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Morphological evolution of domains in spinodal decomposition
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Domain growth in spinodal decomposition is usually described by a single time-evolving length scale. We
show that the evolution of morphology of domains is nonmonotonic. The domains elongate rapidly at first and
then, with the help of hydrodynamics, return to a more circular shape. The initial elongation phase does not alter
with hydrodynamics. A small deviation from critical composition changes the morphology dramatically.
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Spinodal decomposition is observed in a binary fluid system
when a homogeneous mixture of two fluids is quenched below
the critical temperature so that it spontaneously demixes into
regions containing each of its constituents [1]. This process
occurs through the formation and growth of domains of the two
phases. The long entwining structures in a 50:50 (also known
as critical or symmetric) mixture and the dispersed droplets
in an off-critical mixture (where one component dominates)
are familiar images [2–8]. Following the dynamical scaling
hypothesis, this structure has hitherto been characterized by a
time-dependent length scale L(t) ∼ tα , where α is the growth
exponent [9]. With few exceptions [10–12], far less attention
has been paid to the question of how the morphology of the
domains evolves during spinodal decomposition and to the
effect of hydrodynamics on this evolution and we address
these questions in this paper.

Spinodal decomposition is now studied in a variety of sys-
tems such as in polymers [13], polymer colloid mixtures [14],
gelation of protein solutions [15], crystallization facilitated
by heterogeneous nucleation in interfaces [16], systems in-
terfering with glass transitions [17], and active systems [18].
Novel structures can form in phase-separating mixtures, such
as bicontinuous gels formed by the introduction of colloids
into the mixture [19]. Nanoporous network formation during
dealloying [20] and properties of alloys characterized using
microstructure [21] are also based on spinodal decomposition
effects. Surface-directed decompositions [22] and driven
systems, e.g., by shear [23], are also active areas of research. A
common theme among many of these studies is the evolution
of the microstructure, which affects the macroscopic behavior
and/or the physical properties. Our demonstration here that the
anisotropy of the morphology evolves in time can prove to be
important in this context.

Domain morphology has attracted attention in some
previous studies [3–5,10–12]. Reference [3] highlights the
differences arising due to change in the initial concentration of
the components, while [4] describes the coalescence-induced
growth of clusters. In [5] the authors describe variations
in morphology of emerging domains with viscosity and
diffusivity of the fluids and state that the dominant growth
mechanism may be different at different length and time
scales. Extensive analysis on morphology in terms of Euler
characteristics, surface area, and distribution of curvatures is
done in both two and three dimensions [10,11]. Robust scaling
laws for these measures were also calculated, but the effects of
hydrodynamics were not taken into account. Here we propose

isoperimetric ratio as a measure of morphology and show
how it nonmonotonically varies during the growth. Different
measures such as interface length and connectivity (known
as Minkowski functionals) were introduced in [12] that show
nonmonotonic behavior with time. Percolating morphology is
reported to enhance the separation process [24]. However, all
these studies concentrated on the relation between morphology
and the scale-invariance principle. In contrast, we characterize
the morphology, quantify how it varies with time, and ask the
question of how hydrodynamics affects its evolution.

In addition, our study may have implications in observations
of the breakdown of scale invariance in spinodal decomposi-
tion. Such instances have been reported earlier; see, e.g., [4,8].
Simulations of [5] show such a breakdown, due to competition
between various growth mechanisms and additional physics.
Thus one may wonder about the validity of the assumption of a
single length scale to characterize the system. Our simulations
show that anisotropic morphology is prominent at very early
times. This evolution of anisotropic morphology may also
interfere with characteristic time-dependent length scales.

In this paper we offer the isoperimetric ratio as a good
measure to characterize the morphology of domains. We show,
surprisingly, that the morphology evolves nonmonotonically.
On a short diffusive time scale, structures take on extremely
elongated shapes, even in an off-critical mixture. On a longer
time scale, dictated by capillary effects, isotropy is partially
or completely regained. Our simulations show that the return
to isotropy is very slow without hydrodynamics. The behavior
is a strong function of mixture composition, especially near
criticality.

To study the binary fluid system, we define an order
parameter ψ , which describes the local concentration. The
Cahn-Hilliard equation (CHE)

∂tψ + ∇ · (uψ) = ∇ · (M∇μ) (1)

describes the evolution of this order parameter. The Navier-
Stokes equation (NSE) describes the conservation of momen-
tum

ρ(∂tu + u · ∇u) = −∇p + η∇2u + ψ∇μ (2)

along with equation of continuity ∇ · u = 0. The additional
stress term arising from the gradients in the order parameter
represents the Laplace and Marangoni stresses acting on
interfaces. In the above, p stands for the isotropic contribution
of the pressure, η is the viscosity, and M is the mobility relating
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the thermodynamic flux of ψ to the gradient of chemical
potential ∇μ. [7,25].

If one may ascribe a single length scale to the dynamics,
the following scaling applies. In the diffusive regime, i.e.,
at early times [9,26], fluid velocities are small enough to
neglect the advective term in Eq. (1), reducing the equation
to ∂tψ ∼ M∇2μ. With the chemical potential as μ ∼ γ /L,
where γ is the surface tension, we have L(t) ∼ (Mγ )1/3t1/3, a
growth driven by mobility and surface tension. At intermediate
times, i.e., during the viscous regime, hydrodynamics becomes
important such that the viscous term in Eq. (2) dominates the
inertial term. Neglecting contributions from other terms,
the shear stress term balances the force due to the gradient
in the chemical potential η∇2u ∼ ψ∇μ so that L(t) ∼ γ t/η,
which is the linear growth law as predicted by Siggia [27].
This stage is followed by the inertial regime, when fluid inertia
becomes more important than viscous stresses. Here Eq. (2)
reduces to ρ∂tu ∼ ψ∇μ. This gives L(t) ∼ (γ /ρ)1/3t2/3,
as predicted by Furukawa [28]. These scalings have been
observed in various studies [2,29]. Mechanisms such as cluster
diffusion and reaction affect the growth process [30]. Similarly,
droplet interactions can be important as predicted by [31] and
confirmed via extensive molecular dynamics simulations [32].
When inertial forces are large, questions about the role of
turbulence in limiting the coarsening process are addressed
with large-scale simulations [33].

Immediately after the quench, where hydrodynamics is
not developed and nonlinearities can be neglected, Eq. (1) is
linearly unstable to fluctuations, indicating phase separation.
Beyond this initial phase, numerical solutions are often
required due to the complexity of the governing equations (1)
and (2). We use a hybrid lattice-Boltzmann (LB) algorithm to
solve this system of coupled partial differential equations [34].

For critical quenches we set 〈ψ〉 = 0. For off-critical
quenches 〈ψ〉 = ψ0, where ψ0 varies according to the required
relative concentration of the two fluids. Simulations are per-
formed on a two-dimensional domain of size 1024×1024 with
periodic boundary conditions. All results that we report have
been averaged over three runs. All quantities are expressed in
LB units in this work. The following values of the parameters
are fixed in all our runs: A = −B = −0.0108, K = 0.0216,
and M = 10. We use η = 3.34 and η = 0.17 to simulate high-
and low-viscosity fluids.

Simulations are performed for fluid mixtures of different
properties and compositions. The growth rate observed in
various cases is illustrated in Fig. 1. Here the domains are char-
acterized by a length scale L(t) = 2π

∫
S(k,t)dk/

∫
kS(k,t)dk

defined as the inverse of the first moment of the circularly
averaged structure factor S(k,t) ≡ 〈ψ(k,t)ψ(−k,t)〉, where
k = |k| is the modulus of the wave vector in Fourier
space and ψ(k,t) represents the spatial Fourier transform of
the order parameter [7]. The angular brackets denote an
average over a shell in k space at fixed k. Various regimes
of growth observed for a symmetric mixture are shown in
Fig. 1(a). Solving the system with no flow for a symmetric
mixture gives the exponent α = 1/3 as expected and will
be referred to as diffusive hereafter. When the NSE and
CHE are coupled together we use η = 3.34 and η = 0.17
to simulate high- and low-viscosity fluids. These exhibit
α ≈ 1/2 and α = 2/3 growths and will be referred to as the
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FIG. 1. (Color online) Domain growth characterized by a length
scale L(t) shown for (a) a symmetric mixture in the case of diffusive
(no hydrodynamics), viscous (high viscosity η = 3.34), and inertial
(small viscosity η = 0.17) regimes and (b) an asymmetric mixture
with low viscosity. The solid black lines represent t2/3 growth and
the dashed line represents t1/3 growth. Asymmetric mixtures grow
significantly differently from this 2/3 growth of symmetric mixtures
in the inertial regime.

intermediate and inertial cases, respectively. In asymmetric
mixtures, additional growth mechanisms may be present,
changing the growth exponents. This change is evident in
Fig. 1(b), with deviation from the 2/3 slope occurring earlier as
the composition becomes more asymmetric. It is not possible
to extract any clear exponent from these simulations to attribute
the growth to any particular mechanism. However, we retain
the nomenclature (diffusive vs inertial regimes) described in
symmetric mixtures in asymmetric mixtures as well for the
convenience of discussion in the following sections.

The effect of initial composition on the geometrical features
of the separated phases during a spinodal decomposition
process is illustrated in Fig. 2. Even a small difference from the
50:50 composition has a pronounced effect on the morphology
of evolving domains. Snapshots from the simulations of a
symmetric (50:50, ψ0 = 0) and an off-symmetric (45:55,
ψ0 = 0.1) mixture are shown in Fig. 2 to make this evident. The
initial growth in both the mixtures is via a diffusion process.
This generates long and intertwined structures of phases as
illustrated in the leftmost panels of Figs. 2(a) and 2(b). The
characteristic width is much smaller than the characteristic
length. In the off-critical mixture this anisotropy is lower. As
time evolves, the domains grow. As has been observed in [4],
the isolated droplets of the minority phase in the off-symmetric
mixture grow via droplet coalescence also. In both cases, it
is seen unambiguously that the anisotropy of the structures
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FIG. 2. (Color online) Spinodal decomposition in (a) a 50:50 and
(b) a 45:55 binary mixture with time is illustrated. Evidently, the
domains are highly anisotropic at early times. This anisotropy is
carried forward in time in the 50:50 mixture, whereas a circular shape
of the minority phase is restored at later times in the 45:55 mixture.
The indicated length is in simulation units.

(observe the width-to-length ratio) evolves with time, but in
different ways.

To quantify the morphology, we first identify and label
the clusters [3,4] of one of the component fluids using a
Hoshen-Kopelman algorithm [35], here, on a grid made up
of cells across the computational domain, where each cell
is either occupied or unoccupied. Using the algorithm we
separate clusters of the two fluids and calculate associated
geometrical quantities. To measure the anisotropy, we define
the isoperimetric ratio [36] of each domain

Q ≡ P 2

4πA
,

where A is its area and P its perimeter. For a circular lobe
Q = 1, whereas Q > 1 for any other shape. The greater the
deviation from a circle, the higher the value of Q. For very
elongated and branched domains, this ratio gives a measure of
the length of the interface per unit area of the separated phase.

The average isoperimetric ratio 〈Q〉 is obtained by averaging
Q over space and over different realisations.

In Fig. 3(a) we plot the average isoperimetric ratio with time
for different compositions, i.e., different ψ0. The anisotropy
in morphology, as measured by 〈Q〉, for all quenches except
the most asymmetric (25:75 mixture), first increases and then
decreases until it equilibrates to a value far lower than the
maximum. This value is close to 1 for off-symmetric quenches,
whereas for symmetric quenches at long times 〈Q〉 ∼ 2. The
initial phase of increasing elongation of structures is also the
phase of rapid growth of the clusters. Beyond this point,
the number of clusters does not change much. Initially, the
growth of the structures occurs preferentially at the ends
rather than on the long sides. The elongated structures seen
at the end of this growth phase then evolve towards a more
circular geometry, thus giving a nonmonotonic variation of
the isoperimetric ratio. We note that though 〈Q〉 grows only
for a short time, this growth is decisive in determining the
morphology of domains at later times.

Remarkably, even for as little a composition variation as to
49:51 (ψ0 = 0.05) from a 50:50 (ψ0 = 0) mixture, there is a
substantial difference in the isoperimetric ratio. In other words,
even a small asymmetry in composition results in domain
shapes that are far less anisotropic. The peak value of 〈Q〉
decreases with the decrease in the amount of the minority
phase. The 25:75 mixture evolves very slowly at early times.
Once formed, domains of the minority phase remain close to
a circular shape throughout their evolution.

To understand the anisotropic growth consider a domain in
the shape of a stadium of width w as shown in Fig. 4. At early
times, diffusive mechanisms dominate and the driving term
in Eq. (1) may be estimated as ∼Mμ/l2 in the flat portions
of the domain, where l is the interfacial thickness. However,
over a region of size O(w) containing the semicircular caps
at both ends, this term scales as Mμ(1/l2 + 2/lw) because
∇2 ≡ d2

dr2 + 1
r

d
dr

in polar coordinates. Thus the ends grow
faster than the flat portion. Once the width w becomes very
large compared to the interfacial thickness, the difference
becomes negligible and a return to isotropy is attempted. Thus
a nonmonotonic shape factor accrues.

In the diffusive regime, w ∼ (Mγ )1/3t1/3 [9,26]. So when
M , γ , and l are kept fixed, the time at which the maximum
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FIG. 3. (Color online) Variation of 〈Q〉 with time during spinodal decomposition shown for (a) various relative compositions of the two
fluids in the inertial regime and (b) inertial, intermediate, and diffusive regimes of a symmetric quench. (c) Comparison between diffusive
(dashed lines) and inertial (solid lines) cases for three different compositions. Hydrodynamics always helps in imparting a compact structure,
but becomes less important for mixtures farther from criticality.
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FIG. 4. Diffusion in a region of O(w) is much stronger than
elsewhere in a stadium-shaped domain as long as the relevant length
scale for diffusion is comparable to the domain size w.

in 〈Q〉 occurs must be independent of the composition. This
may be verified in Fig. 3, where these parameters are fixed.
When these parameters are varied (not shown), we find that the
maximum is shifted accordingly. It is of interest to note that
the anisotropic growth of clusters, especially at early times,
reveals the differently evolving length scales and can affect
the measured exponent α.

The effect of hydrodynamics on the morphology evolution
is examined in Fig. 3(b) for symmetric quenches. In the
diffusion-controlled initial regime, hydrodynamics does not
affect spinodal dynamics and structures are allowed to reach
their maximal elongation. Without hydrodynamics, emerging
domains remain very elongated even after long times. How-
ever, the return to isotropy is dramatically accelerated by
hydrodynamics. In the inertial regime when capillary flows are
large, i.e., viscosity is small, isotropy is regained. A similar
behavior is displayed by asymmetric quenches of moderate
composition, as can be seen in Fig. 3(c). However, quenches far
from critical seem to be affected little by the hydrodynamics.

We now show that shape is important in determining the
rate of growth. If there are n(t) clusters of a given phase, we
may define the average area and average perimeter of a cluster
respectively by

Ã = Atot

n(t)
, P̃ = Ptot

n(t)
, (3)

where Atot and Ptot are the total area and perimeter of all clus-
ters of a given phase, respectively. In asymmetric quenches, we
evaluate these for the minor phase. Mass conservation ensures
that Atot is a constant, so Ã is inversely proportional to n(t). We
may calculate r = (1/P̃ )(dÃ/dt) as a measure of the growth
rate of a cluster. This is plotted vs 〈Q〉 in Fig. 5. Here time
increases in the downward direction on a given curve. The
growth rate is seen to be a monotonically decreasing function
of time, with the fastest growth rates at initial times. By the
time the maximum in isoperimetric ratio is attained, growth
rates have dropped by about an order of magnitude. After this,
structures do not grow much in size. Consistent with this, the
change in the number of structures slows down as well. The
large difference between isoperimetric ratios of the cases with
and without hydrodynamics in each case at a given growth rate
shows that the hydrodynamics does not affect the number or
size of structures as much as it affects the shape. If scaled by
the maximum in 〈Q〉, all the curves overlap each other (not
shown), establishing the connection between shape and growth
rate. However, this dependence of growth rate on morphology
is a nontrivial effect and isolating it from other mechanisms
warrants further study.

A clarification of the growth rate in Fig. 5 is in order
here. In this figure, the same 〈Q〉 does not mean the same
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FIG. 5. (Color online) Cluster growth rate as a function of
isoperimetric ratio during spinodal decomposition of various com-
positions for the inertial (solid line) and diffusive (dashed line) cases.
Time runs from top to bottom, indicating fastest cluster growth at
early times, until 〈Q〉 reaches its maximum in each case. The same
〈Q〉 does not mean the same stage of evolution across various cases.

stage of evolution for different compositions. The highest
growth rate is exhibited by the symmetric mixture only.
Comparison of growth rates across different compositions,
if required, should be done in conjunction with Fig. 3(a). It
should also be noted that, for asymmetric mixtures discussed
here, growth may not be decisively controlled by diffusion
or inertial hydrodynamics, but mechanisms such as droplet
collisions (see, e.g., [32]) can be important. The comparisons
between diffusive and inertial cases in Figs. 3(c) and 5 are
really to highlight the role of hydrodynamics in morphological
evolution than to characterize underlying mechanisms of
growth. The morphology in turn can affect the growth though.
As mentioned earlier, further attention is needed to separate
out the effects of morphology alone.

To summarize, we have carried out extensive lattice-
Boltzmann simulations to simulate spinodal decomposition.
We show, surprisingly, that morphology evolves nonmonoton-
ically for a range of compositions. An initial phase of rapid
elongation of structures is followed by a phase where hydro-
dynamics achieves a return to isotropy. A physical argument
for this nonmonotonicity is proposed. The actual elongation
achieved strongly depends on composition, especially close
to the critical composition. The rate of return to isotropy
is much faster at low viscosity. If we describe structures in
terms of the evolution of a single length scale, our results
are consistent with behavior observed before, but our main
point is that a single length is insufficient to describe spinodal
decomposition. If characterized by a single length scale, one
would only find this increasing with time, whereas along the
elongated direction we actually find a reduction at later times.
There are several situations, including those with industrial
relevance, where we believe this anisotropic morphology will
be seen, e.g., (i) spinodal dewetting where the presence of the
solid substrate will dampen the momentum quickly and hence
impede the return to isotropy and (ii) spinodal decomposition
of polymers and alloys where high viscosity should prevent
the return to isotropy. Where physical properties are crucially
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related to the microstructure of the material, the evolution
of this anisotropy will affect the answer. An extension to
three-dimensional systems may be interesting and is set aside
for the future.

The authors gratefully acknowledge discussions with Rono-
joy Adhikari for the development of LB code and thank
Jawaharlal Nehru Centre for Advanced Scientific Research,
Bangalore where this work began.
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J. Liu, L. Dedè, J. A. Evans, M. J. Borden, and T. J. Hughes,
J. Comput. Phys. 242, 321 (2013).

[24] S. Roy and S. K. Das, J. Chem. Phys. 139, 044911 (2013)
[25] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, Cambridge,
2000); J. J. S. Rowlinson and B. Widom, Molecular Theory
of Capillarity (Dover, Mineola, 2002).

[26] T. Lookman, Y. Wu, F. J. Alexander, and S. Chen, Phys. Rev. E
53, 5513 (1996).

[27] E. D. Siggia, Phys. Rev. A 20, 595 (1979).
[28] H. Furukawa, Phys. Rev. A 31, 1103 (1985).
[29] P. V. Coveney and K. E. Novik, Phys. Rev. E 54, 5134 (1996);

E. Velasco and S. Toxvaerd, Phys. Rev. Lett. 71, 388 (1993);
W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and
J. R. Banavar, ibid. 75, 4031 (1995); R. B. Rybka, M. Cieplak,
and D. Salin, Physica A 222, 105 (1995).

[30] K. Binder and D. Stauffer, Phys. Rev. Lett. 33, 1006 (1974);
K. Binder, Phys. Rev. B 15, 4425 (1977).

[31] H. Tanaka, J. Chem. Phys. 103, 2361 (1995); ,105, 10099 (1996);
,107, 3734 (1997).

[32] S. Roy and S. K. Das, Phys. Rev. E 85, 050602 (2012);
,Soft Matter 9, 4178 (2013).

[33] P. Perlekar, R. Benzi, H. J. H. Clercx, D. R. Nelson, and
F. Toschi, Phys. Rev. Lett. 112, 014502 (2014).

[34] O. Henrich, D. Marenduzzo, K. Stratford, and M. E. Cates,
Phys. Rev. E 81, 031706 (2010); S. P. Thampi, I. Pagonabarraga,
and R. Adhikari, ibid. 84, 046709 (2011).

[35] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
[36] S. P. Thampi, R. Adhikari, and R. Govindarajan, Langmuir 29,

3339 (2013).

010101-5

http://dx.doi.org/10.1063/1.1695731
http://dx.doi.org/10.1063/1.1695731
http://dx.doi.org/10.1063/1.1695731
http://dx.doi.org/10.1063/1.1695731
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1016/0378-4371(94)90428-6
http://dx.doi.org/10.1016/0378-4371(94)90428-6
http://dx.doi.org/10.1016/0378-4371(94)90428-6
http://dx.doi.org/10.1016/0378-4371(94)90428-6
http://dx.doi.org/10.1103/PhysRevB.43.630
http://dx.doi.org/10.1103/PhysRevB.43.630
http://dx.doi.org/10.1103/PhysRevB.43.630
http://dx.doi.org/10.1103/PhysRevB.43.630
http://dx.doi.org/10.1103/PhysRevLett.74.3636
http://dx.doi.org/10.1103/PhysRevLett.74.3636
http://dx.doi.org/10.1103/PhysRevLett.74.3636
http://dx.doi.org/10.1103/PhysRevLett.74.3636
http://dx.doi.org/10.1103/PhysRevLett.80.1429
http://dx.doi.org/10.1103/PhysRevLett.80.1429
http://dx.doi.org/10.1103/PhysRevLett.80.1429
http://dx.doi.org/10.1103/PhysRevLett.80.1429
http://dx.doi.org/10.1103/PhysRevE.61.1423
http://dx.doi.org/10.1103/PhysRevE.61.1423
http://dx.doi.org/10.1103/PhysRevE.61.1423
http://dx.doi.org/10.1103/PhysRevE.61.1423
http://dx.doi.org/10.1017/S0022112001004682
http://dx.doi.org/10.1017/S0022112001004682
http://dx.doi.org/10.1017/S0022112001004682
http://dx.doi.org/10.1017/S0022112001004682
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1103/PhysRevE.66.016303
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1103/PhysRevLett.86.240
http://dx.doi.org/10.1103/PhysRevLett.86.240
http://dx.doi.org/10.1103/PhysRevLett.86.240
http://dx.doi.org/10.1103/PhysRevLett.86.240
http://dx.doi.org/10.1103/PhysRevE.66.046121
http://dx.doi.org/10.1103/PhysRevE.66.046121
http://dx.doi.org/10.1103/PhysRevE.66.046121
http://dx.doi.org/10.1103/PhysRevE.66.046121
http://dx.doi.org/10.1103/PhysRevE.56.R3761
http://dx.doi.org/10.1103/PhysRevE.56.R3761
http://dx.doi.org/10.1103/PhysRevE.56.R3761
http://dx.doi.org/10.1103/PhysRevE.56.R3761
http://dx.doi.org/10.1063/1.439809
http://dx.doi.org/10.1063/1.439809
http://dx.doi.org/10.1063/1.439809
http://dx.doi.org/10.1063/1.439809
http://dx.doi.org/10.1002/adfm.201001505
http://dx.doi.org/10.1002/adfm.201001505
http://dx.doi.org/10.1002/adfm.201001505
http://dx.doi.org/10.1002/adfm.201001505
http://dx.doi.org/10.1063/1.4767399
http://dx.doi.org/10.1063/1.4767399
http://dx.doi.org/10.1063/1.4767399
http://dx.doi.org/10.1063/1.4767399
http://dx.doi.org/10.1063/1.4789267
http://dx.doi.org/10.1063/1.4789267
http://dx.doi.org/10.1063/1.4789267
http://dx.doi.org/10.1063/1.4789267
http://dx.doi.org/10.1088/0953-8984/21/32/322201
http://dx.doi.org/10.1088/0953-8984/21/32/322201
http://dx.doi.org/10.1088/0953-8984/21/32/322201
http://dx.doi.org/10.1088/0953-8984/21/32/322201
http://dx.doi.org/10.1063/1.3425774
http://dx.doi.org/10.1063/1.3425774
http://dx.doi.org/10.1063/1.3425774
http://dx.doi.org/10.1063/1.3425774
http://dx.doi.org/10.1103/PhysRevLett.106.125702
http://dx.doi.org/10.1103/PhysRevLett.106.125702
http://dx.doi.org/10.1103/PhysRevLett.106.125702
http://dx.doi.org/10.1103/PhysRevLett.106.125702
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1126/science.1116589
http://dx.doi.org/10.1126/science.1116589
http://dx.doi.org/10.1126/science.1116589
http://dx.doi.org/10.1126/science.1116589
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1016/j.msea.2010.01.020
http://dx.doi.org/10.1016/j.msea.2010.01.020
http://dx.doi.org/10.1016/j.msea.2010.01.020
http://dx.doi.org/10.1016/j.msea.2010.01.020
http://dx.doi.org/10.1016/j.jallcom.2013.11.019
http://dx.doi.org/10.1016/j.jallcom.2013.11.019
http://dx.doi.org/10.1016/j.jallcom.2013.11.019
http://dx.doi.org/10.1016/j.jallcom.2013.11.019
http://dx.doi.org/10.1103/PhysRevLett.87.016104
http://dx.doi.org/10.1103/PhysRevLett.87.016104
http://dx.doi.org/10.1103/PhysRevLett.87.016104
http://dx.doi.org/10.1103/PhysRevLett.87.016104
http://dx.doi.org/10.1209/0295-5075/97/16005
http://dx.doi.org/10.1209/0295-5075/97/16005
http://dx.doi.org/10.1209/0295-5075/97/16005
http://dx.doi.org/10.1209/0295-5075/97/16005
http://dx.doi.org/10.1038/35006597
http://dx.doi.org/10.1038/35006597
http://dx.doi.org/10.1038/35006597
http://dx.doi.org/10.1038/35006597
http://dx.doi.org/10.1103/PhysRevE.59.4366
http://dx.doi.org/10.1103/PhysRevE.59.4366
http://dx.doi.org/10.1103/PhysRevE.59.4366
http://dx.doi.org/10.1103/PhysRevE.59.4366
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1016/j.jcp.2013.02.008
http://dx.doi.org/10.1063/1.4816372
http://dx.doi.org/10.1063/1.4816372
http://dx.doi.org/10.1063/1.4816372
http://dx.doi.org/10.1063/1.4816372
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.31.1103
http://dx.doi.org/10.1103/PhysRevA.31.1103
http://dx.doi.org/10.1103/PhysRevA.31.1103
http://dx.doi.org/10.1103/PhysRevA.31.1103
http://dx.doi.org/10.1103/PhysRevE.54.5134
http://dx.doi.org/10.1103/PhysRevE.54.5134
http://dx.doi.org/10.1103/PhysRevE.54.5134
http://dx.doi.org/10.1103/PhysRevE.54.5134
http://dx.doi.org/10.1103/PhysRevLett.71.388
http://dx.doi.org/10.1103/PhysRevLett.71.388
http://dx.doi.org/10.1103/PhysRevLett.71.388
http://dx.doi.org/10.1103/PhysRevLett.71.388
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1016/0378-4371(95)00209-X
http://dx.doi.org/10.1016/0378-4371(95)00209-X
http://dx.doi.org/10.1016/0378-4371(95)00209-X
http://dx.doi.org/10.1016/0378-4371(95)00209-X
http://dx.doi.org/10.1103/PhysRevLett.33.1006
http://dx.doi.org/10.1103/PhysRevLett.33.1006
http://dx.doi.org/10.1103/PhysRevLett.33.1006
http://dx.doi.org/10.1103/PhysRevLett.33.1006
http://dx.doi.org/10.1103/PhysRevB.15.4425
http://dx.doi.org/10.1103/PhysRevB.15.4425
http://dx.doi.org/10.1103/PhysRevB.15.4425
http://dx.doi.org/10.1103/PhysRevB.15.4425
http://dx.doi.org/10.1063/1.469658
http://dx.doi.org/10.1063/1.469658
http://dx.doi.org/10.1063/1.469658
http://dx.doi.org/10.1063/1.469658
http://dx.doi.org/10.1063/1.472839
http://dx.doi.org/10.1063/1.472839
http://dx.doi.org/10.1063/1.472839
http://dx.doi.org/10.1063/1.474730
http://dx.doi.org/10.1063/1.474730
http://dx.doi.org/10.1063/1.474730
http://dx.doi.org/10.1103/PhysRevE.85.050602
http://dx.doi.org/10.1103/PhysRevE.85.050602
http://dx.doi.org/10.1103/PhysRevE.85.050602
http://dx.doi.org/10.1103/PhysRevE.85.050602
http://dx.doi.org/10.1039/c3sm50196e
http://dx.doi.org/10.1039/c3sm50196e
http://dx.doi.org/10.1039/c3sm50196e
http://dx.doi.org/10.1039/c3sm50196e
http://dx.doi.org/10.1103/PhysRevLett.112.014502
http://dx.doi.org/10.1103/PhysRevLett.112.014502
http://dx.doi.org/10.1103/PhysRevLett.112.014502
http://dx.doi.org/10.1103/PhysRevLett.112.014502
http://dx.doi.org/10.1103/PhysRevE.81.031706
http://dx.doi.org/10.1103/PhysRevE.81.031706
http://dx.doi.org/10.1103/PhysRevE.81.031706
http://dx.doi.org/10.1103/PhysRevE.81.031706
http://dx.doi.org/10.1103/PhysRevE.84.046709
http://dx.doi.org/10.1103/PhysRevE.84.046709
http://dx.doi.org/10.1103/PhysRevE.84.046709
http://dx.doi.org/10.1103/PhysRevE.84.046709
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1021/la3050658
http://dx.doi.org/10.1021/la3050658
http://dx.doi.org/10.1021/la3050658
http://dx.doi.org/10.1021/la3050658



