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Lattice-switching Monte Carlo method for crystals of flexible molecules
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We discuss implementation of the lattice-switching Monte Carlo method (LSMC) as a binary sampling between
two synchronized Markov chains exploring separated minima in the potential energy landscape. When expressed
in this fashion, the generalization to more complex crystals is straightforward. We extend the LSMC method
to a flexible model of linear alkanes, incorporating bond length and angle constraints. Within this model, we
accurately locate a transition between two polymorphs of n-butane with increasing density, and suggest this as a
benchmark problem for other free-energy methods.
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I. INTRODUCTION

The ability to predict which polymorph of a given organic
crystal will crystallize or assemble under conditions of interest
is still far from routine, despite significant progress in recent
years [1–7].

When studying crystallization in a given model system,
an important first step is to establish the available crystal
structures and then map the equilibrium phase diagram. This
provides essential context for design and interpretation of
simulations which probe nucleation, polymorph selection, and
crystal growth behavior.

Obtaining the solid phase diagram reduces to computing
Gibbs free-energy differences �g per atom or molecule
between the available polymorphs. Typically one is interested
in classical systems, as a fully quantum-mechanical treatment
of crystal nucleation is unlikely to be tractable for some
time. In the context of crystallization from the melt, one
is also interested in solid-solid free-energy differences at
temperatures close to melting, limiting the utility of the
quasiharmonic approaches often used to compute free energies
of “hard” crystalline solids.

Ideally one could compute �g directly via thermodynamic
integration along a reversible thermodynamic path between
polymorphs. Such paths are difficult to obtain in general,
but have been realized for simple transformations in atomic
solids [8,9]. Instead, one normally resorts to the computation of
absolute free energies g for each solid phase, most commonly
by connecting them via a fictitious path to an Einstein
crystal [10]. This is largely routine, particularly for atomic
crystals [11], although other methods are available [12,13].
However, obtaining a small �g by subtracting two much larger
numbers is less than ideal, particularly as the uncertainly in
the absolute g of each phase can be laborious to quantify.

An appealing alternative is to use a so-called phase-switch
algorithm, which samples from both phases in a single
simulation without the need to construct a complex interphase
path [14]. �g emerges naturally from the population of the
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samples obtained within each phase, and the associated uncer-
tainty is extracted from the fluctuations in these populations
at equilibrium. Within this class, the lattice-switching Monte
Carlo (LSMC) algorithm [15–17] is appropriate for computing
�g between two ordered crystalline phases.

To our knowledge, the LSMC method has been applied
to atomic crystals where the constituent bodies have only
translational degrees of freedom [18], and also to crystals
with rigid molecular units [19]. In contrast, many models of
crystallizing or self-assembling systems incorporate internal
molecular degrees of freedom with multiple constraints. In
this paper we demonstrate an extended LSMC scheme for the
treatment of such systems.

II. LATTICE-SWITCHING MONTE CARLO

In this section we review the standard LSMC method, and
discuss an implementation which expresses the lattice switch
as a binary selection between two synchronized Markov chains
in a manner which naturally extends to molecular crystals or
indeed any other system.

We first define generalized absolute coordinates qα
j denot-

ing the j th degree of freedom within a configuration which
can be identified as “belonging to” phase α. In the context of
solid-solid phase transitions, this implies the configuration is
within the basin of attraction surrounding a local minimum in
the potential energy landscape, corresponding to a periodically
repeating crystal structure. We also define fixed reference coor-
dinates Qα

j , normally taken to be qα
j at exactly the local energy

minimum, i.e., the perfect or ideal crystal. The phase index α

can take values of 0 or 1 corresponding to the two crystal struc-
tures between which one requires a free-energy difference.

In what follows, we denote the currently selected phase
index as α = A and refer to the corresponding lattice as
“active.” The alternative lattice index (α = B = 1 − δA,1) is
termed “passive.” Beginning from either of these two choices
for A, the LSMC scheme consists of the usual MC moves in
qA

j , sampling from the currently active lattice. An additional
move switches the selected phase index while preserving all
relative coordinates δqj = qA

j − QA
j .

Provided the acceptance probability for the switch move is
chosen appropriately, the scheme generates samples across
both phases (A = 0 and A = 1) in the correct ratio for
the ensemble of interest, leading directly to a free-energy
difference via Boltzmann inversion.
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For simple atomic crystals, simulated at constant volume,
the 3N qα

j run over the components of fractional coordinates si

for each atom i. N is the number of atoms within the simulated
unit cell. Absolute coordinates ri are computed via the 3 × 3
matrix h which contains the three unit cell vectors arranged
into columns such that ri = hsi in the usual fashion. In this
context we denote the ideal position of atom i in phase α as Rα

i .
Some attention must be given to how the atom indices are

mapped between the two structures. In their original study on
close-packed hard-sphere systems, Bruce et al. [15,16] iden-
tified an optimal mapping as corresponding to the translation
of entire atomic planes, altering the stacking sequence from
fcc (face centered cubic) to hcp (hexagonal close packed)
and vice versa. The switch move hence has a clear geometric
interpretation and can be expressed as a translation vector for
each atom �Ri = ±(R0

i − R1
i ), which is zero for atoms i lying

in planes which are not translated by the switch. A natural
implementation of LSMC with this mapping need only store
a single set of coordinates for the currently active lattice. The
computation of pair distances for the passive lattice is easily
accomplished by adding �Ri + �Rj to each separation vector
rij = ri − rj . Hence the scheme is formulated in terms of a
single Markov chain which can explore both crystal phases.

For more complex crystals, the geometric operation which
transforms one lattice to another with minimal change of local
atomic environments may involve the rotation of molecules,
as well as the stretching, bending, and rotation of molecular
bonds. The nontrivial task of designing an optimal mapping
must be undertaken for each pair of crystals under considera-
tion. A mapping without a geometric interpretation will likely
be suboptimal in terms of maximizing the similarity of atomic
environments between the two phases. Indeed Bruce et al. [15]
considered random mappings and demonstrated this to be true.

We adopt the following approach in our implementation.
At all times we store the coordinates of both the active and
passive crystals. Beginning from the reference coordinates
(qα

j = Qα
j ) each MC move is used to update qα

j for both
α = 0 and α = 1 simultaneously. The move is accepted or
rejected based on the energetics of the currently active lattice.
The LSMC scheme in this form can be considered as two
synchronized Markov chains sampling from different regions
of the energy landscape. The switch operation reduces to
swapping the identity of the active and passive lattices, and
can be attempted at zero additional computational expense.

We stress that this logical (rather than geometrical) inter-
pretation of the lattice switch is mathematically equivalent
to the original formulation, but suboptimal in terms of index
mapping. However, its extension to more complex crystals is
much more straightforward provided generalized coordinates
are appropriately chosen (see Sec. III). The mapping of atomic
indices between phases can be chosen arbitrarily, however, it
is sensible to maximize the similarity of local environments
where possible to maximize sampling efficiency.

Some consideration must be given to maintaining the
synchronization of the two chains over simulations of many
billion MC moves in light of the finite accuracy with which real
numbers can be represented in the computer. We periodically
enforce this synchronization by computing the change in the
generalized coordinates from the ideal reference configuration
in the active lattice. The coordinates in the passive lattice are

overwritten with the result of applying this same change to the
corresponding reference configuration

qB
j = QB

j + qA
j − QA

j . (1)

This need only be performed periodically (typically every
100 000 MC moves) and as such constitutes a vanishingly
small overhead.

A. Non-Boltzmann sampling

The efficacy of LSMC is hampered by a very low accep-
tance of switch moves when using the Boltzmann acceptance
criterion to sample physically meaningful ensembles. In the
context of hard-sphere models, the switch can only be accepted
when zero hard-sphere overlaps are present in both the active
and passive lattices. Bruce et al. [15,16] overcame this problem
by introducing a discrete order parameter M, which we define
in the present notation as

M({δqj }) = m
({

q0
j

}) − m
({

q1
j

})
, (2)

where m({qα
j }) denotes the number of overlaps generated

from the configuration in phase α. Configurations for which
M = 0 define “gateway states” from which the switch move
can be accepted. The sampling of these states is enhanced by
introducing a weighting function η (M) with units of kBT .

Trial MC moves which introduce overlaps into the currently
active lattice can be rejected without further computation. The
remaining moves are accepted with probability

P (δqj → δq ′
j ) = exp[η(M) − η(M′)], (3)

where the primes denote quantities evaluated after the trial
move. Evaluating the acceptance probability hence necessi-
tates computing the number of overlaps in both lattices after
every trial move which does not introduce overlaps in the
active lattice. This is easily accomplished with shared memory
parallelism over the two synchronized Markov chains. The trial
volume or lattice vector moves are biased in a similar fashion.

The function η is chosen to achieve uniform sampling in
M. In our work we adopt the recursion scheme commonly
employed in the Wang-Landau [20] method to compute this
function.

The overlap parameter M is discrete, with the kth value
denoted as Mk . Upon visiting a configuration {δqj } with Mk ,
we increment the corresponding weight function ηk by δη =
ln f and accumulate a histogram hi → hk + 1. When this his-
togram is “flat,” defined as each entry hk lying within 5% of the
mean, f is reduced according to f → √

f and the histogram is
reset to zero. The process repeats until f reaches a vanishingly
small value. Typically we begin with f = 1.0005 and halt the
simulation when 1 − f becomes smaller than 10−7.

Once we have converged an accurate set of weights
{ηk}, we simulate using these without further modification
to accumulate a converged sampling across M. Unbiased
histograms are then recovered from these data via histogram
reweighting [21].

B. Hard-sphere system

Before discussing the extension to model molecular crys-
tals, we first demonstrate that our implementation of LSMC in
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FIG. 1. Multicanonical weight function η (M) (circles, right axis)
and unbiased probability histogram P (M) (triangles, left axis) for
216 hard spheres as a function of the fcc-hcp overlap parameter M
at a reduced density of ρ = 0.7778. The flat histogram (squares, left
axis) is that obtained directly during the multicanonical sampling.
Calculations were performed using two synchronized Markov chains
and a logical phase switch.

terms of synchronised Markov chains and a purely logical
phase switch is consistent with earlier published results.
Specifically we study the entropy difference between fcc and
hcp packings of N = 216 hard spheres at ρ = 0.7778 (constant
volume) and P = 14.58 (constant pressure) where accurate
data are available for validation. All results are presented in
reduced units.

Following the above procedure for the generation of
multicanonical weights, we obtained the function plotted in
Fig. 1. This was then used for an extended simulation of 109

MC sweeps, where one MC sweep corresponds to N trial
displacements of a randomly selected particle. The mappings
between particles in each phase where chosen arbitrarily.

Figure 2 plots the current estimate of �s as a function of MC
sweep number during this simulation. Convergence is obtained
to within a tolerance of 10−3 (reduced units) after only a few
million MC sweeps. An accuracy of 10−5 (marginally better
than previously reported LSMC accuracies) is obtained by one
billion sweeps, which currently requires only a single core for
less than a week on the current generation of desktop hardware.
The final result for �s is within the range of uncertainly
reported in previous calculations.

Further validation tests have been performed on this system
at constant pressure, reproducing literature results for the
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FIG. 2. Convergence of the entropy difference per particle �s

(circles) between fcc and hcp phases of 216 hard spheres at a reduced
density of ρ = 0.7778 sampled using two synchronized Markov
chains and a logical phase switch. Dashed lines indicate the limits set
by the uncertainly of calculations reported by previous authors [16]
using a geometric phase switch.

TABLE I. Validation of our synchronized Markov chain imple-
mentation of LSMC against previous work on the fcc-hcp free-energy
difference [16]. The effect of including anisotropic volume moves in
the MC sampling is demonstrated to be negligible at the pressure
studied. All values of �s and �g have been multiplied by 105 for
comparison to Fig. 2.

N Conditions Present work Ref. [16]

216 ρ = 0.7778 �s = 133(3) �s = 133(3)
1728 ρ = 0.7778 �s = 112(2) �s = 113(3)
5832 ρ = 0.7778 �s = 112(3) �s = 110(3)
216 P = 14.58 (iso) �g = −113(4) �g = −133(4)
1728 P = 14.58 (iso) �g = −112(3) �g = −112(3)
1728 P = 14.58 (aniso) �g = −109(3) N/A

Gibbs free-energy difference �g to similar accuracy. It is
interesting to note that all previous calculations of �g in
this system have used constant pressure MC with isotropic
volume moves. We have performed calculations using both
isotropic and Parrinello-Rahman anisotropic MC to determine
if any small differences in anisotropy of particle displacements
between fcc and hcp stackings exert a measurable influence on
their relative stability. The results of all our validation tests are
presented in Table I. The only significant discrepancy is for
216 spheres at P = 14.58 [22].

III. EXTENSION TO FLEXIBLE SYSTEMS

In this section we demonstrate the extension of LSMC to
molecular crystals incorporating internal degrees of freedom
subject to constraints. In the framework of a purely logical
switch, this reduces to a careful choice of relative coordinates
{δq} to synchronize between the two lattices.

One choice would involve synchronizing the fractional
lattice coordinates of all atoms within the two molecular
crystals. This approach may be suitable in the case of two
crystals comprised entirely of fully flexible molecules which
adopt a uniform conformation. In the more general case
considered here, we apply the following principles.

First, all bond length and angle constraints within each
molecule must be simultaneously satisfied in both the active
and passive lattices. A change in fractional lattice coordinates
can preserve such a constraint in one lattice while violating
it in another. Coordinates which are independent of the
constrained quantity are essential if gateway states which
satisfy simultaneously satisfy all constraints in both lattices
are to be sampled in a finite simulation.

Second, the coordinates used to specify the position and
orientation of a molecule must be independent of its internal
degrees of freedom. This greatly simplifies the process of syn-
chronization between two lattices where molecules are in dif-
ferent conformations. Molecular center of mass, or end-to-end
vectors, are therefore not suitable as generalized coordinates.

Third, special consideration must be given to rotational
degrees of freedom. If a linear molecule j in lattice 1 is
aligned parallel to the x axis, then a π/2 rotation about an
axis parallel to x will produce little change in the overlap
parameter. However, should molecule j in lattice 0 be aligned
perpendicular to x, the same rotation will produce a dramatic
change in orientation, introducing many new overlaps. It is
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therefore important to synchronize changes in orientation from
the reference configurations {Qα}, and not absolute orientation
of molecules relative to a common axis to limit the range of
the overlap parameter which must be explored.

A. Linked hard-sphere alkanes

To demonstrate these principles, we simulate a specific
example system. In a pair of papers [23,24], Monson et al.
have introduced a family of hard-sphere united atom models
for normal alkanes. Molecular chains consist of hard sphere
beads, diameter d, linked by bonds of fixed length 0.4 d. All
bond angles are constrained at 109.47◦. We have implemented
the most recent model described by Cao and Monson in
which the intrachain overlap is permitted between first, second,
and third nearest neighbors. All other bead pairs interact via
a hard-sphere overlap potential. We report all quantities in
reduced units where d = 1. Note that this differs from the unit
system used in Ref. [23] where the unit of length is taken as the
diameter of a sphere with equal volume to that of the molecule.

The flexibility of these chains arises from their ability
to explore torsional degrees of freedom. The corresponding
dihedral angle is restricted to lie within ±17.4◦ of zero (trans
configuration) or ±10◦ of either +120◦ or −120◦ (gauche
configuration). MC moves leading to dihedral angles outside
of this range are rejected.

Our MC simulations consist of whole molecule translations
and rotations, plus two moves which sample from the confor-
mations available to each of the N chain molecules, torsion,
and configurational bias Monte Carlo (CBMC) moves [25].
Torsion moves are made by selecting a random dihedral along
the chain and rotating through a random angle φ, between
−φmax and +φmax. With a probability of 50%, the magnitude
of φ is increased by 120◦ to allow sampling of transitions
between trans and gauche configurations. We have also CBMC
moves, but find these to be largely unnecessary for the
simulations of short-chain solid phases reported there. When
simulating at constant pressure, the anisotropic nature of the
solid necessitates the introduction of Parrinello-Rahman [26]
moves which perturb a randomly selected subdiagonal entry
in the matrix of cell vectors h.

B. Solid butane phases

To illustrate the applicability of LSMC to systems of this
kind, we compute free-energy differences between two solid
phases which form when the chains consist of four beads, mim-
icking butane molecules. Previous studies of this model have
located only solid-fluid equilibria [27]. We are not aware of any
previous study of solid-solid phase equilibria in this system.

The structure of solid butane has previously been explored
via a combination of neutron diffraction and molecular dynam-
ics simulation [28,29]. At high temperatures a plastic crystal
(phase I) is formed in which molecules are orientationally
disordered about their long axes, adopting a continuous range
of angles. This differs from the rotator phases observed for
longer alkanes in that these long axes are not aligned, dividing
into two mutually orthogonal groups.

At lower temperatures, butane forms two ordered structures,
one of which (phase II) is metastable with respect to the

FIG. 3. (Color online) Structures of butane phase I (left) and
phase III (right) in the linked hard-sphere model of Malanoski and
Monson. The supercells shown each contain 32 molecules. Beads
within the same molecule share color, and coloring of molecules is
arbitrary.

other (phase III) under atmospheric pressure. The structure
considered in the solid-fluid equilibria explored by Malanoski
and Monson [23] corresponds to phase III, in which the long
axes of all molecules are aligned.

We have mapped these structures onto the hard-sphere
model of Cao and Monson. Some minor refinement of
the resulting coordinates was necessary to remove overlaps,
preserve the bond and angle constraints, and to ensure dihedral
angles lay within the allowable range. All three structures
remain mechanically stable within the present model, however,
the plastic crystal nature of phase I is lost and the distribution of
rotation angles about the long molecular axis is rather narrow.
The structures of phases I and III within the present model are
shown in Fig. 3.

The calculations reported below are all performed at
constant volume. For anisotropic crystal structures such as
these, the dimensions of the unit cell are not uniquely defined
by the density. We focus on unit cells that correspond to the
average cell shape under hydrostatic pressure. To create these,
we first compute pressure versus density curves for both phases
using anisotropic [26] constant pressure MC simulations and
interpolate on these data to identify the pressure of each phase
at the density of interest. We then simulate, at this pressure,
to identify the average components of each cell vector. This
averaged cell is then scaled isotropically to correct for any
small residual difference between the averaged and target
density, and populated with chain molecules.

This procedure necessarily introduces a source of error in
calculations of Helmholtz free-energy difference at constant
density, due to the statistical uncertainty in the computed cell
parameters. We return to this issue and quantify the magnitude
of this error below.

C. Generalized coordinates

Suitable choices for relative coordinates {δqα} in this
system are as follows. The superscripts denote the index of a
bead within a chain and subscripts denote the chain index from
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1 to N . We define δsi to be the fractional lattice coordinates of
the first bead on the ith chain, measured relative to its position
in the reference configuration. The quaternion wi defines the
rotation of the bond vector r2

i − r1
i relative to the x axis, and

δwi the change in this quaternion needed to rotate this bond into
its current orientation from that in the reference configuration.
The change in internal dihedral angle of chain i from its value
in the reference configuration is denoted δφi .

Each of the coordinates δsi, δwi , δφi , for all i, define the
6N + N relative coordinates {δq} synchronized between the
two Markov chains simultaneously exploring phase I and
phase III. These coordinates are linearly independent, and
each MC move modifies only a single coordinate type. The
exception to this last property would be CBMC moves, which
despite being largely superfluous in the present context, may
be of use for MC switch calculations in other systems. This
would require the change in chain conformation generated
by a proposed CBMC move to be recalculated as changes
in the generalised relative coordinates. The expense of this
calculation is negligible compared to the CBMC move itself.

D. Results

We first compute the free-energy difference between phases
I and III at a constant density of ρ = 0.5. We use the same
overlap parameter as for the hard-sphere system, excluding
overlaps between spheres which are directly bonded or linked
by only a single atom. Overlaps between the first and last beads
on a chain are included. An additional overlap is counted for
each dihedral angle in the passive phase which lies outside of
the allowable range.

Our mapping between atom positions in phases I and III
is essentially arbitrary, beyond the criterion that the sequence
of beads within a chain is preserved by the lattice switch.
In terms of minimizing the range of overlaps which must be
explored, this mapping is certainly suboptimal compared to the
(unknown) ideal mapping. We mitigate this by storing both hk

and ηk on a nonuniform grid, with a higher density of points
near M = 0 where η (M) is rapidly varying. This requires
a minor modification to the weight generation procedure,
incrementing both hk and ηk in inverse proportion to the width
of bin k. To avoid ambiguity in what follows, f refers to the
modification factor employed for bins of unit width.

To accelerate the weight generation further, our simula-
tions employ p independent pairs of synchronized Markov
chains executing concurrently on a parallel computer. Each
chain pair updates a separate copy of the histogram and
weighting arrays hk and ηk , periodically consolidated via
global communication. The efficacy of this approach reduces
as the interval between the communication of these arrays
increases, evolving the system with increasingly out-of-date
bias. In practice the computational cost of communicating
data between processors necessitates a compromise, using a
finite communication interval of 100 MC sweeps.

Figure 4 illustrates the accelerated convergence the scheme
with increasing p. We typically choose p between 8 and 24 for
generation of all weights in the butane system, representing a
compromise between speed and efficiency.

A suitably converged set of weights ηk is obtained after
4 × 106 MC sweeps, at which time the modification factor is
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FIG. 4. (Color online) Reduction of the weight increment δη =
ln f while generating a weight function over the first 3.5 million MC
sweeps of an LSMC simulation of the hard-sphere butane model. Data
are shown for various values of p, the number of concurrent pairs of
chains periodically synchronizing the histogram hk and the tabulated
weight ηk . The initial reduction factor is f = 0.05. Simulations were
conducted with 192 chains at βP = 50.0.

reduced to ln f = 10−7. Convergence of the free-energy differ-
ence with respect to the number of MC sweeps subsequently
performed using these weights is presented in Table II. The
uncertainly of the computed �A should be taken in the context
of previous calculations by Malanoski and Monson [23] who
computed �A/NkBT = −0.4(3) in favor of phase III at
this density by means of thermodynamic integration from an
Einstein crystal reference state [30].

With the improved accuracy of our calculations, we are able
accurately resolve the free-energy difference between these
two phases as a function of density. Calculations of the free-
energy difference were performed at densities of ρ = 0.50,
0.51, and 0.52, each using at least 2 × 107 MC sweeps with 24
walkers and 192 butane molecules. The Helmholtz free-energy
difference between phases I and III reverses over this range.
Linear regression suggests a transition at ρ = 0.518. A final
LSMC simulation was performed at this density, yielding
the double-peaked histogram P (M) shown in Fig. 5. The
corresponding free-energy difference is �A/NkBT = 0.005.
This difference from zero is comparable to the finite-size
error established in Table II. Combining these two sources
of uncertainty with the gradient of the extrapolated fit (inset
of Fig. 5), we report the density at which phase III becomes
thermodynamically preferable to phase I as ρ = 0.518(1).

TABLE II. Convergence with run length and system size of the
Helmholtz free-energy difference between phases I and III of the
hard-sphere butane model at a reduced density of ρ = 0.5. Negative
values favor phase I.

MC sweeps N �A/NkBT

1 × 105 120 −0.08(5)
1 × 106 120 −0.15(2)
1 × 107 120 −0.157(6)
5 × 107 120 −0.154(3)
3 × 107 192 −0.172(3)
2 × 107 250 −0.174(1)

Ref. [23] 250 −0.4(3)
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FIG. 5. Histogram of M near the phase I to III transition at ρ =
0.518 for 192 chains. The inset shows the variation in free energy with
ρ and a fit (dashed line) to the free energies computed at ρ = 0.5,
0.51, and 0.52 (black circles). The free energy difference computed at
ρ = 0.518 is shown as a square. Error bars on computed free energies
are comparable to the symbol size.

We now return to the uncertainly in our result due to the
use of a particular set of cell parameters to realize a target
density. To estimate this, we have repeated the calculation of
�A at ρ = 0.5 using unit cell parameters which differ from the
averages used to compute data in Table II by between one and
two standard deviations, while maintaining exactly the same
density. The resulting free-energy difference is �A/NkBT =
0.165(1) suggesting an additional source of error no bigger
than 0.007, and certainly much smaller than this when using
averaged cell parameters within one standard error of the mean.
This does necessitate an upward revision of the uncertainly in
the transition density.

IV. CONCLUSION

We have demonstrated that the highly accurate LSMC
method can be applied to the study of organic crystals in
which the molecules possess both rotational and internal
conformational degrees of freedom subject to constraints.
By abandoning any geometric interpretation of the lattice
transformation move, the application of LSMC to any system
is straightforward provided suitable generalised coordinates
can be devised.

In the case of the linked hard-sphere model of Ref. [24], we
have used LSMC to locate a (previously unreported) transition
between phases I and III on increasing density, and propose this
as a benchmark problem for free-energy methods in the context
of model molecular solids. When combining this information
with previously published data [27], one can assert that this
transition lies at higher pressures than the equilibrium between
phase I and the fluid, but lower than the pressure at which phase
III will coexist with the metastable fluid. This is hence an ideal
model for studying polymorph selection during crystallization
under compression.

While analogous to a phase transition in butane we stress
that the present model does not correctly capture the plastic
nature of the phase I crystal, lacking rotational freedom about

the end-to-end axes of the molecules. If this freedom could
be captured within a modified model, the expected result
would be an increase in the phase I to phase III transition
pressure to offset the greater entropic stability of the plastic
crystal phase. Sampling rare transitions between molecular
orientations which occur only in one lattice presents an
additional challenge to LSMC, which we defer to future work.
We also note that the transition from phase III to phase I
in actual butane can be purely temperature induced, whereas
the present model is athermal. Nonetheless, the trend of the
favoring the less open structure at higher density or pressure
is correctly reproduced as would be expected.

We have not reported the computation of Gibbs free-energy
differences in the butane system. Attempts to do so have
identified a particular implementation issue arising when
performing LSMC using two cells of hard particles which
significantly differ in volume and shape at constant pressure.
To satisfy a detailed balance, the probability of accepting a
lattice switch between two crystals of different volume must
be

P (o → n) = exp [−βP (Vn − Vo) − N ln (Vn/Vo)] . (4)

In the case of the difference cell shapes, a synchronized
change in simulation cell vectors leads to different changes
in volume of the two simulation boxes, and may result in
initially similar volumes diverging as one samples the currently
active crystal. Identifying (and biasing to sample) gateway
states purely by means of Eq. (2) will hence fail, as the
set of states visited at M = 0 becomes dominated by those
possessing volumes for which Eq. (4) is negligible. For soft
particles, where Eq. (2) is replaced by the difference in lattice
energies at the current relative coordinates, this problem is
simply circumvented by subtracting the exponent of Eq. (4)
from the overlap parameter such that values of zero once
again correspond only to configurations where the lattice
switch has a high probability of acceptance (see, for example,
Ref. [31]). In the case of hard particles as studied here, this
would result in sufficiently large and enthalpically favorable
volume differences offsetting a non-zero number of overlaps
in the passive phase, leading to nonphysical sampling upon
accepting a switch. Similar arguments preclude the use of
separate branches for the weight function depending on which
phase is currently active, as suggested for soft crystals of
substantially differing volume by Jackson et al. [18]. As our
interest in extending LSMC is motivated primarily by soft
coarse-grained models for polymorphic molecular solids [32],
we do not pursue alternative solutions to this issue here.

We acknowledge that the length of MC simulations reported
in this paper would be intractably expensive if applied to
detailed atomistic models with explicit electrostatics (possibly
incorporating multipole interactions). The LSMC method is
hence best viewed as a complement to existing methods based
on thermodynamic integration or lattice dynamics, for use
where high accuracy is desirable. For example, in coarse-
grained models of polymorphic molecular solids, highly
accurate free-energy calculations are needed at reference
interaction parameters, before refining with thermodynamic
perturbation theory to match experimentally obtained calori-
metric data on the relative stability for polymorphs.
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