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Computing physical properties with quantum Monte Carlo
methods with statistical fluctuations independent of system size
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We show that the recently proposed correlated sampling without reweighting procedure extends the locality
(asymptotic independence of the system size) of a physical property to the statistical fluctuations of its estimator.
This makes the approach potentially vastly more efficient for computing space-localized properties in large
systems compared with standard correlated methods. A proof is given for a large collection of noninteracting
fragments. Calculations on hydrogen chains suggest that this behavior holds not only for systems displaying
short-range correlations, but also for systems with long-range correlations.
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Quantum Monte Carlo (QMC) methods are stochastic
techniques used to solve the Schrödinger equation. Like
any Monte Carlo method, they rely on statistical sampling
to compute large-dimensional integrals. This enables better
scaling (both in CPU time and memory requirements) as a
function of system size than deterministic methods. Further,
these methods can be easily and efficiently implemented
on parallel computers, making them an excellent choice for
solving many-body problems. Many applications can be found
in nuclear physics [1,2], condensed matter physics [3,4], or
quantum chemistry [5].

In practice, accurate (small systematic error) and precise
(small statistical uncertainty) total ground-state energies can be
computed with these methods [6,7]. Ground-state energies are
key ingredients to compute the physical properties of interest
(dissociation energies, electron affinity, forces, etc.), because
the latter can be expressed as energy differences Eλ − E0,
where E0 and Eλ are the ground-state energies of two closely
related Hamiltonians H0 and Hλ,

Hλ = H0 + λO, (1)

where λ is a small perturbation parameter. In addition, Eλ − E0

provides an estimate of the expectation value of the observ-
able O in a first-order expansion in λ (Hellmann–Feynman
theorem).

In practice, for fermionic systems we compute approxima-
tions to ground-state energies. Starting from this point, Eλ

and E0 will also stand for approximations (e.g., variational or
fixed-node approximations) of the exact energies of Hλ and
H0, respectively. If Eλ and E0 are accurate (small systematic
errors), then Eλ − E0 is an accurate estimate of the energy
difference. However, since Eλ − E0 is small, the issue is
then to compute Eλ − E0 with a sufficiently small statistical
uncertainty. As we discuss now, this is not always easy.

There are typically three strategies to compute exactly
energy differences (or observables) in QMC. (i) The difference
Eλ − E0 can be directly and simply obtained from independent
calculations of Eλ and E0. (ii) The most popular techniques
are based on the idea of correlated sampling with reweighting
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[8,9]: the algorithm builds a single sample to compute both Eλ

and E0. Weighting factors are introduced in the expectation
values to avoid any systematic error (see below). Different
techniques can be classified in this category, like zero-variance
zero-bias improved estimators in variational Monte Carlo [10].
The forward walking method [11] can also be reformulated
by using this point of view [12]. (iii) A third strategy (to
compute the expectation value of an observable) makes use
of the Hellmann–Feynman theorem, sampling (in principle)
the exact ground-state distribution φ2

0 and averaging O on that
sample (no weighting factors are introduced since we sample
the right distribution). This is done by using QMC methods
based on explicit path integral sampling, like reptation Monte
Carlo or path integral ground-state Monte Carlo [13,14].

Beyond obtaining Eλ − E0 with no (additional) systematic
error, an efficient energy difference method should fulfill the
following three conditions: First, the statistical uncertainty has
to be proportional to λ. This is necessary to obtain a finite
statistical uncertainty on the energy derivative. This feature is
satisfied by (ii) and (iii) but not by (i). Second, it should obey
the zero-variance principle, i.e., in the limit of exact wave
function and possibly its parameter derivatives, the variance
should vanish. This principle provides flexibility to reduce
statistical fluctuations. This is of major importance when, for
example, O has infinite fluctuations (as is the case for forces
on nuclei, or the histogram estimator for the density in the limit
of vanishingly small bin size). The zero-variance principle is
satisfied by (i) and (ii) but not by (iii). These two criteria are
well documented in the literature. We emphasize here that
they should be completed by a third one: the locality property
for the statistical fluctuations. Many important observables or
properties are local—they depend on a few degrees of freedom.
For example, the force on a nucleus is generally not influenced
by a distant noninteracting fragment. One would like to use a
method such that the statistical uncertainty of the estimators of
local properties does not depend on distant degrees of freedom.
This condition is satisfied by (iii) but not by (i) and (ii) [10].

Calculations of local properties with the methods (ii) and
(iii) get less precise when the system size N gets larger.
This is because expectation values saturate as a function of
N while the statistical uncertainty σ has the same behavior
as the energy: σ ∼ √

N/M where M is the number of
independent Monte Carlo configurations. The relative error

1539-3755/2014/90(6)/063317(6) 063317-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.063317


ROLAND ASSARAF PHYSICAL REVIEW E 90, 063317 (2014)

is then proportional to
√

N for a given value of M . Extensive
observables do not have this problem. The relative error is
proportional to 1/

√
N for a given size M of the sample.

Nevertheless, when methods (ii) and (iii) are employed, large
statistical fluctuations may also come from irrelevant degrees
of freedom: e.g., core electrons have little influence on a dipole
moment or a polarizability, but a large contribution to σ . Note
that local properties carry more detailed information than their
nonlocal counterparts—the dipole moment of a finite system
is the sum of the dipole moments of its fragments, a one-body
observable can be computed from the one-body density, and
so on. This justifies why the local property of the statistical
fluctuations is an important efficiency criterion. So far, locality
has been exploited in QMC to reduce the computational cost
of the sampling [15], but, not the statistical fluctuations.

Recently, a method has been proposed to compute small
energy differences: the correlated sampling method with no
reweighting [16]. It was introduced mainly to compute the
derivative of the diffusion Monte Carlo energy (one of the
best estimates one can have in QMC) with no bias and finite
statistical fluctuations. We show here that this method obeys
the locality property for the statistical uncertainty. This makes
the method the first one to fulfill all three conditions we
enumerated. We present a proof for a set of noninteracting
systems and show numerically that this property extends to
interacting systems by using simulations on chains of hydrogen
atoms.

We now give a sketch of the correlated sampling method
with and without reweighting to put them in perspective. In
QMC, Eλ, the ground-state energy of the Hamiltonian Hλ, is
computed as the expectation value of a random variable eλ

over some known probability measure πλ(R),

Eλ = 〈eλ (R)〉πλ
. (2)

The nature of Eλ, πλ, eλ, and R might depend on the variant of
the QMC method. For example, in the context of the variational
Monte Carlo method (VMC), Eλ is the variational energy, i.e.,
the (quantum) expectation value of Hλ on a variational wave
function ψλ, πλ ≡ ψ2

λ , eλ ≡ Hλψλ/ψλ (the so-called local
energy), and R usually stands for the 3N coordinates of the N

particles. In other methods, R might stand for a Feynman–Kac
path [13,17] or a determinant of molecular orbitals [7,18–20].

Correlated sampling methods with reweighting (CSRs)
typically compute Eλ − E0 as

Eλ − E0 = 〈eλ(R)wλ(R) − e0(R)〉π0

= 〈eλ − e0〉π0 + cov(eλ,wλ), (3)

where the weight wλ is

wλ(R) ≡
πλ(R)
π0(R)〈
πλ

π0

〉
π0

. (4)

The nonlocality of the fluctuations comes from the second
term of expression (3) [10]. This is because the weight wλ is
multiplied by the local energy whose variance grows with N .

The derivative of expression (3) provides the expectation
value of the observable O. The derivative of the first term has
the same value as the Hellmann–Feynman (HF) estimate. The
derivative of the second term is called the Pulay correction.
The latter is zero for the exact ground state, or if the wave

function has been optimized in a sufficiently large parameter
space. However, this is frequently not the case. Although
robust and efficient methods have been recently developed for
optimizing all the parameters to minimize the VMC energy
[21,22], these methods rely on evaluating derivatives of the
variational energy, using again the expression (3), and are less
precise when N is larger. One way to reduce the fluctuations is
to use the space-warp transformation [9,23]. When a nucleus
is displaced, the electrons move in such a way that those close
to the nucleus move almost rigidly with the nucleus and those
far away move very little. Besides increasing the correlation
between eλ and e0, this reduces the fluctuations in the weights
in Eq. (3). Although smaller, the statistical fluctuations still
increase with system size.

We now discuss the method that does cure this problem.
The correlated sampling method with no reweighting (CSNR)
[16] obtains Eλ − E0 as follows:

Eλ − E0 = 〈eλ(Rλ) − e0(R0)〉. (5)

First, Rλ and R0 sample πλ and π0, respectively. Second, the
pair (R0,Rλ) appearing in Eq. (5) is correlated in such a way
that 〈(Rλ − R0)2〉 ∝ λ2 (with a finite prefactor). These two
ingredients ensure, respectively, that there is no bias, and
that the variance of eλ(Rλ) − e0(R0) is of order λ2 (for a
finite precision on the derivative). These two properties of
the CSNR method are shared by the CSR method, but we
will demonstrate that the CSNR has the additional desirable
property that the statistical error of local observables rapidly
saturates as a function of system size.

The configurations R(t) and Rλ(t) are produced by two
(close) stochastic processes having a stability property versus
chaos, or a so-called synchronization behavior: Two trajec-
tories having different initial conditions but sharing the same
sequence of random numbers coalesce sufficiently fast in time.
For example, the overdamped Langevin process, described by
the dynamics

Rλ(t + dt) = Rλ(t) + bλdt + dWλ, (6)

where bλ = ∇ ln(πλ) and dWλ is a Wiener process, sometimes
has this stability property. With this choice, the CSNR method
performs two overdamped Langevin processes corresponding
to λ = 0 and λ �= 0, but with dWλ = dW0 (same sequence of
random numbers).

Locality property. We now prove that the statistical fluc-
tuations of the estimator eλ(Rλ) − e0(R0) in Eq. (5) has
the locality property under the strong hypothesis of a fully
separable system and a strictly local perturbation. This means
that a physical configuration R can be split into two sets
R = (Rl ,Ru) such that the degrees of freedom Rl and Ru are
not coupled by the Hamiltonian. Mathematically, the latter is
a direct sum

Hλ = Hl
λ + Hu, (7)

where Hl
λ (Hu) act only on the degrees of freedom Rl

(Ru). Rl and Ru represent coordinates of electrons belonging
to two noninteracting (distant) molecules, Rl = (r1, . . . ,rL)
and Ru = (rL+1, . . . ,rN ). The strict locality of the physical
property is manifest in that only Hl

λ is parametrized by λ, not
Hu. For such a system made of two independent fragments,
the stochastic dynamics followed by Rl and Ru are required

063317-2



COMPUTING PHYSICAL PROPERTIES WITH QUANTUM . . . PHYSICAL REVIEW E 90, 063317 (2014)

to be independent: the steady state of the sampling process is
then a product:

πλ(R) = πl
λ(Rl)πu(Ru). (8)

Suppose, for example, that πλ(R) is obtained from the familiar
overdamped Langevin process. Given Eq. (8), the drift is

bλ(R) = bl
λ(Rl) + bu(Ru), (9)

implying that the process indeed produces independent sam-
ples for Rl and Ru.

Regarding the estimator of the energy, the latter should be
the sum of two independent contributions

eλ(R) = el
λ(Rl) + eu(Ru). (10)

This condition is fulfilled when eλ is the local energy (VMC
method, reptation method), and the variational function ψλ(R)
obeys the same separation property as the exact ground state,
i.e., ψλ(R) = ψl

λ(Rl)ψu(Ru). Since the stochastic process does
not couple the variables Rl and Ru, the dynamics on the
variables Rl for an overdamped Langevin process is

Rl
λ(t + dt) = Rl

λ(t) + bl
λ

[
Rl

λ(t)
]
dt + dWl , (11)

Rl
0(t + dt) = Rl

0(t) + bl
0

[
Rl

0(t)
]
dt + dWl . (12)

In a similar way, the dynamics on the variables Ru is

Ru
λ(t + dt) = Ru

λ(t) + bu
[
Ru

λ(t)
]
dt + dWu, (13)

Ru
0(t + dt) = Ru

0(t) + bu
[
Ru

0(t)
]
dt + dWu. (14)

Hence the stochastic processes (13) and (14) are the same
because bu does not depend on λ. Besides, they share a
common Wiener process. Because of the stability property
with respect to chaos, there is a finite time beyond which
Ru

λ(t) = Ru
0(t) to any level of accuracy. Using this last identity

and expression (10), the estimator of the energy difference
appearing in the brackets of Eq. (5) is

eλ(Rλ) − e0(R0) = el
λ

(
Rl

λ

) − el
0

(
Rl

0

)
, (15)

where of course the configurations arising in the identity (15)
are evaluated at the same time t . In conclusion, the energy
difference is an expectation value of a random variable eλ − e0

depending only on the coordinates (Rl ,Rl
λ) and not on Ru. As

a direct consequence, the fluctuations of eλ − e0 depend also
on (Rl ,Rl

λ) and not on Ru. This ends the proof. Note that the
wave function ψλ should in general be symmetrized (bosons)
or antisymmetrized (fermions). However, this constraint does
not modify the proof when all the particles of the two separate
subsystems (represented by the two Hamiltonians Hl

λ and Hu)
are localized in different nonoverlapping regions of space. This
is because the symmetrization or the antisymmetrization of ψλ

can still be written as a product. For example, for fermions,
the antisymmetrization of the product ψλ(R) = ψl

λ(Rl)ψu(Ru)
can be written as

Aψλ(R) ∝ [
Aψl

λ(Rl)
]
[Aψu(Ru)]. (16)

The identity (16) holds because all terms corresponding to
exchanges of two particles lying in the two separate regions of
space are zero.

In practice, the time step dt of the overdamped Langevin
dynamics can be small but finite. This is at the origin of a finite

time-step error which can be hardly avoided in diffusion Monte
Carlo but can be suppressed in variational Monte Carlo by
using the acceptance-rejection method [24]. A difficulty arises
with such method: one walker can be accepted (e.g., Rλ) and
the other can be rejected (e.g., R0). This introduces undesirable
weights in the expectation values, and the expression (5) has
to be modified accordingly. The fluctuations of the weights
can be arbitrarily small by choosing smaller time steps but
still increase with system size. Here, in our applications, we
avoid these weights by modifying the acceptance-rejection
method as follows: whenever one walker should be accepted
and not the other, we reject both walkers. This introduces
a systematic error, which can be easily controlled (by using
smaller time steps). In addition, it obviously fulfills the local
property (unlike the statistical fluctuations coming from the
weights).

The only hypotheses we made are the stability with respect
to chaos of the processes, and the independence of the variables
Rl

λ(t) and Ru(t). Besides the overdamped Langevin process,
any stochastic process fulfilling these two conditions will
produce statistical fluctuations obeying this local property.

Numerical results. In practice, Rl(t) and Ru(t) might
be weakly correlated rather than exactly independent. Also, the
perturbation may not be strictly local. As a test bed we choose
linear chains of hydrogen atoms, since large sizes can be
handled easily, and the popular overdamped Langevin process,
with the usual guiding functions such as a restricted Hartree–
Fock (RHF) solution (with or without a Jastrow factor),
displays numerically the required synchronization behavior
[16]. We use the same geometries and observable as Assaraf
et al. [10]. (i) The first geometry minimizes the Hartree–Fock
energy; it consists of H2 molecules (interatomic distances
∼1.4 au) separated by ∼6.5 au. This system is nonmetallic,
displaying short-range correlations. (ii) The second geometry
consists of equally separated hydrogen nuclei (1.4 au). It is
known to have metallic properties, i.e., long-range correlations
between electrons. We compute the derivative of the energy
with respect to the first nuclear position along the axis of the
chain (force), using finite differences: The secondary system
(parameter λ �= 0) corresponds to the first atom displaced
by λ = 0.0001 au. For easy checks, results are presented
in the VMC framework with, unless specified otherwise, a
monodeterminantal variational wave function obtained from a
self-consistent field calculation (SCF).

Expectation values. Expectation values of the force are
shown in Fig. 1. The Hellmann–Feynman (HF) force should
agree with the derivative of the variational energy on a RHF
solution but, as shown in the figure, the (HF) force obviously
has a large bias on its SCF finite-basis approximation. The
Pulay correction is not small and must be taken into account.

The CSNR estimator (5) turns out to be in perfect agreement
with the SCF force. This is consistent with the theory. This
estimator takes into account the Pulay correction but, as we
see now, it does not have the drawback of a direct calculation
of this contribution.

Locality of the statistical fluctuations. We report the
probability density function (pdf) of the random variable
eλ(Rλ) − e0(R0) for the metallic chain in Fig. 2. As a function
of N , the pdf appears to have almost converged when N = 24
and fully converged when N = 48. This behavior is of course
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FIG. 1. (Color online) Forces computed from SCF, the correlated
sampling with no reweighting (CSNR) estimator, and the Hellmann–
Feynman (HF) estimates for insulating and metallic chains. The
CSNR force agrees with the SCF force, but the HF force does not—the
Pulay term is not small.

not trivial since the metallic chain is far from the simple
separable model discussed above. The observable being the
Coulomb force, it is not strictly localized either (it decays
like the square inverse of the distance to the first atom). For the
insulating chains, the pdfs are numerically the same for all sizes
considered (N ranging from 2 to 48) and are not reported here.
We conclude that any estimate of the statistical uncertainty
will not depend asymptotically on N , for these systems. In
other words, the locality property for the statistical uncertainty
extends to systems composed of interacting fragments with
non-strictly-local perturbations.

Remark about the pdf. The pdf reported in Fig. 2 has heavy
tails: it asymptotically behaves as 1/|x|2.5, implying a infinite
variance. This is because the cusp conditions are not fulfilled
by the SCF trial function. This behavior disappears when a
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FIG. 2. (Color online) Probability density function (pdf) of the
estimator of the energy derivative in the CSNR method. Even for
these metallic chains, the pdf rapidly converges with chain length.
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FIG. 3. (Color online) Squared uncertainties, σ 2, in the varia-
tional energy and forces. Estimates are made from simulations with
calculation times of 4000 au and with 400 walkers. (top) SCF wave
function. (bottom) SCF function times a minimal Jastrow factor. The
straight lines are linear fits. The value of σ 2 for the energy and CSR
forces increases linearly with chain length whereas that for the CSNR
forces rapidly saturates with chain length.

correlation factor (Jastrow) is introduced:

ψ (R) = ψSCF (R) exp

⎛
⎝ ∑

1�i<j�N

αij

rij

1 + rij

⎞
⎠ ,

where rij is the distance between the two electrons i,j , and
αij = 0.5 (0.25) if electrons i and j have different (the same)
spins. With this variational function, we found that the pdf
asymptotically behaves as 1/|x|4, and the estimator has a finite
variance. Besides, with a Jastrow factor, the pdf saturates as a
function of N in the same way.

For the sake of comparison, we report statistical uncer-
tainties squared, σ 2, in Fig. 3. For the CSNR estimator, σ 2

saturates as a function of N , as expected. This has to be
compared with the CSR estimator (3) for which σ 2(N ) has an
asymptotically linear growth, similar to the energy estimator.
When the Jastrow factor is included, the CSNR estimator is
already better than the CSR estimator for N = 2 atoms. For
N = 96 the gain is about a factor of 10.
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Locality of the dynamics. We have seen in the proof that
the locality of the statistical uncertainty in the CSNR method
came from the fact that the coordinates of the particles which
are unaffected by the perturbation coalesce after a given time
Ru

λ(t) = Ru
0(t) [Eqs. (14) and (13)]. This was proved for a

fully separable system and a strictly local perturbation. We
now address how this property extends when these conditions
are not fulfilled. For that purpose, we extract from the
configuration R0(t) the particles i which belong to a given
region V of the space. We then introduce a (local) quadratic
distance (LQD), between these particles and those in Rλ(t)
having the same index:

LQD = 1

λ2

〈 ∑
i/ri

0∈V

∣∣ri
λ − ri

0

∣∣2

〉
. (17)

This quantity is a measure of the influence of the perturba-
tion on the stochastic dynamics in the region V . Indeed for the
fully separable model with a strictly localized perturbation, the
LQD is exactly zero if V is included in the region described
by Hu. The regions of space we consider are spherical shells
centered on the first nucleus. The LQDs are reported in Fig. 4
for the metallic and the insulating chains as a function of
the (inner) radius of the shell. First, the LQDs appear to
converge as a function of N for both systems. Second, it decays
exponentially for the insulating chain and algebraically for the
metallic chains (∝1/r3(±0.1)) [25]. These are important results
because it suggests that the stability property against chaos
is itself a local property. This means that if the dynamics
is stable for isolated fragments (a small molecule, a crystal
cell, . . .), it is likely to be stable even when these fragments
are weakly correlated. The overdamped Langevin process was
found to be unstable for molecules with larger atoms, such
as alkanes or lithium clusters, but the typical time when the
instability occurs seems to be independent of the size (1 au for
alkanes and 10 au for lithium clusters). Statistical fluctuations
on the force calculation appear to be independent of the system
size during this transient stable regime. This suggests that the
locality property of the statistical uncertainty holds for many
systems, as soon as the dynamics is nonchaotic. Developing
stable stochastic dynamics with respect to chaos in VMC and
other variants of QMC methods appears to be a promising path
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FIG. 4. (Color online) Quadratic distance between two electrons
of R(t) and Rλ(t) having the same index versus distance to first
(displaced) atom.

to solve the long-standing problem of accuracy and precision
for properties, since the CSNR approach fulfills at the same
time the three necessary conditions for efficiency enumerated
in the introduction.
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