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Tricritical points in a Vicsek model of self-propelled particles with bounded confidence
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We study the orientational ordering in systems of self-propelled particles with selective interactions. To
introduce the selectivity we augment the standard Vicsek model with a bounded-confidence collision rule: a
given particle only aligns to neighbors who have directions quite similar to its own. Neighbors whose directions
deviate more than a fixed restriction angle α are ignored. The collective dynamics of this system is studied
by agent-based simulations and kinetic mean-field theory. We demonstrate that the reduction of the restriction
angle leads to a critical noise amplitude decreasing monotonically with that angle, turning into a power law
with exponent 3

2 for small angles. Moreover, for small system sizes we show that upon decreasing the restriction
angle, the kind of the transition to polar collective motion changes from continuous to discontinuous. Thus,
an apparent tricritical point with different scaling laws is identified and calculated analytically. We investigate
the shifting and vanishing of this point due to the formation of density bands as the system size is increased.
Agent-based simulations in small systems with large particle velocities show excellent agreement with the kinetic
theory predictions. We also find that at very small interaction angles, the polar ordered phase becomes unstable
with respect to the apolar phase. We derive analytical expressions for the dependence of the threshold noise on
the restriction angle. We show that the mean-field kinetic theory also permits stationary nematic states below a
restriction angle of 0.681 π . We calculate the critical noise, at which the disordered state bifurcates to a nematic
state, and find that it is always smaller than the threshold noise for the transition from disorder to polar order. The
disordered-nematic transition features two tricritical points: At low and high restriction angle, the transition is
discontinuous but continuous at intermediate α. We generalize our results to systems that show fragmentation into
more than two groups and obtain scaling laws for the transition lines and the corresponding tricritical points. A
numerical method to evaluate the nonlinear Fredholm integral equation for the stationary distribution function is
also presented. This method is shown to give excellent agreement with agent-based simulations, even in strongly
ordered systems at noise values close to zero.
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I. INTRODUCTION

Dynamic self-organization and, in particular, mechanisms
of flocking behavior in groups of living species remain
one of the most intriguing problems at the interface of
physics and biology. Numerous physical models of interacting
self-propelled agents have been proposed recently to study
these phenomena (see review papers [1–3]). The collective
behavior much resembling the dynamics of living organisms
has also been observed in a variety of synthetic systems,
generally referred to as active soft matter [4–10]. The level of
consciousness of the individuals apparently plays a minor role
for the large scale dynamics as the same general principles
that apply to groups of animals or cells seem to govern
also human social phenomena, traffic, robotics, and decision
making [11–14]. Therefore, similar modeling approaches are
employed to describe their generic dynamic properties.

One of the simplest and earliest models to describe the
collective motion of self-propelled agents has been introduced
by Vicsek in 1995 [15]. In this original paper, a second order

phase transition between the orientationally ordered, globally
aligned motion state and disordered state was claimed. The
continuous nature of the transition between these states was
also supported by a number of publications from the same
group involving the original Vicsek model (VM) with angular
noise [16,17]. However, the nature of the transition has been
questioned in a number of later studies [18,19]. Chaté et al.
have demonstrated [19] that there exists a critical system size
L∗, beyond which a discontinuous, or first order, transition
is observed. The dependence of this critical system size on
particle density has been theoretically estimated in Ref. [20].
It has also been reported that the kind of the transition seems to
depend on particle velocities [21] and on the way in which the
noise is introduced into the system [22]. All above mentioned
factors can result in a behavior, which can be associated
with instabilities leading to coexistence of the ordered and
disordered phases at the transition point or, in other words, to
a first order phase transition [23]. The discontinuous character
of the transition has also been elucidated from analysis of
Ising-type one-dimensional (1D) models of flocking [24].
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The contribution of range and symmetry of aligning interac-
tions to the instabilities remains relatively poorly understood.
Recent numerical studies demonstrated essential differences
between the symmetry of the ordered phase and stability of
density bands depending on whether the active agents have
polar or apolar alignment mechanism [25]. In this paper, we
study the role of selectivity of interactions in the ordering of the
Vicsek model (VM). This property has a number of important
applications. For example, the selectivity of the interaction
has previously been introduced in the study of social models
such as the bounded confidence model [13]. In a situation
where the agents are prepared to align themselves only with
the fellow individuals with the opinion vector not too different
from their own one, the restrictive rules can become crucial
for the polarization of the group and the collective decision
making. The bounded-confidence rules can be introduced into
the Vicsek model as a restriction on the angle of interaction,
which makes the alignment of individuals with too different
directions of motion impossible [13,26]. Given that the Vicsek
model was originally introduced to model the behavior of
social agents such as birds and fish, such a selectivity rule
could make their description more realistic.

Another motivation to study an interaction rule that is
sensitive to orientation differences are the very recent experi-
ments by Lu et al. [27] on the collective behavior of Bacillus
subtilis in the presence of a photosensitizer. To account for the
cell-to-cell interaction via intercellular flagella bundling, the
authors propose a Vicsek-type model where the interaction
among neighbor agents becomes weaker with increasing
orientation difference. Since our model explores an extreme
version of this interaction, the kinetic theory from this paper
might become useful for a better analytical understanding of
these experiments.

In this paper, we derive the ordering behavior in the
Vicsek model with bounded confidence from the microscopic
kinetic equations and demonstrate how a qualitatively different
behavior arises from the interaction selectivity. In particular,
we find within homogeneous mean-field theory that at strong
selectivity, the transition from a disordered state to a state of
polar order is discontinuous. If one increases the restriction
angle α beyond a so-called tricritical point, the transition
becomes continuous. We also analyze nematic phases and
fragmented states which consist of several aligned groups
moving in different directions. A scaling law for the transition
from disorder to an ordered state with p = 2,3, . . . fragments
is calculated and two different tricritical points are identified.
Furthermore, we present a numerical method to accurately
evaluate the nonlinear Fredholm integral equation for station-
ary distribution functions. The paper is organized as follows:
In Sec. II, we introduce the kinetic theory of the Vicsek model
and predict its phase behavior, describe the numerical solution
methodology for the kinetic equations and the settings of the
agent-based simulation. In Sec. III, we present the numerical
and analytical results for the model: phase diagrams and
data on the ordering behavior. Finally, in Secs. IV and V,
we discuss the significance of main findings of the work
and summarize the results. Details about the calculations of
coupling integrals are relegated to Appendix A. In Appendix B,
we provide a general discussion of terms such as “phase
transition” that are borrowed from equilibrium statistical

FIG. 1. (Color online) The interaction parameters in the re-
stricted angle Vicsek model. The particle aligns itself only with those
neighbors (blue arrows) whose relative angle of motion is less or
equal to α.

mechanics but here are applied to finite nonequilibrium
systems.

II. THEORY AND SIMULATION SETTINGS

A. Model

We consider a two-dimensional model with N point
particles at number density ρ, which move at constant speed v0.
The particles with positions xi(t) and velocities vi(t) undergo
discrete-time dynamics with time step τ . The evolution
consists of two steps: streaming and collision. In the streaming
step, all positions are updated according to

xi(t + τ ) = xi(t) + τvi(t). (1)

In the subsequent collision step, the directions θi of the velocity
vectors change. Similar to the standard VM, particles align
with their neighbors within a fixed distance R. However, the
interaction in this paper is selective such that the particles align
only with those neighbors whose direction of motion deviates
by an angle less than some fixed value α from their own
velocity vector (see Fig. 1). In this implementation, the Vicsek
model becomes similar to so-called “bounded-confidence”
models, commonly used in social sciences to study opinion
dynamics [13,26]. It simulates the common social tendency to
disregard opinions that appear too extreme with regard to their
own perspective. Thus, the parameter α can be interpreted
as the degree of ignorance of a population of self-propelled
agents. In particular, a circle of radius R is drawn around
a given particle and the average angle �i of motion of the
particles within the circle is determined according to

�i = arctan

⎡
⎣∑

{j}
sin(θj )

/∑
{j}

cos(θj )

⎤
⎦ , (2)

where particles j whose inner product vj · vi is smaller than
v2

0 cos α are excluded from the summation. In an extreme case,
it is possible that even if particle i has many neighbors in its
collision circle, all are rejected due to too large differences,
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and thus �i = θi . The regular VM is recovered in the limit
α = π . Once the average angles �i are known, the particle
directions follow as

θi(t + τ ) = �i + ξi, (3)

where ξi is a random number which is uniformly distributed
in the interval [−η/2,η/2]. Note that the updated positions
xi(t + τ ) [and not the old locations xi(t)] are used to
determine the average angles of motion �i . This corresponds
to the so-called forward updating rule of the standard VM, as
defined in Refs. [21,28].

Note that our model is qualitatively different from models
with a finite sensing region such as the “blind-spot” models
introduced by Couzin et al. [29], and used, for example, in
Refs. [30,31]. In contrast to these models, particle exclusion is
based on velocity differences and not spatial location. It can be
easily shown that Vicsek-type models with rear blind sectors do
not show tricritical points in homogeneous mean-field theory.
However, the version of the VM presented here is related to the
one introduced by Lu et al. [27], where instead of completely
excluding misaligned partners, the interactions are weighted
by the orientation difference.

B. Kinetic theory

1. Deriving the kinetic equation

Recently, a kinetic theory formalism for self-propelled
particles has been introduced that can handle discrete time dy-
namics and “exotic” collision rules such as genuine multibody
and topological interactions [20,32,33]. It has been shown [34]
that this approach is able to quantitatively reproduce the results
of agent-based simulations, in the limit of large mean free
path λ = v0τ , compared to the radius of interaction R. In
this section, we will adapt this method to the restricted-angle
model. The formalism starts with an evolution equation for a
Markov chain in phase space

P (B,t + τ ) =
∫

P (A,t) wAB dA . (4)

where P is the N -particle probability density referring to an
ensemble of independent Vicsek systems, which are initialized
at time t = 0 with some initial probability density P0. This
initial density is assumed to be symmetric against permuting
particle indices. Equation (4) describes the transition from
a microscopic state A to the state B during one time step
with transition probability wAB . The microscopic state of
the system at time t + τ is given by the 3N -dimensional
vector B ≡ (θ (N),X(N)), where θ (N) ≡ (θ1,θ2, . . . ,θN ) contains
the directions of motion of all N particles, and X(N) ≡
(x1,x2, . . . ,xN ) describes all particle positions. The initial
microscopic state at time t is denoted as A ≡ (θ̃ (N),X̃(N)).
The integral over the initial state translates to

∫
dA ≡∏N

i=1

∫ 2π

0 dθ̃i

∫
dx̃i . Precollisional angles and positions are

given by θ̃j and x̃i , respectively. The transition probability
wAB contains the microscopic collision rules

wAB = 1

ηN

N∏
i=1

δ(x̃i − [xi − τvi])

×
∫ η/2

−η/2
dξi δ̂(θi − ξi − �i) . (5)

Here, δ̂(x) =∑∞
m=−∞ δ(x + 2πm) is the periodically contin-

ued delta function, which accounts for the 2π periodicity
of angles. The particle velocities V(N) ≡ (v1,v2, . . . ,vN ), are
given in terms of angle variables vi = v0(cos θi, sin θi).

The kinetic equation for the N -particle probability density
[Eq. (4)] is exact but intractable without simplification. Here,
as done, for example, in Ref. [20], we use Boltzmann’s
molecular chaos approximation by assuming that the particles
are uncorrelated prior to a collision, which amounts to a
factorization of the N -particle probability into a product
of one-particle probabilities P (θ (N),X(N)) =∏N

i=1 P1(θi,xi).
This approximation can be justified at moderate and large
noise strength η and when the mean free path (mfp) is large
compared to the radius of interaction R. Here, the mfp is
defined as the distance a particle travels between collisions
τ v0 and is density independent due to the discrete nature
of the dynamics. More details on the validity of molecular
chaos and a general discussion of kinetic theory approaches to
Vicsek-style models can be found in Refs. [33,35–37].

Because molecular chaos neglects precollisional corre-
lations, it leads to a mean-field theory. To derive this
mean-field theory, we follow Refs. [20,38,39] and multiply
Eq. (4) by the phase space density

∑
i δ(v − vi)δ(x − xi).

A subsequent integration over all particle positions xi and
angles θi leads, in the large N limit, to an Enskog-type kinetic
equation for the one-particle distribution function f (θ,x,t) =
NP1(θ,x,t):

f (θ,x + τv,t + τ )

= 1

η

∫ η/2

−η/2
dξ

〈〈
N∑

n=1

e−MR

(n − 1)!

× f (θ̃1,x,t) δ̂(θ − ξ − �1)
n∏

i=2

f (θ̃i ,xi ,t)

〉
θ̃

〉
x

, (6)

where MR(x,t) = ∫
R

ρ(y,t) dy is the average number of
particles in a circle of radius R centered around x and can
be position dependent. The subscript “R” at the integral
denotes integration over this circle. The local particle density
ρ is given as a moment of the distribution function ρ(x,t) =∫ 2π

0 f (θ,x,t) dθ ; 〈. . .〉x = ∫
R

. . . dx2 dx3 . . . dxn denotes the
integration over all positions, n − 1 particles can assume
within the interaction circle; 〈. . .〉θ̃ = ∫ 2π

0 . . . dθ̃1dθ̃2 . . . dθ̃n

is the average over all precollisional angles of n particles
in the interaction circle. In Eq. (6), particle 1 is assumed to
be the focal particle. It is fixed at position x and particles
2,3, . . . ,n are supposed to be its neighbors. More details on
how to interpret equations similar to Eq. (6) can be found in
Ref. [33].

2. Solving the kinetic equation

We restrict ourselves to spatially homogeneous solutions of
the Enskog-type equation. Then, Eq. (6) becomes

f (θ,t + τ ) = I [f (θ,t)] (7)
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with the simpler collision integral

I [f (θ,t)] = 1

η

∫ η/2

−η/2
dξ

N∑
n=1

Sn−1e−M

(n − 1)!

×
(

n∏
i=1

f (θ̃i ,t) dθ̃i

)
δ̂[θ − ξ − �1(θ̃1, . . . ,θ̃n)],

(8)

where S = πR2 is the area of the collision circle and the
average particle number in this circle M = Sρ0 is proportional
to the constant particle number density ρ0. For stationary
solutions where f (θ,t + τ ) = f (θ,t), Eq. (7) constitutes a
nonlinear Fredholm integral equation of the second kind with
a singular kernel. Further in this paper, we will present a
numerical method to solve this equation with high precision.
In principle, spatially inhomogeneous solutions, including
steep solitonlike waves, could be obtained by the Lattice-
Boltzmann–type method of Ref. [34], but this is beyond the
scope of this paper. Instead, we will handle inhomogeneous
states by agent-based simulations only.

A convenient starting point for analytical and numerical
studies of Eq. (7) is the angular Fourier expansion of both the
distribution function and the collision integral

f =
∞∑

k=0

gk(t) cos(kθ ),

(9)

I [f ] =
∞∑

k=0

Ck(t) cos(kθ ).

The emergence of a globally ordered state breaks the rotational
symmetry. Particles start to flow preferentially in a common
but arbitrary direction θ0. Since we are only interested in steady
states of homogeneous systems in the thermodynamic limit, it
suffices to set θ0 = 0 and to only keep the cosine terms in the
Fourier expansion [40]. The zeroth mode g0 is proportional to
the average density

g0 = ρ0

2π
(10)

because
∫

f (θ ) dθ = ρ0. The first mode g1 serves as polar
order parameter and is determined by the average x component
of the momentum density w:

wx =
∫ 2π

0
vx(θ )f (θ ) dθ,

(11)
g1 = wx

v0π

with (vx,vy) = v0(cos θ, sin θ ). By definition, we have
wy = 0.

Formally, Eqs. (6) and (7) look identical to the kinetic
equation derived previously in Refs. [20,33] for the regular
VM. The difference hides in the definition of the average angle
�1 of the focal particle: In the regular VM, all particles within
interaction range are accepted, irrespective of their orientation.
This leads to a straightforward evaluation of the integrals over
the precollisional angles θ̃i . For the restricted angle model, the
integration domain has to be split into subdomains because the

number of angular arguments in �1 depends on the values of
the precollisional angles.

For simplicity, we assume low densities M � 1 and only
include self-interactions and binary collisions. This amounts to
truncating the sum in Eq. (6) after n = 2. As pointed out in the
Supplemental Material of Ref. [34], in order to enforce exact
mass conservation, any such truncation must be accompanied
by a consistent rescaling of the Poissonian weight factor. In our
case, e−M must be replaced by 1/(1 + M). The self-interaction
or self-diffusion term with n = 1 is the same as in the regular
VM. However, in the evaluation of the binary collision term,
two cases have to be distinguished: (i) the direction of particle
2 deviates too strongly from that of particle 1, that is, v2 ·
v1/v

2
0 < cos α, and (ii) the “opinion” of particle 2 is accepted

by particle 1. In the first case, �1 = θ̃1 whereas for case
(ii) �1 = arg[exp(iθ̃1) + exp(iθ̃2)] which can be reformulated
by means of trigonometric identities as

�1(θ̃1,θ̃2) =
{

θ̃1+θ̃2
2 if |θ̃1 − θ̃2| � π,

θ̃1+θ̃2
2 + π if |θ̃1 − θ̃2| > π.

(12)

Multiplying Eq. (6) by cos(kθ ) and integrating over θ will
lead to an infinite set of algebraic equations for the Fourier
coefficients Ck:

Ck = λk

1 + M

⎧⎨
⎩

∞∑
q=0

Akq gq + 2πS

∞∑
p=0

∞∑
q=0

Bkpq(α) gpgq

⎫⎬
⎭ ,

(13)
where

λk =
{

1 for k = 0,
4
kη

sin
(

ηk

2

)
for k > 0.

(14)

The coupling constants in Eq. (13) are given by angular
integrals

Akq =
∫ 2π

0
cos(kθ1)cos(qθ1)

dθ1

2π
= 1

2
δkq(1 + δk0),

Bkpq(α) =
∫ 2π

0

∫ 2π

0

dθ1 dθ2

(2π )2
cos(k�1)cos(pθ1)cos(qθ2)

= B
(1)
kpq + B

(2)
kpq , (15)

where the binary collision couplings depend on the angle α

and have been split into two types

B
(1)
kpq =

∫ 2π

0

dθ1

2π
cos(pθ1)cos(kθ1)

∫ θ1−α+2π

θ1+α

cos(qθ2)
dθ2

2π
,

B
(2)
kpq =

∫ 2π

0

dθ1

2π
cos(pθ1)

∫ θ1+α

θ1−α

cos[k�1(θ1,θ2)]

× cos(qθ2)
dθ2

2π
. (16)

Here, B(1)
kpq corresponds to the situation where the focal particle

rejects its neighbor’s “opinion,” whereas in B
(2)
kpq the directions

of both particles 1 and 2 contribute to the average direction
�1. The first set of integrals in Eq. (16) is easily evaluated. For

063315-4



TRICRITICAL POINTS IN A VICSEK MODEL OF SELF- . . . PHYSICAL REVIEW E 90, 063315 (2014)

q > 0, one finds

B
(1)
kpq(α) = − sin(αq)

4πq
[δk,p+q + δk,−p−q + δk,p−q + δk,q−p] ,

(17)
where δk,q is Kronecker’s delta. For q = 0, we have

B
(1)
kp0 = 1

2

(
1 − α

π

)
[δk,p + δk,−p] . (18)

In order to transform B
(2)
kpq into simple trigonometric integrals,

only the first identity of Eq. (12) is needed because the integrals
for B

(2)
kpq are set up such that |θ1 − θ2| < α and by definition

α � π . This gives

B
(2)
kpq(α) =

∫ 2π

0

dθ1

2π
cos(pθ1)

∫ θ1+α

θ1−α

cos[k(θ1 + θ2)/2]

× cos(qθ2)
dθ2

2π
. (19)

The discussion of this integral is relegated to Appendix A.
One major difference of the hierarchy equations (13) to
those of the regular VM is that the coupling matrices Bkpq

are asymmetric with respect to interchanging p and q. As
discussed in Appendix A, this is due to the social bias of an
agent to favor its own “opinion.”

To verify the consistency of Eq. (13), we evaluate the first
hierarchy equation for C0. Mass conservation requires that
the homogeneous density ρ0 stays invariant in every iteration∫

f (θ,t + τ ) dθ = ∫ f (θ,t) dθ = ρ0. Therefore, C0 must be
equal to g0. From Eq. (15) we see that A00 = B000 = 1 and that
these are the only nonzero coefficients entering the equation
for C0. Substituting these coefficients into Eq. (13) leads to

C0 = 1

1 + M

(
g0 + 2πSg2

0

)
. (20)

Using Eq. (10) and the definition of M = ρ0S = ρ0πR2, we
obtain the correct result C0 = g0 = ρ0/(2π ).

At any noise η the hierarchy equations (13) have a trivial
solution where all coefficients gk = 0 for k > 0. This solution
describes the disordered state; there is no preference for
any direction. Similar to the regular VM, for low noise we
expect an ordered solution with gk �= 0, that bifurcates off the
disordered solution at the threshold noise ηc. On this branch
of the solution, at a noise slightly below ηc, the first mode g1

dominates all higher modes, that is, the ratios g2/g1,g3/g1, . . .

go to zero if η → ηc. Hence, to find the branching point ηc,
we assume stationarity Ck = gk , and neglect all modes gk for
k � 2 in Eq. (13). Then, the second hierarchy equation yields

g1 = λ1

1 + M
[A11 g1 + 2πS(B110 + B101) g0g1] , (21)

and with the help of Eqs. (10), (15), and (17), a transcendental
equation for ηc follows:

�1 = 2(1 + Mγ )

ηc(1 + M)
sin

(
ηc

2

)
= 1,

(22)

γ (α) = 1 − α

π
+ 4

π
sin

(
α

2

)
− 1

π
sin(α),

where �1 is the amplification factor for the mode g̃1, which
is proportional to the x component of the momentum density.

In the limit of no restriction α = π , we find γ = 4/π and
recover the threshold equation for the regular VM [Eq. (12) in
Ref. [33] where terms with n > 2 are truncated]. Expanding
Eq. (22) in the low density limit M � 1 leads to

ηc =
√

24M (γ − 1) + O(M) . (23)

For α = π , this expression agrees with the small density
expansion for the regular VM [Eq. (13) in Ref. [33]]

ηc(α = π ) =
√

48M

(
2

π
− 1

2

)
+ O(M) . (24)

Furthermore, the function γ − 1 is non-negative and increases
monotonically with α for 0 � α � π , as anticipated. Investi-
gating the additional limit of strong restriction, Eq. (22) gives

γ = 1 + α3

12π
+ O(α5),

(25)
ηc =

√
2M/π α3/2 for α � 1; M � 1.

Equation (25) predicts that ηc goes to zero at infinite “igno-
rance” α = 0 where all particles perform independent random
walks and never align with anybody. Thus, as one would
intuitively guess, in this case the theory claims that no ordered
state exists. Figure 2 shows the numerical solution of Eq. (22)

(a)

0 0.2 0.4 0.6 0.8 1
α

0

0.2

0.4

0.6

0.8

η c

ηc(α=π)
Full MF, Eq. (22)
M«1 asymptote, Eq. (23)
M«1 asymptote, Eq. (25)

M=0.1

(b)

0.2 0.4 0.6 0.8 1
α

0

0.1

0.2

0.3

η c

ηc(α=π)
Full MF, Eq. (22)
M«1 asymptote, Eq. (23)
M«1 asymptote, Eq. (25)

M=0.01

FIG. 2. (Color online) Prediction of the mean-field theory for the
critical noise amplitude at different densities (a) M = 0.1, (b) M =
0.01. The restriction angle α is given in units of π .
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for two different normalized densities, M = 0.1 and 0.01, and
compares it with the asymptotic formulas (23) and (25). One
sees that for small M ≈ 0.01, the low-M expansion agrees
quite well with the exact result for all angles α. The asymptotic
power law for α → 0 is superlinear, ηc ∼ α3/2. However, due
to the change of curvature of the ηc(α) curve from positive to
negative, at intermediate angles α ≈ 0.2π . . . 0.6π it appears
as if there is linear scaling, ηc ∼ α. As discussed further in the
following, this is what we observed in agent-based simulation
which were not performed for very small angles α < 0.2π ,
due to numerical limitations.

C. Analytical solution and mean-field tricritical
point for polar order

Near the flocking threshold, higher order Fourier modes are
suppressed, g1 � g2 � g3 . . ., and Eq. (7) can be straightfor-
wardly solved by setting higher modes to zero, truncating the
infinite hierarchy (13) after the first few equations. The Fourier
coefficients are normalized by means of the density ρ0,

g̃k = 2π
gk

ρ0
, (26)

which amounts to the choice g̃0 = 1 = const. Then, the first
three nontrivial hierarchy equations from Eq. (13) become

g̃1 = α1(g̃1 + 4M[B̄101g̃1 + B̄112g̃1g̃2 + B̄123g̃2g̃3]),

g̃2 = α2
(
g̃2 + 2M

[
B̄211g̃

2
1 + 2B̄202g̃2 + 2B̄213g̃1g̃3

])
, (27)

g̃3 = α3(g̃3 + 4M[B̄303g̃3 + B̄312g̃1g̃2]),

αk = 2

kη(1 + M)
sin

(
ηk

2

)
. (28)

Here, we kept only the modes g̃0 to g̃3 and neglected all
others because we are mainly interested in understanding the
nature of the bifurcation to a (homogeneous) ordered state.
The coupling constants B̄knm are obtained by symmetrization
of the coefficients defined in Eq. (15):

B̄knm = 1
2 (Bknm + Bkmn). (29)

The B̄knm depend on the restriction angle α and are given
in Appendix A. Starting from the third line, Eqs. (27) can be
solved successively leading to expressions of the higher modes
in terms of the first mode g̃1,

g̃2 = n2

1 − [a2 + b2g̃
2
1

] g̃2
1,

(30)
g̃3 = n2n3

1 − [a2 + b2g̃
2
1

] g̃3
1

with the abbreviations

n2 = 2Mα2B̄211,

n3 = 4Mα3B̄312

1 − α3[1 + 4MB̄303]
,

(31)
a2 = α2(1 + 4MB̄202),

b2 = 4α2MB̄231n3.

Substituting Eqs. (30) into the first line of Eq. (27) yields a
closed expression for the first mode g̃1:

1 = �1 + D2
(
g̃2

1

)
g̃2

1 + D4
(
g̃2

1

)
g̃4

1 (32)

with �1 defined in Eq. (22) and

D2 = 4Mα1n2B̄112

1 − [a2 + b2g̃
2
1

] , (33)

D4 = 4Mα1n
2
2n3B̄123(

1 − [a2 + b2g̃
2
1

])2 , (34)

where at the threshold η = ηc(M) one has �1 = 1 [see
Eq. (22)], and g̃1 = 0. The character of the bifurcation to the
ordered state, that is to nonzero g̃1, depends on the sign of
the coefficient D2, evaluated at the threshold. Therefore, the
condition for a tricritical point, where the character changes
from subcritical to supercritical, is

D2(η = ηc,g̃1 = 0) = 0. (35)

This is only possible if at least one of the following quantities
vanish: α1, α2, B̄211, or B̄112. In the low density limit that
our approach is based on, the threshold noise is small, ηc ∼√

M � 1, and thus α1 and α2 are of order one and cannot be
zero. Furthermore, it is easy to see from Eq. (A9) that B̄211 can
only be zero in the limit α = 0 where no ordered state exists.
However, the equation B̄112 = 0 has a solution at the angle
αc = 0.442 909 6 π . Thus, assuming spatially homogeneous
states, we found an apparent tricritical point: for all angles
α smaller than αc the flocking transition is discontinuous, in
the mean-field limit of large mean free path. For angles larger
than αc and in a small system, the transition is predicted to
be continuous. However, one has to keep in mind that in the
regular VM, the homogeneous flocking state has a long-wave
instability right next to the flocking threshold [20,41]. This
leads to inhomogeneous, solitonlike states that change the
order of the phase transition to discontinuous in systems
larger than a critical size Lc [34], even if the transition of a
homogeneous system is predicted to be continuous. Something
similar is expected in our model and will be investigated
further in the following. For a justification of the term “phase
transition” in finite systems, see Appendix B.

Note that the inhomogeneous reorganization of the system
due to emerging solitonlike waves at large system sizes is
qualitatively different from the well-known finite-size effects
of equilibrium systems in the (grand)canonical ensemble. In
these systems, the trivial fact that the correlation length cannot
exceed the system size is used to set up finite-size scaling and
to extract the behavior at infinite system size. As shown in
Ref. [42], it is possible to perform such a finite-size scaling
analysis of the VM at system sizes below Lc and to obtain
critical exponents as well as consistent hyperscaling relations
for a second-order phase transition. However, unless Lc is
infinite for the particular model and the parameters used,
such an analysis would not extract the correct behavior in the
thermodynamic limit because it would miss possible density
instabilities.

It is interesting to see that (i) the tricritical angle αc does not
depend on density, at least in the low density limit considered
here, and (ii) its mathematical cause is the vanishing of
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FIG. 3. (Color online) Comparison of the scaling of the order
parameter ϕ = g̃1/2 with noise η obtained analytically using Eq. (27)
(all modes higher than k = 3 are set to zero) and with the high-k
approximation method described in Sec. II F. Lines only serve as
guides to the eye. Here, α = π and kmax = 30.

the coupling between the modes g̃1 and g̃2 in the hierarchy
equation for g̃1. Analyzing Eq. (32) at the tricritical point
η = ηc and α = αc leads to the mean-field exponent of 1

4 for
the order parameter scaling

g̃1 ∼ (ηc − η)1/4 for α = αc, η � ηc

(36)
g̃1 ∼ (ηc − η)1/2 for α > αc, η � ηc.

The structure of the denominator of the coefficients D2 and
D4 also provides an estimate on the validity of the three-mode
expansion. If the distance ηc − η to the threshold noise is
increased, the order parameter g̃1 grows. Once it is so large that
1 − [a2 + b2g̃

2
1] goes to zero, the approximation is expected

to break down violently. This already happens not too far
from the threshold and can be seen in Fig. 3, where the blue
dashed curve describes the analytical solution of Eq. (27).
This approximation neglects all modes g̃k with k larger than
three. Near the threshold, as anticipated, it agrees perfectly
with the numerical solution of the Fredholm equation which
is explained in a later chapter. However, deeper in the ordered
phase, at smaller noise, the three-mode approximation starts
to show unphysical behavior.

The physical reason for this deviation is the negligence
of the higher modes g̃4,g̃5, . . ., which in reality would start
to grow when g̃1 increases. In fact, using the hierarchy
equations (13) it can be shown that for α = π and η → 0 all
modes g̃k for k > 0 become equal to the same value g̃k = 2.
This is a simple consequence of the fact that at zero noise
all particles take on the same orientation and the distribution
function f (θ ) becomes equal to the periodically continued
delta function δ̂(θ − θ0).

D. Nematic solutions and tricritical points

As described in Sec. III, in agent-based simulations we
sometimes encounter groups of particles which move in
opposite directions. These states are characterized by a large
nematic order parameter Q but only a small polar order
parameter ϕ. In social science’s models of opinion dynamics,

0 0.2 0.4 0.6 0.8 1
 α

0

0.2

0.4

0.6

0.8

1

 η
c , 

 η
N

0 0.2 0.4 0.6 0.8 1

ηN nematic order
ηc polar order

FIG. 4. (Color online) The critical noises for the transition from
disorder to polar order (black curves) ηc and to nematic order (red
curves) ηN are plotted as a function of restriction angle α. The curves
were calculated by means of Eqs. (22) and (38), respectively. The
circles denote tricritical points at which the transition changes from
discontinuous (dashed lines) to continuous (solid lines).

this is called polarization [43–45]. To analytically explore
such a possibility, we reanalyze the infinite hierarchy for
the Fourier coefficients [Eq. (13)] with respect to nematic
order. Compared to a state of polar order, a perfect nematic
state has the additional symmetry of f (θ ± π ) = f (θ ). This
requires all odd Fourier coefficients in the series [Eq. (9)],
and therefore also the polar order parameter ϕ, to vanish
exactly. Setting g1 = g3 = · · · = g2k+1 = 0 in Eq. (13), one
realizes that the odd and even coefficients are decoupled:
while all odd coefficients C1, C3, . . . become zero, the even
coefficients C2k can be nonzero and depend only on g2n. This is
because the coefficients Akq and Bkpq always vanish if neither
|k| = |p + q| nor |k| = |p − q| is true. Setting C2k = g2k and
normalizing the coefficients as prescribed by Eq. (26), we
obtain a hierarchy for stationary nematic states

g̃2 = α2(g̃2 + 4M[B̄202g̃2 + B̄224g̃2g̃4 + B̄246g̃4g̃6]),

g̃4 = α4(g̃4 + 2M[B̄422g̃
2
2 + 2B̄404g̃4 + 2B̄426g̃2g̃6]), (37)

g̃6 = α6(g̃6 + 4M[B̄606g̃6 + B̄624g̃2g̃4]),

where modes g̃8 and higher are neglected. The coupling
coefficients B̄kpq are given in Appendix A. Similar to the
procedure for finding polar order, we check whether a nematic
state can bifurcate from a disordered state at some critical noise
value η = ηN . Near such a (so far hypothetical) bifurcation,
all modes higher than g̃2 are negligible and the first equation
of the hierarchy [Eq. (37)] gives the following consistency
condition:

�2 = α2(1 + 4MB̄202) = 1, (38)

where �2 is the amplification factor of the mode g̃2. Inter-
estingly, while this transcendental equation has no nontrivial
solutions for the regular Vicsek model at any density, it does
have a solution ηN > 0 if the restriction value α is smaller
than a cutoff angle αN = 0.680 92 π . Figure 4 shows a plot
of the nematic threshold noise ηN as a function of α together
with the polar threshold noise ηc at density M = 0.1. The
cutoff αN does not depend on particle density, at least in
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the low density approximation applied here. Figure 4 tells
us that at small enough α and η, stationary nematic states
do exist. We also see that at small α, the threshold noise for
nematic states is only slightly below the threshold for polar
states, whereas the relative difference (ηc − ηN )/ηc goes to
one if the cutoff αN is approached from below. While our
analytical discovery of stationary nematic states does not
guarantee that these states are stable and relevant for the
long-time behavior of agent-based simulations, our results are
consistent with the apparent longevity of states with large
nematic but small polar order in microscopic simulations. Of
course, to fully explore the competition of polar, nematic,
and other apolarly ordered states, a comprehensive stability
analysis similar to Refs. [32,46], and more simulations are
needed. This is beyond the scope of this paper. However,
similar to the case of polar order, it is straightforward to analyze
whether the bifurcation from a disordered to a (homogeneous)
nematic state is continuous or discontinuous. For this purpose,
we successively solve the hierarchy equations (37) by first
expressing the higher modes g̃4 and g̃6 in terms of g̃2:

g̃4 = n4

1 − [a4 + b4g̃
2
2

] g̃2
2, (39)

g̃6 = n6g̃2g̃4 = n4n6

1 − [a4 + b4g̃
2
2

] g̃4
2 (40)

with the abbreviations

a4 = α4(1 + 4MB̄404),

a6 = α6(1 + 4MB̄606),

n4 = 2α4MB̄422, (41)

n6 = 4α6MB̄624

1 − a6
,

b4 = 4Mn6B̄426.

Inserting these expressions into the first hierarchy equa-
tion (37) leads to a closed-form expression for g̃2:

1 = �2 + H2
(
g̃2

2

)
g̃2

2 + H4
(
g̃2

2

)
g̃4

2 (42)

with

H2 = 4Mα2n4B̄224

1 − [a4 + b4g̃
2
2

] , (43)

H4 = 4Mα2n
2
4n6B̄246(

1 − [a4 + b4g̃
2
2

])2 . (44)

One has �2(ηN ) = 1, and similar to the polar case [see
Eq. (35)], the zeros of the quadratic coefficient H2 define
tricritical points

H2(η = ηN,g̃2 = 0) = 0 , (45)

where the bifurcation changes from subcritical to supercritical
or vice versa. Surprisingly, below the cutoff angle αN we find
two tricritical points αc,1 = 0.221 45 π and αc,2 = 0.642 99 π .
Further analyzing H2 and H4 at the critical line η = ηN (α),
we find that H2 > 0 and H4 < 0 for both α < αc,1 and α >

αc,2. Thus, the transition would be discontinuous in these two
regions. Note that 1 − �2 is always negative for η < ηN . In
Fig. 4, discontinuous bifurcations are described by dashed

lines. In-between the two points, e.g., at αc,1 < α < αc,2, H2

is positive and, depending on α, H4 can be either positive
or negative. This means that the transition to a homogeneous
nematic state from the disordered state is continuous in this
middle section, denoted by a solid red line in Fig. 4.

E. Fragmentation into ordered groups

Models of bounded confidence in social science can have
states that consist of several clusters of opinions in which
agents achieve local consensus [43–45]. This is called opinion
fragmentation. Translated into the language of our system,
fragmentation would correspond to several groups of particles
whose members interact with each other in every iteration
because their angular differences are smaller than α, but there
is hardly any interaction between members of different groups.
The state of polar order would then correspond to global
consensus where only one group exists. The nematic state
would be an example for fragmentation into two groups. A
natural question to ask is whether our model also allows
states with three, four, and more distinct groups. It turns
out that the analysis of the hierarchy equation (13) for polar
and nematic order can be straightforwardly generalized to
fragmentation into p = 3,4,5, . . . groups. In this paper, we
will restrict ourselves to highly symmetrical arrangements
where the mean angles of the participating groups point into
the directions θ̄k = 2πk/p with k = 0,1, . . . ,p − 1. In these
arrangements, the distribution function f has the “mirror”
symmetry f (θ̄k + θ ) = f (θ̄k − θ ). This restriction allows us
to still use the Fourier cosine expansion (9). The more general
case requires the inclusion of sine terms and will be left for the
future. Symmetric fragmentation into p groups requires the
vanishing of all coefficients gk whose mode numbers are not
multiples of p due to the p-fold symmetry f (θ + 2πk/p) =
f (θ ). For example, at p = 3, three groups move into the
three main directions 0, 2π/3, and 4π/3, and are described
by the Fourier coefficients g0,g3,g6,g9, . . . . Similar to the
nematic case with p = 2, these coefficients only couple to
themselves, e.g., they do not generate coefficients such as g1

or g4 which are supposed to remain zero. All expressions and
coefficients for the nematic state can be easily generalized by
formal replacements such as g2 → gp, g4 → g2p, g6 → g3p,
n4 → n2p, B̄426 → B̄2p,p,3p, and so on. In particular, the
threshold noise η

(p)
c for the bifurcation of the disordered state to

a state with p symmetric fragments follows from the condition
that the amplification rate �p for the mode g̃p is equal to one,

�p = αp(1 + 4MB̄p0p) = 1, (46)

where

B̄p0p = 1

4

(
1 − α

π

)
+ sin

(
pα

2

)
πp

− sin(pα)

4πp
. (47)

Setting η = 0 in Eq. (46), the cutoff selectivity angle α
(p)
0 above

which stationary fragmented states are impossible follows
from the transcendental equation

πz + sin(πz) − 4sin

(
πz

2

)
= 0 (48)

063315-8



TRICRITICAL POINTS IN A VICSEK MODEL OF SELF- . . . PHYSICAL REVIEW E 90, 063315 (2014)

with z = α
(p)
0 p/π . The solution is z = 1.361 845, and there-

fore the cutoff for a fragmented state of p main directions
is α

(p)
0 = 1.361 845 π/p. The scaling ∼1/p has a simple

physical interpretation: the difference between the mean angles
of adjacent groups δ = θ̄k+1 − θ̄k is equal to 2π/p. As long as
α is smaller than this difference δ, members of the two groups
have only a negligible chance of interaction. It is plausible to
assume that the maximum possible restriction angle scales with
the available angular range δ, α(p)

0 ∼ δ ∼ 1/p, which is indeed
what we find analytically. The ratio α

(p)
0 /δ = 0.680 92 means

that if α is smaller than 68.1% of the “opinion” difference δ,
fragmentation becomes possible. In this notation, the critical
noises for the transition from disorder to polar or nematic order
are just special cases with ηc ≡ η(1)

c and ηN ≡ η(2)
c .

Analyzing Eqs. (46) and (47), we find that the critical noises
for all possible symmetric fragmentations with p = 1,2, . . .

follow an approximate scaling law

η(p)
c =

√
M

1 + M
p−3/2 �

(
αp

π

)
(49)

with the universal scaling function �(z). According to rela-

tion (49), plotting the scaled critical noise ηS = η
(p)
c p3/2

√
1+M
M

as a function of z = pα/π should lead to a single curve for
different values of M and p. This is indeed what is seen
in Fig. 5. Even though the scaling law is supposed to be
only asymptotically valid in the limit p → ∞ and M → 0,
the figure shows that it is very accurate even at p = 1 and
M = 0.3. The scaling function has the following properties:
�(z) is zero for z � 1.361 845 as a consequence of Eq. (48).
In agreement with the result for p = 1 and small α [Eq. (25)],
the small argument behavior of the scaling function is given
by

�(z) = π
√

2 z3/2 for z � 1. (50)
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FIG. 5. (Color online) The scaled critical noises ηS =
η(p)

c p3/2
√

1+M

M
for mean-field transitions from the disordered

state to symmetric states with p fragments versus the scaled angle
αp/π for a variety of densities M and fragment numbers p. The
filled circles represent tricritical points where the character of the
transition changes from discontinuous to continuous or vice versa.

From Fig. 5 one can also read off the value zmax = 1
where � has its maximum. Therefore, the critical noises
of the different fragmented states take their largest value of
2.555

√
M/(1 + M)p−3/2 at α = π/p.

Finally, the calculation of tricritical points for polar and
nematic states can be generalized to fragmented states.
Mathematically, the zeros of the coupling coefficient B̄p,p,2p,

B̄p,p,2p = − sin(2pα)

16πp
− sin(pα)

8πp
+ 1

6πp
sin

(
3pα

2

)
, (51)

determine the tricritical points. This amounts to solving the
equation

−3 sin(2πz) − 6 sin(πz) + 8 sin

(
3πz

2

)
= 0 (52)

with z = pα/π . Apart from the trivial solution z = 0, Eq. (52)
has two solutions that give the two tricritical points αc,1(p) =
0.442 91π/p and αc,2(p) = 1.285 98π/p. For the case of polar
order p = 1, the first tricritical point agrees with the one
calculated earlier in Sec. II C. The second solution αc,2(p = 1)
is physically irrelevant because it is larger than the maximum
possible restriction angle of π . However, for nematic and all
higher (symmetrically) fragmented states, the second tricritical
point is below the cutoff angle 1.361 845π/p, and therefore
should have physical relevance. In summary, for p = 1 we
find one tricritical point, whereas for p � 2 we always have
two tricritical points. In the scaled plot (Fig. 5), the tricritical
points for different values of p and M end up on top of each
other, and are given by filled circles.

F. A numerical method for the Fredholm equation

As we saw in Sec. II C, while solutions based on truncating
the hierarchy equations for g̃k after the first few modes give
good results near the flocking threshold, they will inevitably
break down at small enough noise. Even if one stays away
from too small noises, one still would have to solve a large set
of equations with a huge number of mode coupling terms.
We did not succeed in finding a numerical method in the
mathematical literature, that is able to solve the singular
nonlinear Fredholm equation (7) at high accuracy in the small
noise case. One could argue that a Fourier representation is
not suited here and that another set of base functions might
be more appropriate. Instead of searching for such a set, we
decided to stick with the Fourier representation and to exploit
the exactly known solution at η = 0. In other words, we set up a
“low-temperature” expansion which is constructed to become
exact at zero noise η [47,48]. The key idea is to keep the lowest
Fourier modes explicitly and to not just neglect higher modes
but to treat them in an approximate fashion. This is related
in spirit to the first step of dynamic renormalization [49],
where equations for higher modes are approximately solved
and expressed in terms of lower modes. These higher modes
will then renormalize the lower modes. Here, we first split the
angular mode space into a lower part 0 � k � k1 and a higher
part k1 < k � kmax. All modes higher than kmax are neglected.
The modes of the lower part are treated explicitly and follow
the first k1 equations of the hierarchy [Eq. (13)], with k1 being
relatively small, k1 = 3 . . . 5. The short wavelength cutoff is
chosen very large, kmax � 500, and the Fourier coefficients in
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the higher mode range are modeled by a geometric series

gk = gk1μ
(k−k1) for k � k1. (53)

The decay factor |μ| < 1 is determined self-consistently from
the current ratio of the last two explicitly calculated modes
μ = gk1/gk1−1. For very small noise, this ratio is always
positive and approaches one. In general, the Fourier modes do
not follow a geometric series unless at η = 0, where μ = 1.
That means, on the one hand, our approach becomes exact
in this perfect-order limit (and if kmax is sent to infinity).
On the other hand, the approach also becomes exact at the
threshold, where the higher Fourier modes are irrelevant and
the geometric series assumption does not affect the results.
An approximation that becomes exact at two limits η = 0
and ηc is very likely to only show tiny errors in-between. By
increasing both k1 and kmax, these errors can be further reduced
systematically. To make this idea practically applicable, one
more problem has to be solved: The first k1 equations in
Eq. (13) for the explicit calculation of gk contain a huge number
of terms because these modes couple to the ≈500 modes from
the higher mode space. To make things worse, the coefficients
of these coupling terms are integrals of the type B̄kpq , which
all would have to be calculated beforehand. As a consequence,
solving even the first three to five hierarchy equations would
become time prohibitive. The way out of this computational
disaster is to rewrite the hierarchy equations by evaluating the
binary collision part of the collision operator in real space.
This works as follows: Suppose the first k1 modes are known.
Then, the modes for k1 < k � kmax are quickly calculated by
the geometric series formula (53). Now, we go back to the
real space representation of the distribution f , given by the
inverse Fourier transformation rule (9). Using dimensionless
distributions and coefficients

f̃ = 2π
f

ρ0
,

(54)

C̃k = 2π
Ck

ρ0
,

Eq. (9) becomes

f̃ (θ ) = 1 +
k1∑

k=1

g̃k cos(kθ ) + g̃k1

kmax∑
q=k1+1

μ(q−k1) cos(qθ ).

(55)

Even though there is about kmax ≈ 500 terms to add, evaluating
Eq. (55) is still quite fast. One can even go one step further and
sum up the higher mode part analytically while sending kmax

to infinity. Rewriting the last sum in Eq. (55) as two geometric
sums by using the identity cos(kθ ) = (eikθ + e−ikθ )/2 gives

∞∑
q=k1+1

μ(q−k1) cos(qθ )

= μ{(1−μ cos θ ) cos [(k1+1)θ ] − μ sin θ sin [(k1 + 1)θ ]}
(1 − μ cos θ )2 + μ2 sin2 θ

.

(56)

Then, f̃ (θ ) is used to evaluate the dimensionless Fourier modes
C̃k of the collision integral I [f ]:

C̃k = αk

[
g̃k + 2M

∫ 2π

0

dθ̃1

2π

∫ 2π

0

dθ̃2

2π
f̃ (θ̃1) f̃ (θ̃2) cos(k�1)

]
.

(57)

This expression is equivalent to the hierarchy equations (13).
The difference is that the part of I [f ] that describes binary
collisions is now expressed in real space. The two-dimensional
integral in Eq. (57) is evaluated numerically for k = 1, . . . ,k1

by the trapezoidal rule using equidistant angular points. Thus,
we have obtained the first k1 Fourier modes of f̃ (θ,t + τ ).
In order to solve the fixed point equation for the stationary
solution iteratively, we take the obtained modes as an input for
the next iteration, that is set g̃k = C̃k . We find that this iterative
procedure always converges at arbitrary noise η > 0, probably
because it amounts to following the physically correct time-
dependent behavior of f in a very small system with periodic
boundary conditions. Thus, the mathematical procedure is not
artificial but reflects physical reality. Furthermore, switching
between real space and Fourier space representations allows
us to ensure that the zeroth mode f0 always stays constant and,
hence, mass is exactly conserved. This eliminates a source of
possible divergence. The effective “filtering” by gently forcing
the higher modes to decay geometrically might be another
reason for the robust convergence behavior.

Even though Eq. (56) formally allows us to choose kmax =
∞, the current algorithm still does not work exactly at η = 0
but one can get very close to zero noise. In our implementation,
accurate results were obtained down to η = 0.02. The reason is
simply that the discretization of the two-dimensional angular
integral in Eq. (57) provides an implicit restriction: at η = 0
the distribution function f becomes equal to the periodically
continued Dirac-delta function, which cannot be accurately
resolved on a discrete lattice. This means the smaller the noise,
the more discretization points have to be used.

Figures 3, 8(b), and 9(b) show results for the order
parameter ϕ = g̃1/2 obtained by the algorithm described
above. A criteria about the quality of the algorithm is whether
the order parameter extrapolates to the value ϕ = 1 in the limit
η → 0. This is indeed the case for the 500-mode numerical
approach used in Fig. 9(b). The curve also shows excellent
agreement to agent-based simulations at all noise values. In
Fig. 3, one also sees perfect agreement with the three-mode
analytical solution (27) near the threshold.

G. Simulation

In our two-dimensional model, N point particles move in
a rectangular simulation box of size Lx × Ly with periodic
boundary conditions, so that the average particle number
density is given by ρ0 = N/(LxLy). The direction of motion
of each particle is modified by aligning interactions with
other particles located at distance equal or less than R and
with the velocities within the angle α from its own velocity.
The positions of particles in our simulations are updated
by streaming along to a new direction according to the
standard Vicsek updating scheme, given by Eq. (1) with the
forward updating rule, as specified in Refs. [21,28]. In most
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calculations presented here, we assume a constant propulsion
speed v0 = 1 and time step τ = 1. In some runs we use smaller
particle velocities v0 = 0.05 and 0.1 to test the stability of the
theory predictions. In all simulations, we keep the density
ρ0 = 3.18 and the radius of the interaction R = 0.1 constant.
This corresponds to a fixed small average number of collision
partners M = πR2ρ0 = 0.1. We did not use larger M , mainly
because the kinetic theory is easier to apply in the binary
collision approximation which is valid for M � 1.

H. Motion statistics

To analyze the collective behavior of the model, we perform
a series of simulations changing the noise strength η and
interaction angle α. We characterize the orientational ordering
by the polar order parameter [15,19,21,23,50]

ϕ =
〈

1

N

∣∣∣∣∣
N∑

i=1

exp(ıθi)

∣∣∣∣∣
〉

, (58)

where ı is the imaginary unit and θi is the direction of motion of
particle i. This order parameter turns zero in the isotropic phase
and assumes finite positive values in the ordered phase, which
makes it easy to detect the transition. However, at low densities
it may be more difficult to detect the transition due to the
relatively small number of particles constituting the system and
large density fluctuations. To locate transition points precisely
we also calculated the Binder cumulant [51]

GL = 1 −
〈
ϕ4

L

〉
t

3
〈
ϕ2

L

〉2
t

, (59)

where 〈. . .〉t stands for the time average and index L denotes
the value calculated in a system of size L. The most important
property of the Binder cumulant is a very weak dependence
on the system size so GL takes a universal value at the critical
point, which can be found as the intersection of all the curves
GL obtained at different system sizes [52] at fixed density.
To detect the transition points in the η − α plane precisely, we
plot three curves for different L at constant density and find the
point where they cross each other. Then, we use those points
to construct the phase diagram.

To characterize the apolar ordering within our models
in unconfined space, we use the following nematic order
parameter:

Q =
〈∣∣∣∣∣ 1

N

N∑
i=1

exp(ı2θi)

∣∣∣∣∣
〉

. (60)

When the motion of particles is perfectly collinear, irrespective
of the direction of motion, Q equals 1. We note that a perfectly
polarly ordered phase is characterized by ϕ = Q = 1, as the
polar ordering implies the nematic ordering. An apolarly
ordered phase requires only Q = 1 while the polar order
parameter can take any value ϕ < 1. Therefore, requirements
for polar order are more restrictive.

III. RESULTS

First, we look at the collective behavior of the system
upon variation of the restriction angle α in absence of noise

(a)

(b)

FIG. 6. (Color online) Typical steady-state snapshots of the re-
stricted angle Vicsek model at different values of the restriction angle
α (v0 = 1, L = 32, η = 0). (a) α = 0.35π . (b) α = 1π .

(Fig. 6). When α is small [Fig. 6(a)], α = 0.35π , we see
many well-packed groups of particles moving collinearly
albeit often in opposite directions. At the same time, one
can observe a significant number of single particles or small
clusters consisting of two-three particles that move almost
perpendicular to large ones. At α = π [Fig. 6(b)], larger
clusters moving in the same direction are formed.

Next, we look at the behavior of the system under variation
of the noise amplitude η at a fixed restriction angle α = 0.35π .
We have previously seen on Fig. 6(a) that at zero noise
large clusters are formed, which move collinearly in opposite
directions. Figures 7(a) and 7(b) show snapshots for two
more noise values η = 0.125 and 0.29. At η = 0.125, we
observe more small oppositely aligned clusters than at η = 0.
At the higher noise level η = 0.29, no clustering occurs and
velocities of all particles are distributed randomly.

In Figs. 8 and 9, we plotted the iso-ρ curves for different
restriction angles α and system sizes L. For α = 0.35π we
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(a)

(b)

FIG. 7. (Color online) Typical simulation snapshots of the re-
stricted angle Vicsek model at different noise values (v0 = 1, L = 32,
α = 0.35π ). (a) η = 0.125. (b) η = 0.29.

observe a clearly defined first order phase transition at all
system sizes [Fig. 8(a)]. At a higher value of α (α = 0.443π ),
the first order phase transition becomes less pronounced
[Fig. 8(b)], however, for systems with linear size L = 48 and
64 values of the order parameter close to the transition point
are much higher than those for the smaller system L = 32.
Finally, for all values of α higher that 0.443π , the transition
seems to change into a continuous one (Fig. 9). Thus, we have
an apparent tricritical point at α ≈ 0.444π .

We should also note that at low restriction angles our
system exhibits strong apolar alignment (see Fig. 10) with
the values of the nematic order parameter Q ≈ 1 at zero noise.
This finding is in agreement with the observed distribution
of particle orientations shown in Figs. 6(a) and 6(b). At
α = 0.35π with zero noise, the nematic order parameter is
close to unity as the majority of clusters move collinearly in
opposite directions. The apolar ordered phase disappears at
η ≈ 0.29. The appearance of the apolar state is a result of

(a)
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η
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0.8
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ϕ

theory
simulations, L=32
simulations, L=64

0 0.2 0.4η
0.2

0.4

0.6

G
L

L=32
L=48
L=64

(b)
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η
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1

ϕ
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(η−ηc)/ηc
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1

ϕ
theory

~[(η−ηc)/ηc]
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FIG. 8. (Color online) Polar order parameter ϕ plotted against
noise η for the zone of the first order phase transition (v0 = 1,
theoretical curves are obtained by the algorithm with high k inclusion,
see Sec. II F). (a) α = 0.35π . Inset: Binder cumulant for three
different system sizes. (b) α = 0.443π . Inset: Phase diagram for α =
0.443π . Here, kmax = 500 was chosen for the theoretical calculations.

“polarization” which is caused by the limited angle of view
in the velocity plane and is analyzed in Sec. II D. Thus, if
α is small and two groups of particles meet coming from
different directions, the members of each group can use only
the neighbors in their own pack for orienting themselves, and
the clusters continue moving in the same direction as before
the “collision.” Once the ordered apolar state develops, it is
very stable: during the whole simulation time (107 time steps)
the state of the system does not change and the stable apolar
ordering cannot be avoided by changing the initial conditions.
We have checked the stability of the apolar steady state by
periodically “shaking” the system by short periods of stronger
noise. We found that the value of the polar order parameter ϕ

does not return to the previous value after the shake while the
value of the apolar order parameter Q is always recovered even
if we start from a configuration with a perfect polar order. We
therefore conclude that the apolar ordered state is more stable
in the region indicated in Fig. 11.

It has been argued previously [19,34] that the linear system
size has a significant influence on critical behavior in the VM.
In particular, it may lead to a change in a cluster distribution
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FIG. 9. (Color online) Polar order parameter ϕ plotted against
noise η for the zone of the second order phase transition (v0 = 1).
(a) ϕ for different system sizes (the lines are a guide to the eye). (b)
Comparison of the theoretical and computational results for α = π .

and formation of traveling waves, which may in its turn also
change the kind of the phase transition. We already observed an
unusual behavior of the order parameter upon variation of the
system size [Fig. 8(b)]. To study this question in more detail,
we compare the snapshots for two different box lengths L as

0 0.1 0.2 0.3 0.4 0.5
η

0

0.2

0.4
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0.8

1

ϕ,
 Q

ϕ
Q

FIG. 10. (Color online) Polar ϕ and nematic order parameter Q

plotted against noise η for L = 32, α = 0.35π , and v0 = 1 (the lines
are a guide to the eye).
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FIG. 11. (Color online) Phase diagram for the restricted angle
Vicsek model in a square simulation box (v0 = 1). Solid line shows
the prediction of Eq. (22) for M = 0.1. α is given in units of π . Shaded
area shows the region of stability of the apolar phase in simulations.

obtained for a noise strength close to the critical value (Fig. 12).
For L = 32, we observe a quite homogeneous distribution
of the particles across the simulation box, while for L = 64
we see a large density wave traveling in the y direction.
A similar density band is observed for L = 48. Based on
these observations, we can speculate that density bands are
responsible for the rise of the order parameter for two system
sizes, L = 48 and 64, that we have seen in Fig. 8(b). The
use of the term “phase transition” for systems of finite size is
discussed in Appendix B.

The state diagram for our system is shown in Fig. 11. At
small restriction angles α, the transition to the orientationally
ordered phase happens only at very small noise amplitudes,
which can be explained by the high level of polarization of
the individual clusters. We also see that the critical noise
amplitude seems to be proportional to the interaction angle
at the transition line ηc ∝ α in the measured low-α region,
0.25 � α � 0.6. However, as discussed earlier, this apparent
linear behavior is still consistent with the asymptotic power-
law behavior ηc ∼ α3/2 which is theoretically predicted for
α → 0. This power law is given by the dashed curve in Fig. 11.
It is clear from this plot that the exponent 3

2 as opposed to 1
could only be detected at α < 0.2, that is, at values too small

(a) (b)

FIG. 12. (Color online) Typical simulation snapshots of the re-
stricted angle Vicsek model at different system sizes (v0 = 1, η =
0.35, α = 0.443). (a) L = 32. (b) L = 64.
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FIG. 13. (Color online) Typical steady-state simulation snap-
shots taken close to transition point (v0 = 1, Lx = 128, Ly = 4, only
part of the simulation box is shown for clarity). (a) α = 0.443π ,
η = 0.34. (b) α = π , η = 0.75.

to be probed by the agent-based simulations. Nevertheless, the
data points from the simulations agree very well with the curve
given by the full theory [Eq. (22)].

As density bands are often considered to be a signature of
the first order phase transition, it is interesting to see what
happens if we have those waves in a system with values
of α close or equal to 0.444π , above which a continuous
transition is expected in small systems. To enhance formation
of the density waves we have run series of simulations in
very elongated boxes: Lx = 128, 256, and 512. Another
dimension, Ly in all three cases, was kept constant (Ly = 4).
Two snapshots for a system of a linear size 128 × 4 are shown
in Fig. 13. At α = 0.443π , we see two compact waves traveling
along the x axis. For α = π we observe one large wave also
moving in the x direction.

In Fig. 14, we show a plot of the orientational order
parameter for simulations in the elongated box. For all values
of α as well as for all system sizes, we observe a sharp drop
of the order parameter at the transition point, indicating a
discontinuous phase transition (also confirmed by the Binder
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FIG. 14. (Color online) Polar order parameter ϕ plotted against
noise η for various values of α and Lx (v0 = 1, simulations with
elongated box, the lines are a guide to the eye).
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FIG. 15. Phase diagram for the restricted angle Vicsek model
with elongated simulation box (v0 = 1). α is given in units of π (the
line is a guide to the eye).

cumulant analysis). For the larger system sizes, the transition
to the disordered state happens at the higher noise levels. This
behavior can be explained by the formation of larger density
waves [34] and is in agreement with the observations made
earlier for the square box.

An example of the phase diagram for a system in an
elongated box is shown in Fig. 15. If we compare it with the
phase diagram for the square box, we indeed see three clearly
distinguishable differences: the transition in the elongated box
happens at a higher noise level while the dependence of η on
α appears to be linear for the entire range of α values used.
Note that this does not mean that the asymptotic dependence
for α → 0 has to be linear. For example, for small boxes,
kinetic theory predicts ηc ∼ α3/2 [see Eq. (25)]. Furthermore,
the transition is now discontinuous for all α, that is, the
tricritical point has disappeared due to the formation of density
waves that made the transition discontinuous even at larger
α. This type of “finite-size effect” is qualitatively different
from the ones observed in the (grand) canonical ensemble of
equilibrium systems such as the Potts model.
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FIG. 16. (Color online) Polar order parameter ϕ plotted against
noise η for various values of α (v0 = 0.1, λ/R = 1, the lines are a
guide to the eye). Inset: Binder cumulant GL plotted against noise η

for α = 0.3π (v0 = 0.1, L = 32).
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FIG. 17. (Color online) Phase diagram for the restricted angle
Vicsek model at v0 = 0.1 (λ/R = 1). α is given in units of π , the line
is a guide to the eye.

In Figs. 16–18, we study the influence of the particle speed.
All of our previous simulations were performed at a very large
ratio of the mean free path λ = v0τ to the interaction radius
R, λ/R = 10. In this high speed regime, kinetic mean-field
theory is supposed to be very accurate. A change of the phase
behavior is expected if this ratio is reduced to below unity. This
is because in the low velocity regime λ/R � 1, precollisional
correlations are expected to be strong and the molecular chaos
approximation is supposed to fail (see discussion in Ref. [33]).
Here, we dropped λ/R from 10 to 1 and 0.5 and only observe
moderate changes of the threshold value ηc (see Fig. 18).
We hypothesize that λ/R = 0.5 is still too large to see a
significant reduction of ηc. What is more interesting is that
the tricritical point drops down from 0.443π to about 0.35π at
v0 = 0.05 (see Fig. 17). It has been shown in Ref. [33] that in
the regular VM the average number of interaction neighbors
increases due to clustering when the ratio λ/R is lowered.
It is natural to assume that similar clustering occurs in the
bounded-confidence model. A possible explanation of the drop
of αc could then be that the angular restriction mechanism is
less relevant due to the increased supply of neighbors. In other
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FIG. 18. (Color online) Phase diagrams for the restricted angle
Vicsek model at different particle speeds v0: v0 = 0.05 (λ/R = 0.5),
v0 = 0.1 (λ/R = 1), and v0 = 1 (λ/R = 10). α is given in units of
π , the lines are a guide to the eye.

words, if there are many neighbors to choose from, it is not
as dramatic to exclude, for example, two thirds of them as
there is still somebody left with the “right mindset” to interact
with. Alternatively, the reduction of αc could also just be a
consequence of the reduced threshold noise in the α range
around 0.4π , as seen in Fig. 18.

IV. DISCUSSION

Introducing selectivity into the Vicsek model leads to
a qualitative difference: Within homogeneous mean-field
theory, the transition from disorder to homogeneous states of
collective motion can be either continuous or discontinuous,
depending on the restriction parameter α. As a consequence,
tricritical points, which separate regions of different transition
behavior, appear. In a social context, the possibility of
discontinuous transitions already in small systems, and the
occurrence of tricritical points, can be rationalized as follows:
The noise amplitude η describes the degree of how particles
conform to what the neighbors they are “listening to” do. Small
η means a high degree of conformity. If agents are highly
ignorant of opposing views, that is if α is small, change to
collective behavior from disordered motion and back can only
happen in an abrupt, discontinuous fashion. Let us assume
particles are initially ordered and the noise is increased. That
means the agents deviate more and more from what their
tolerated neighbors suggest. Since the agents are in an ordered
state, most of their neighbors are already aligned with their
common “opinion,” and they only have to disregard a few
neighbors, even though α is small. In other words, the angular
restriction is not that important in a highly ordered state. If
the noise η is slightly increased, this situation can persist
because just a few more neighbors have to be ignored but
there is still a sufficient amount of like-minded ones in reach.
By filtering out the opinions even if they only slightly deviate
from their own, the agents can maintain their collective motion
even when the noise is slightly above ηc. However, once the
noise is too high, the agents can barely find anyone anymore
who fits their narrow focus and with whom they can align with.
As a result, everyone disregards almost anyone else, particles
just perform interaction-free random walks, and the global
order collapses abruptly. Thus, in this disordered state, the
angular restriction has a large impact as compared to within
the ordered state. That means, going back to the ordered state
starting from disorder by decreasing the noise will require a
substantial decrease of the noise to a value well below ηc. Once
the restriction angle is larger than αc the selection mechanism is
not effective anymore and the system qualitatively behaves like
the standard VM. In this case, a phase transition is observed
that is continuous at the mean-field level if one suppresses the
formation of inhomogeneous stationary states which consist of
solitonlike invasion waves (Refs. [18,19,53]). This is because
using inhomogeneous mean-field theory these waves have
been shown to render the phase transition discontinuous
(Ref. [34]). Since these waves grow from a long-wavelength
instability and have a minimum spatial extent, one just has
to keep the system size below a critical size L∗ to prevent
their occurrence. Once the system size exceeds L∗, the order-
disorder transitions are discontinuous (at least in the large
speed regime considered here), even above αc. However, the
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mechanism for the discontinuity is now very different from
the one acting at low α and in small systems (for a general
discussion on transitions in small systems, see Appendix B.)

The existence of a discontinuous transition in small systems
without the invasion-wave mechanism can also be rational-
ized by comparing it to the VM with vectorial noise (see
Refs. [18,22]): In this model, a vector of fixed length but
with random orientation is added to the vector sum A of all
precollisional velocities in the collision circle. This addition
has a large impact on the final orientation if the size of A
is small, that is, if the system is in the disordered state, but
is less relevant in the ordered state where A is large. Thus,
as in the current model, the influence of noise depends on
whether the precollisional state is ordered or disordered. It is
this dependence on initial conditions on the microscopic level
that allows for hysteresis, an indicator for a discontinuous
phase transition. In the regular VM with angular noise, the
impact of noise does not depend on whether A is long or short;
in both cases, A is rotated by the same amount. Thus, in the
regular VM, hysteresis is only possible on a mesoscopic level,
through the formation of strongly inhomogeneous bandlike
states.

V. CONCLUSIONS

We introduced a version of the Vicsek model of self-
propelled particles with selective interactions, such that the
particles can align only with the neighbors whose direction of
motion is not too different from their own. We developed a
mean-field theory of the flocking dynamics in such a system
and predicted its dynamic phase diagram. In particular, we find
that in homogeneous systems, depending on the interaction
restriction angle and the system size, the transitions between
the ordered and disordered states of the system can be continu-
ous or discontinuous. The discontinuous behavior is observed
in small systems at small interaction angles. We predict the
position of the transition line and of the tricritical point and
suggested an interpretation of the results in terms of opinion
dynamics, where the restriction angle reflects the bounded
confidence. We tested the theory using direct simulations of
self-propelled particles and found excellent agreement with the
kinetic theory predictions. We also observed that at very small
interaction angles the polar ordered phase becomes unstable
with respect to the apolar phase.

We discovered that, below a certain restriction angle, apolar
ordered solutions of the kinetic equations exist such as nematic
and higher order fragmented states. We calculated the critical
noise, at which the disordered state bifurcates to a nematic
state. This calculation has been generalized to systems that
show fragmentation into more than two groups. A scaling law
for the transition to collective motion for an arbitrary number
of distinctly oriented groups has been obtained. Our kinetic
theory predicts two different tricritical points for transitions
from disorder to a state with at least two distinct subgroups: at
low and high restriction angle the transition is discontinuous
but continuous at intermediate α. The maximum restriction
angle, below which fragmented states can exist, is found to
be inversely proportional to the number of subgroups. This
finding is consistent with studies on social network models
with bounded confidence [44]: A smaller opinion tolerance

(corresponding to a smaller restriction angle α) allows for a
stronger fragmentation of the opinion. More research is needed
to investigate the stability and competition of the fragmented
states. Note that the mean-field theory used in this paper
reaches its limits for large numbers of subgroups: The noise
amplitudes required to observe these states are so small that
the underlying molecular chaos assumption is violated, even
at quite large time steps and particle velocities. This makes
it difficult to achieve quantitative agreement between kinetic
theory and agent-based simulations of fragmented states. To
properly describe these states analytically, an approach beyond
mean field, such as the ring-kinetic theory of Ref. [37], is
required. In general, the selective interactions introduced in
this paper could make models of social agents more realistic.
Furthermore, the proposed kinetic theory could be helpful
for a closely related version of the Vicsek model, which was
introduced by Lu et al. [27] to describe their experiments on
the collective motion of Bacillus subtilis.

Finally, we presented an algorithm to accurately solve a
nonlinear Fredholm equation with a singular kernel that occurs
in the kinetic theory of Vicsek-style models. This algorithm
delivers highly accurate results for the one-particle distribution
function as a function of noise, not only close to the order-
disorder threshold but for all possible noises, even down to
almost zero noise, where the order parameter approaches unity.
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APPENDIX A: CALCULATION OF THE COUPLING
INTEGRALS

The formula for the coupling coefficients B
(2)
kpq [Eq. (19)]

can in principle be fed into a symbolic algebra software like
MATHEMATICA. However, it is still useful to discuss these
coefficients in more detail and to give specific examples
which are needed to derive the threshold noise and the phase
diagram of the restricted-angle Vicsek model. First, Eq. (19) is
rewritten as

B
(2)
kpq(α) = 1

(2π )2

∫ 2π

0
dθ1cos(pθ1) Ukq (A1)

with

Ukq(α) =
∫ θ1+α

θ1−α

cos[k(θ1 + θ2)/2] cos(qθ2) dθ2. (A2)

Here and in the following, we assume a non-negative re-
striction angle 0 � α � π . Using trigonometric identities, the
auxiliary function Ukq(θ1) can be expressed as

Ukq = cos

(
k

2
θ1

)
Pkq − sin

(
k

2
θ1

)
Qkq (A3)
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with another set of auxiliary functions Pkq and Qkq . Integrating
over θ2 gives

Pkq = α[δq,k/2 + δq,−k/2]

+ [1 − δq,k/2]

2
(
q − k

2

) {sin

[(
q − k

2

)
(θ1 + α)

]

− sin

[(
q − k

2

)
(θ1 − α)

]}

+ [1 − δq,−k/2]

2
(
q + k

2

) {
sin

[(
q + k

2

)
(θ1 + α)

]

− sin

[(
q + k

2

)
(θ1 − α)

]}
, (A4)

Qkq = [1 − δq,k/2]

2
(
q − k

2

) {cos

[(
q − k

2

)
(θ1 + α)

]

− cos

[(
q − k

2

)
(θ1 − α)

]}

− [1 − δq,−k/2]

2
(
q + k

2

) {
cos

[(
q + k

2

)
(θ1 + α)

]

− cos

[(
q + k

2

)
(θ1 − α)

]}
. (A5)

After substituting these expressions back into Eqs. (A3)
and (A1), the final integration over θ1 can be easily performed.
Instead of giving this lengthy expression in full generality, we
will only discuss a few relevant cases. For example, for k = 1
and q = 0,1 one finds

U10 = 4sin

(
α

2

)
cos(θ1),

(A6)

U11 = 2sin

(
α

2

)
+ 2

3
sin

(
3α

2

)
cos(2θ1).

Inserting this into Eq. (A1) gives

B
(2)
101 = B

(2)
110 = 1

π
sin

(
α

2

)
. (A7)

Thus, as expected, B
(2)
kpq is symmetric in the indices p and

q. However, B
(1)
kpq does not have this symmetry. For example,

from Eq. (17) one obtains

B
(1)
110 = 1

2

(
1 − α

π

)
,

(A8)
B

(1)
101 = − sin α

2π
.

Hence, the total coupling constant Bkpq = B
(1)
kpq + B

(2)
kpq is not

symmetric, Bkpq �= Bkqp. The physical reason for this is that
the focal particle (with corresponding Fourier index p) plays a
special role in the collision: If the angular difference between
particles 1 and 2 is too large, it is always particle 1 that is
allowed to determine the mean direction and never particle 2.
In other words, the social bias of an agent to favor its own
“opinion” leads to asymmetric coupling matrices.

Only the symmetrized coupling constants B̄kpq = (Bkpq +
Bkqp)/2 are relevant for the hierarchy equations (13) and (27).

Several examples are calculated as outlined in the previous
paragraphs:

B̄101 = 1

π
sin

(
α

2

)
+ 1

2

[
1

2

(
1 − α

π

)
− sin α

2π

]
,

B̄112 = 1

6π
sin

(
3α

2

)
+ 1

2

[
− sin(2α)

8π
− sin α

4π

]
,

B̄123 = 1

10π
sin

(
5α

2

)
+ 1

2

[
− sin(3α)

12π
− sin(2α)

8π

]
,

B̄211 = 1

4π
(α − sin α),

(A9)

B̄202 = 1

2π
sin α + 1

2

[
− sin(2α)

4π
+ 1

2

(
1 − α

π

)]
,

B̄231 = 1

8π
sin(2α) + 1

2

[
− sin(α)

4π
− sin(3α)

12π

]
,

B̄303 = 1

3π
sin

(
3α

2

)
+ 1

2

[
− sin(3α)

6π
+ 1

2

(
1 − α

π

)]
,

B̄312 = 1

2π
sin

(
α

2

)
+ 1

2

[
− sin(α)

4π
− sin(2α)

8π

]
.

The terms in the [. . .] brackets are due to the asymmetric parts
B

(1)
kpq and vanish in the regular Vicsek limit of α = π . The

coupling coefficients for the nematic theory of Sec. II D are

B̄224 = sin(3α)

12π
− sin(2α)

16π
− sin(4α)

32π
,

B̄246 = sin(5α)

20π
− sin(6α)

48π
− sin(4α)

32π
,

B̄404 = sin(2α)

4π
− sin(4α)

16π
+ 1

4

(
1 − α

π

)
,

B̄422 = − sin(2α)

8π
+ α

4π
, (A10)

B̄426 = sin(4α)

16π
− sin(6α)

48π
− sin(2α)

16π
,

B̄624 = sin(α)

4π
− sin(4α)

32π
− sin(2α)

16π
,

B̄606 = sin(3α)

6π
− sin(6α)

24π
+ 1

4

(
1 − α

π

)
.

APPENDIX B: PHASE TRANSITIONS IN SMALL SYSTEMS

Traditionally, phase transitions were only defined in equi-
librium and in the thermodynamic limit N → ∞, V → ∞,
N/V = const. According to the oldest classification, the
Ehrenfest scheme, a macroscopic phase transition is indicated
by nonanalytic behavior of the Gibbs free energy.

Since then, fueled by experiments and computer simu-
lations, the concept of phase transitions has been extended
to far-from-equilibrium systems and small systems (see, for
example, [54–58]). This is especially relevant for systems
where the thermodynamic limit is not applicable or makes
no sense experimentally, such as in bird flocks, atomic nuclei,
astrophysical objects, or Bose-Einstein condensates of atoms
in a harmonic trap [59]. Nevertheless, even in systems with
only 102–107 particles, it is sometimes possible to observe
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phenomena which are typical for phase transitions. These
phenomena can be, but are not always, precursors of phase
transitions in the corresponding infinite system. For example,
there are even equilibrium systems such as sodium clusters [60]
where the nature of the phase transition seems to change
with increasing particle number. In spite of that, it has been
shown that phase transitions can be classified at fixed and
finite particle number, avoiding the thermodynamic limit. For
example, Gross and Votyakov [56] propose a classification
of phase transitions in small systems based on the topology
of the Boltzmann entropy. Borrmann et al. [57] extract the
type of phase transition in small systems from the distribution

of zeros of the partition function in the complex temperature
plane.

Given that, at least in equilibrium, there exists such a
classification, it seems appropriate to use the term “phase
transition” for phase-transition-like behavior in the VM at
finite particle number.

The mean-field theory of Sec. II B was derived in the
thermodynamic limit. The finding that its predictions for a
tricritical point agree quantitatively with agent-based simu-
lations in moderately small boxes further justifies the idea
to speak of phase transitions and tricritical points in small
systems.
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