt

converges to a time-independent random variable that follows
the PDF (15), we have 〈Nt 〉 ∼ bt . The second remark is that the
above PDF is a one-parameter extension of the Mittag-Leffler
distribution (MLD) [16,17] for which α = 1; thus, we call it a
modified MLD [14]. A qualitative difference from the MLD is
that gμ,α(x) diverges at x = 0 as gμ,α(x) ∼ 1/x1−α (see [14]
for more details). Finally, we obtain the PDF for Nt as

fμ,α(n,t) ≈ gμ,α(x)
dx

dn
= gμ,α

(
n

bt

)
1

bt

, (16)

where we used Eq. (13).
Next we derive asymptotic formulas for the EMSD

〈δr2(�)〉, where δr(�) ≡ r(�) − r(0), and the time-averaged
mean-square displacement (TMSD) δr2(�,t), which is de-
fined below. Here � is the lag time and t is the total
measurement time. The ensemble average is taken over both
the thermal history and random environment (realizations of
random fractals and the quenched disorder of traps). Using a
method presented in [7,18], we have

〈δr2(�)〉 ≈
∫ ∞

0
〈δ r̃2(n)〉fμ,α(n,�)dn

≈
∫ ∞

0
(xb�)βgμ,α(x)dx ∼ �μβ/α, (17)

where we used Eqs. (1), (10), (13), and (16). Thus, EMSD
shows anomalous subdiffusion [see Fig. 1(a)]. Only when α =
1 (or, equivalently, df = 2) does the scaling exponent of the
subdiffusion coincide with that of the CTRW [7].
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FIG. 1. (Color online) Symbols are numerical results for the
QTM on the Sierpinski gasket, while curves are theoretical predic-
tions [Eq. (17) for the EMSD and Eq. (24) for the ETMSD]. The
trap time PDF is set as p(τ ) = 1/(1 + τ/μ)μ+1 with τ ∈ (0,∞). (a)
and (b) The EMSD 〈δr2(�)〉 and ETMSD 〈δr2(�,t)〉 vs the lag
time �. The total measurement time t is set as t = 2 × 1010. (c) The
ETMSD 〈δr2(�,t)〉 vs the total measurement time t [see Eq. (24)].
The lag time � is fixed as � = 102. This figure shows aging behavior
of the ETMSD. (d) Scaling exponents of anomalous diffusion for
the EMSD (circles and solid line) and ETMSD (squares and dashed
line) vs μ. The total measurement time t is set as t = 2 × 1013 for
μ = {0.1,0.2,0.3}, t = 2 × 1011 for μ = {0.4,0.5,0.6}, t = 2 × 109

for μ = {0.7,0.8}, and t = 2 × 108 for μ = {0.9,1.0}. The scaling
exponent of aging for the ETMSD is also shown (triangles and long-
dashed line). These scaling exponents are obtained by least-squares
fittings (under log-log form) in the range � ∈ [106,t] for the EMSD
(circles) and � ∈ [105,107] (squares) and t ∈ [106,108] (triangles)
for the ETMSD.

The TMSD δr2(�,t) is defined by [3–5]

δr2(�,t) = 1

t − �

∫ t−�

0
dt ′|r(t ′ + �) − r(t ′)|2. (18)

This TMSD is often used in single-particle tracking ex-
periments because it is difficult in general to obtain many
trajectories. We rewrite the TMSD as [19,20]

δr2(�,t) ≈ 1

t

Nt∑
k=1

Hk(�), (19)

with

Hk(�) ≡ |δrk|2� + 2
k−1∑
l=1

(δrk · δr l)θ (� − (Tk − Tl)),

(20)

where δrk ∈ Rd is the displacement at time Tk and θ (t)
is defined by θ (t) = t for t � 0; otherwise θ (t) = 0. These
equations can be derived by expressing r(t ′) as r(t ′) =∑∞

k=1 δrkI (Tk < t ′), where I (· · · ) is the indicator function,
i.e., I (· · · ) = 1 if the inside of the bracket is satisfied,
while I (· · · ) = 0 otherwise. Then expressing the integrand
in Eq. (18) |r(t ′ + �) − r(t ′)|2, with δrk and the indicator
function, we obtain Eq. (19).

From Eq. (19) we have

δr2(�,t) ≈ Nt

t

1

Nt

Nt∑
k=1

Hk(�) → Nt

t
h(�) (21)

for large t . Here we assume that the law of large numbers is
satisfied for the summation of the random variables Hk(�).
This assumption can be proved for hypercubic lattices [19]
and confined systems [20], whereas a general proof seems
difficult because the correlation between displacements δrk

should be taken into account. Nevertheless, this assumption
is reasonable because it is essentially the ergodic hypothesis
for the DTRW [20] and it is a well accepted fact that DTRWs
on fractals are ergodic [21]. The important point is that the
statistical properties of the TMSD are completely determined
by Nt and we have already derived the PDF of Nt in Eqs. (15)
and (16).

The ensemble average of Eq. (21) gives

〈δr2(�,t)〉 ∼ tμ/α−1h(�), (22)

where we used 〈Nt 〉 ∼ bt ∼ tμ/α . On the other hand, the
ensemble average of Eq. (18) gives

〈δr2(�,t)〉 ∼ 1

t

∫ t

0
dt ′〈|r(t ′ + �) − r(t ′)|2〉

∼ �1+μβ/α

t

∫ t/�

0
dt ′q(t ′). (23)

Here we assumed a scaling hypothesis for the integrand
〈|r(�(t ′ + 1)) − r(�t ′)|2〉 ∼ �γ q(t ′) with a constant γ and
an unknown function q(t ′). By setting t ′ = 0, we found γ =
μβ/α from Eq. (17). Note that on fractal lattices, 〈|r(�(t ′ +
1)) − r(�t ′)|2〉 �= 〈r2(�(t ′ + 1))〉 − 〈r2(�t ′)〉 in general, due
to correlations between successive jump directions.

Comparing Eqs. (22) and (23), we have
∫ t/�

0 dt ′q(t ′) ∼
(t/�)μ/α and the ensemble-averaged TMSD (ETMSD) is
given by

〈δr2(�,t)〉 ∼ �1+(β−1)μ/α

t1−μ/α
. (24)

Thus, the ETMSD shows subdiffusion �1+(β−1)μ/α as well
as aging 1/t1−μ/α [see also Figs. 1(b) and 1(c)]. Note that
the above formula is equivalent to that for CTRWs [7] if
α = 1 (or, equivalently, df = 2). By contrast, if α < 1 (or,
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FIG. 2. (Color online) Rescaled PDF of the diffusion constant
calculated simply by Dt/〈Dt 〉 = δr2(�,t)/〈δr2(�,t)〉 [Eq. (25)] for
� = 105 and t = 2 × 109. The parameter μ is set as (a) μ = 0.2,
(b) μ = 0.4, (c) μ = 0.6, and (d) μ = 0.8. The solid curves are the
theoretical result [Eq. (15)] and the dashed curves are the MLD.

equivalently, df < 2), the above equation is not equivalent to
that of CTRWs.

Finally, we derive the PDF of the generalized diffusion
coefficient of the TMSD. From Eqs. (22) and (24) we obtain
h(�) = �1+(β−1)μ/α and thus Eq. (21) is rewritten as

δr2(�,t) ∼ Nt

t
�1+(β−1)μ/α. (25)

It follows that the generalized diffusion coefficient Dt is given
by Dt ∼ Nt/t and therefore Dt/〈Dt 〉 follows the same PDF
as Nt/〈Nt 〉 (see Fig. 2). If the system is ergodic, this PDF
converges to a Dirac delta function, that is, Dt → 〈Dt 〉 as t →
∞. However, this is not the case in the present model; the PDF
converges to the modified MLD gμ,α(x) [Eq. (15)] and thus the
ergodicity breaks down weakly with everlasting randomness
of time-averaged quantities [5,7,14,17,19,20,22,23].1

In summary, the QTM on fractal lattices was investigated
and anomalous subdiffusion was found for both EMSD and
TMSD. It is also shown that this system shows weak ergodicity
breaking and the diffusion constant of the TMSD becomes a
random variable following the modified MLD. This modified
MLD has a divergent peak at the origin, which means that there
are trajectories with small diffusivity much more frequently in
the QTM than in the CTRW.

We also show that if the spectral dimension ds of the fractal
lattice satisfies ds < 2, the QTM cannot be reduced to the
CTRW; in other words, the CTRW is physically irrelevant
as a model of a random walk on random potential energy
landscapes and we have to use the QTM instead of the CTRW
(though if ds is close to 2, the CTRW is a good approximation
of the QTM). Only if ds = 2, the QTM is asymptotically
equivalent to the CTRW. Finally, it is worth mentioning that,
even though we focused on the TMSD as a time-averaged
observable, the weak ergodicity breaking and the modified
MLD must appear for a wide class of observables [19,20].

1The weak ergodicity breaking is usually defined through a
mismatch of time-averaged and ensemble-averaged quantities with-
out any division of the phase space into mutually inaccessible
regions [2,24]. In addition, the systems such as the QTM and CTRW
show the everlasting randomness of time-averaged quantities as stated
in the main text. In contrast, there are systems in which ergodicity
breaks down weakly without such randomness of time-averaged
quantities (see, for example, [25]).
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