
PHYSICAL REVIEW E 90, 063309 (2014)

Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials
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We develop an approach to solving numerically the time-dependent Schrödinger equation when it includes
source terms and time-dependent potentials. The approach is based on the generalized Crank-Nicolson
method supplemented with an Euler-MacLaurin expansion for the time-integrated nonhomogeneous term. By
comparing the numerical results with exact solutions of analytically solvable models, we find that the method
leads to precision comparable to that of the generalized Crank-Nicolson method applied to homogeneous
equations. Furthermore, the systematic increase in precision generally permits making estimates of the
error.
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I. INTRODUCTION

Recent interest in accurate numerical solutions of the time-
dependent Schrödinger equation (TDSE) using a generalized
Crank-Nicolson (CN) approach [1,2], suggests further study
for cases where the Schrödinger equation has a nonhomoge-
neous term and where the Hamiltonian is time dependent. Over
the years the method of choice for solving the homogeneous
Schrödinger equation with time-independent interactions has
been the Chebyshev expansion of the propagator introduced in
1984 by Talezer and Kosloff [3]. However, comparison of this
method with the generalized CN approach, in which the time-
evolution operator is expressed as a Padé approximant [4],
demonstrates that the two approaches are similar in efficiency
and accuracy. Under different circumstances either method
may outperform the other [5]. One advantage of the Padé
approach is that it is explicitly unitary, whereas the Chebyshev-
expansion approach is not. Since the latter can give very precise
wave functions, however, this does not seem to be an issue in
practice.

The Chebyshev-propagator method has recently been
applied to nonhomogeneous Schrödinger equations [6] and
to time-dependent Hamiltonians [7]. Given that Padé-
approximant expression of the propagator yields comparable
results for homogeneous systems, this paper explores the
extension of the Padé-approximant method to solving non-
homogeneous equations. A natural sequitur is an approach to
solve equations in which the interaction is time dependent.
For such a case the time-dependent interaction term can be
considered to be the nonhomogenous term and the solution
can be obtained by self-consistent iterations. We also discuss
this approach. A decided advantage of the method discussed
in this paper is that the basic calculations are unitary whereas
the wave functions do not in general have time-independent
normalization. The calculations with unitary operators places
a strong constraint on the problem resulting in stable solutions.

*vandijk@physics.mcmaster.ca

Solutions of the TDSE form the basis of the study of a multi-
tude of nonrelativistic quantum systems. For stationary states,
such as bound states, one can reduce the problem to the de-
termination of solutions of the time-independent Schrödinger
equation. For detailed investigations of quasistable systems
or more general time-dependent systems one needs to solve
the TDSE. There are only a few analytically solvable models
(see, e.g., Refs. [8,9] and references contained in them),
but most realistic systems require numerical solutions. In an
earlier paper [1] (hereafter referred to as I) we presented an
accurate and efficient method for obtaining solutions of the
homogeneous Schrödinger equation in one dimension and for
uncoupled partial waves in three dimensions.

In some problems, however, it is necessary to solve the
nonhomogeneous Schrödinger equation. Among others, two
important classes of problems involve such equations. The first
concerns systems in which the Hamiltonian can be split into
parts, one of which leads to an exact analytic solution. Consider
the Hamiltonian of a system H = H0 + V1. The wave function
� describing the system is the solution of

(
i�

∂

∂t
− H

)
� = 0. (1.1)

If the wave function of the system with H0 instead of H

is �0, we can obtain � through a correction �1, so that
� = �0 + �1, by solving

(
i�

∂

∂t
− H0 − V1

)
�1 = V1�0, (1.2)

where (i� ∂
∂t

− H0)�0 = 0. This formulation is exact and may
also be useful when �0 is known analytically and V1 not
necessarily small.

The second class deals with problems associated with
reactions in which particles are created or annihilated. The
nonhomogeneity in the TDSE plays the role of a source or
sink of these particles. The bremsstrahlung associated with α

decay is an example of such a process [10,11].
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The interaction of particles with a strong radiation field can
be formulated in terms of a TDSE in which the Hamiltonian
is explicitly time-dependent [7,12]. Such systems can be
formulated as nonhomogeneous equations where the wave
function is a factor in the source term. The solution for
the nonhomogeneous equation can be adapted to solve such
equations.

In this paper we present a method of numerically obtain-
ing solutions to the nonhomogeneous Schrödinger equation,
which are accurate to an arbitrary order of the spatial and
temporal step size. The method, like that for the homogeneous
Schrödinger equation [1], proves to be capable of high
precision and efficiency.

In Sec. II we derive the numerical solution to the non-
homogeneous equation. We do this in stages to develop the
notation and eventually generalize the method to arbitrary
order in time. The approach is evaluated by comparison
to analytically known solutions in Sec. III. In Sec. IV the
numerical solutions when the interaction depends on time
is discussed and compared to known exact solutions. We
conclude with summary comments in Sec. V.

II. GENERALIZED CRANK-NICOLSON METHOD IN
THE PRESENCE OF A NONHOMOGENEOUS TERM

Let us consider the TDSE with a nonhomogeneous term.
Suppressing the dependence on spatial coordinate(s) we write
the equation as

(
i�

∂

∂t
− H

)
ψ(t) = N (t). (2.1)

For now we assume that the Hamiltonian H is independent of
time t . The homogeneous equation corresponding to Eq. (2.1)
has a solution, which can be written in terms of the time-
evolution operator, i.e.,

ψh(t + �t) = e−iH�t/�ψh(t). (2.2)

The nonhomogeneous equation has a particular solution

ψnh(t + �t) = − i

�
e−iH (t+�t)/�

∫ t+�t

t

eiHt ′/�N (t ′) dt ′.

(2.3)

The general solution is

ψ(t) = ψh(t) + ψnh(t) (2.4)

with the boundary condition value inserted such that ψ(t0) =
ψh(t0) = φ where φ is a normalized function of the spatial
coordinate(s). Thus the solution with the appropriate boundary
condition may be obtained by increasing t (starting at t0) by
steps equal to �t using

ψ(t + �t) = e−iH�t/�ψ(t)

− i

�
e−iH�t/�

∫ �t

0
eiHθ/�N (t + θ ) dθ. (2.5)

A. Trapezoidal rule

Using the trapezoidal rule for the integral in Eq. (2.5), we
obtain

ψ(t + �t) = e−iH�t/�ψ(t)

− i

�
e−iH�t/h �t

2
[eiH�t/�N (t + �t)

+N (t)] + O[(�t)3]. (2.6)

In the spirit of Moyer [13], we write

ψ(t + �t) + i�t

2�
N (t + �t)

= e−iH�t/�

(
ψ(t) − i�t

2�
N (t)

)
+ O[(�t)3]. (2.7)

Expanding the time-evolution operator to the lowest-order
unitary form, we obtain

ψ(t + �t) + i�t

2�
N (t + �t)

= 1 − i
2�

H�t

1 + i
2�

H�t

(
ψ(t) − i�t

2�
N (t)

)
+ O[(�t)3]. (2.8)

The expansion of the time-evolution operator and the trape-
zoidal rule both give an error term that is of third order in �t .
We rewrite this equation as(

1 + i

2�
H�t

)[
ψ(t + �t) + i�t

2�
N (t + �t)

]

=
(

1 − i

2�
H�t

)[
ψ(t) − i�t

2�
N (t)

]
+ O[(�t)3]. (2.9)

If we include the x dependence of ψ(t) and N (t) explicitly,
the equation is(
1 + i

2�
H�t

)[
ψ(x,t + �t) + i�t

2�
N (x,t + �t)

]

=
(

1 − i

2�
H�t

)[
ψ(x,t) − i�t

2�
N (x,t)

]
+ O[(�t)3],

(2.10)

and is similar to Eq. (2.5) of I. It can therefore be solved
numerically as outlined in Sec. II of I to any order of accuracy
in �x. We define

�(±)(x,t) = ψ(x,t) ± i�t

2�
N (x,t). (2.11)

The solution with a time advance of step �t is found by solving
the equivalent of Eq. (2.12) of I, i.e.,

A�
(+)
n+1 = A∗�(−)

n , (2.12)

where the matrix A is defined in I and the vector �(±)
n has

components ψj,n ± (i�t/2�)Nj,n. (As in I we use partitions
of x: x0,x1, . . . ,xj , . . . ,xJ with �x = xj − xj−1 and of t : t =
t0,t1, . . . ,tn, . . . with �t = tn − tn−1.) Since N (x,t) is a given
known function for all x and t , and ψ(x,t) is presumed known
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from the calculation of the previous step, ψ(x,t + �t) can
be determined from the calculated �

(+)
n+1. Thus we obtain a

solution, which has an error of O[(�x)2r ] for any integer r > 0
in the x dependence and of O[(�t)3] in the t dependence. (The
parameter r determining the order of the spatial integration is
defined in I.)

B. Improved integration over time

In order to obtain higher-order approximations to the time
evolution of the solution of the nonhomogeneous TDSE, we
use a quadrature of higher order than the trapezoidal rule
in Eq. (2.5). Let us consider the Euler-MacLaurin formula
[14, formula 23.1.31],

∫ �t

0
f (θ ) dθ = �t

2
[f (�t) + f (0)] −

M−1∑
k=1

B2k

(2k)!
(�t)2k[f (2k−1)(�t) − f (2k−1)(0)] − (�t)2M+1

(2M)!
B2Mf (2M)(η�t)

= �t

2
[f (�t) + f (0)] −

M−1∑
k=1

B2k

(2k)!
(�t)2k[f (2k−1)(�t) − f (2k−1)(0)] + O[(�t)2M+1], (2.13)

where 0 � η � 1. The Bi, i = 1,2, . . . are the Bernoulli numbers, i.e., B1 = 1/2,B2 = 1/6,B3 = 0,B4 = −1/30,B5 = 0,

B6 = 1/42,B7 = 0,B8 = −1/30, . . . . It should be noted that if f (θ ) is not a polynomial, the Euler-MacLaurin formula is
an asymptotic series [15, pg. 469].

The first term of the sum includes the next higher approximation compared to Eq. (2.6). We obtain

ψ(t + �t) = e−iH�t/�ψ(t) − i

�
e−iH�t/�

�t

2
[eiH�t/�N (t + �t) + N (t)]

+ i

�
e−iH�t/�

(�t)2

12

[
i

�
HeiH�t/�N (t + �t) + eiH�t/�N ′(t + �t) − i

�
HN (t) − N ′(t)

]
+ O[(�t)5], (2.14)

where the prime refers to differentiation with respect to t . Rearranging the equation we get

ψ(t + �t) + i�t

2�
N (t + �t) − i(�t)2

12�

[
i

�
HN (t + �t) + N ′(t + �t)

]

= K
(2)
2 K

(2)
1

{
ψ(t) − i�t

2�
N (t) − i(�t)2

12�

[
i

�
HN (t) + N ′(t)

]}
+ O[(�t)5], (2.15)

where K (M)
s is defined in I as [15]

K (M)
s ≡ 1 + (iH�t/�)/z(M)

s

1 − (iH�t/�)/z̄(M)
s

. (2.16)

The order in which the operators K (M)
s are applied is not

important since they commute. We define

�(+) ≡ �n+1

= ψn+1 + i�t

2�
Nn+1 − i(�t)2

12�

[
i

�
HNn+1 + N ′

n+1

]
,

(2.17)

and

�(−) ≡ �n

= ψn − i�t

2�
Nn − i(�t)2

12�

[
i

�
HNn + N ′

n

]
. (2.18)

Thus

�n+1 = K
(2)
2 K

(2)
1 �n. (2.19)

We use the known ψn ≈ ψ(x,t) to calculate �n from
Eq. (2.18). Then we iteratively obtain �(+) from �(−) à la

the method described in I, i.e., �n+1/2 = K
(2)
1 �n and �(+) ≡

�n+1 = K
(2)
2 �n+1/2. From Eq. (2.17) we obtain ψn+1 ≈

ψ(x,t + �t). The conversion from �(±) to ψ and vice
versa occurs before and after the sequence of the iterative
applications of the K (M)

s operators.
For known N (x,t) Eq. (2.15) can be solved in principle

using the method described in I. Two new features are the
operation of H on N and the time differentiation of N (x,t).
The function N (x,t) can be discretized in the same way as
ψ(x,t) so that we form discrete elements Nn,j ≈ N (xj ,tn). In
the discretized form

(H�n)j = − �
2

2m(�x)2

r∑
k=−r

c
(r)
k ψn,j+k + Vjψn,j , (2.20)

where

e
(r)
k = − �

2

2m(�x)2
c

(r)
k ,

f
(r)
j = − �

2

2m(�x)2
c

(r)
0 + Vj = e

(r)
0 + Vj . (2.21)
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The coefficients c
(r)
k are defined as in I. The matrix form of H is (suppressing the superscripts (r))

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 e1 e2 · · · er 0
e1 f1 e1 · · · er−1 er

e2 e1 f2 · · · er−2 er−1

...
...

...
...

...
er er−1 er−2 · · · fr e1

0 er er−1 · · · e1 fr+1

. . .
fJ−1 e1

e1 fJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.22)

The time partial derivative of N (x,t) is straightforward if N is an analytically known function of x and t . If the function is
given in a discretized form, say Nn,j , accurate time derivatives may pose a challenge, especially the higher-order ones.

C. Integration over time with arbitrary precision.

For the general case, we start again with Eq. (2.5),

ψ(t + �t) = e−iH�t/�ψ(t) − i

�
e−iH�t/�

∫ �t

0
eiHθ/�N (t + θ ) dθ. (2.5)

Using the Euler-MacLaurin series (2.13), we obtain

ψ(t + �t) = e−iH�t/�ψ(t) − i�t

2�
e−iH�t/�[eiH�t/�N (t + �t) + N (t)]

+ i

�
e−iH�t/�

M−1∑
k=1

B2k

(2k)!
(�t)2k

{
∂2k−1

∂θ2k−1
[eiHθ/�N (t + θ )]|θ=�t − ∂2k−1

∂θ2k−1
[eiHθ/�N (t + θ )]|θ=0

}
(2.23)

We note that θ is a time so that [H, ∂
∂θ

] = 0. We can simplify the partial derivatives,

∂2k−1

∂θ2k−1
eiHθ/�N (t + θ ) = eiHθ/�

(
i

�
H + ∂

∂θ

)2k−1

N (t + θ ). (2.24)

Using the binomial theorem, we obtain

∂2k−1

∂θ2k−1
eiHθ/�N (t + θ )

∣∣∣∣
θ=�t

= eiH�t/�

2k−1∑
l=0

(
2k − 1

l

) (
i

�
H

)2k−1−l

N (l)(t + �t) , (2.25)

where N (l) is the lth partial derivative with respect to θ . Similarly

∂2k−1

∂θ2k−1
eiHθ/�N (t + θ )

∣∣∣∣
θ=0

=
2k−1∑
l=0

(
2k − 1

l

) (
i

�
H

)2k−1−l

N (l)(t). (2.26)

Inserting the last two equations in Eq. (2.23) we get

ψ(t + �t) = e−iH�t/�ψ(t) − i�t

2�
e−iH�t/�[eiH�t/�N (t + �t) + N (t)] + i

�
e−iH�t/�

M−1∑
k=1

B2k

(2k)!
(�t)2k

×
{

eiH�t/�

2k−1∑
l=0

(
2k − 1

l

)(
i

�
H

)2k−1−l

N (l)(t + �t) −
2k−1∑
l=0

(
2k − 1

l

) (
i

�
H

)2k−1−l

N (l)(t)

}
. (2.27)

We collect items evaluated at t + �t on the left side of the equation.

ψ(t + �t) + i�t

2�
N (t + �t) − i

�

M−1∑
k=1

B2k

(2k)!
(�t)2k

2k−1∑
l=0

(
2k − 1

l

) (
i

�
H

)2k−1−l

N (l)(t + �t)

= e−iH�t/�

[
ψ(t) − i�t

2�
N (t) − i

�

M−1∑
k=1

B2k

(2k)!
(�t)2k

2k−1∑
l=0

(
2k − 1

l

)(
i

�
H

)2k−1−l

N (l)(t)

]
(2.28)
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We generalize the vector functions �(±)
n by letting

�(±)(x,t) = ψ(x,t) ± i�t

2�
N (x,t) − i

�

M−1∑
k=1

B2k

(2k)!
(�t)2k

2k−1∑
l=0

(
2k − 1

l

) (
i

�
H

)2k−1−l

N (l)(x,t) + O[(�t)(2M+1)]. (2.29)

With M = 2, Eq. (2.28) and following are consistent with
Eq. (19) of Ref. [16] with error of O[(�t)5].

We now express the time-evolution operator as (see Ref. [1])

e−iH�t/� =
M∏

s=1

K (M)
s + O[(�t)2M+1]. (2.30)

Since Eq. (2.28) is equivalent to

�(+) ≡ �n+1 = e−iH�t/��n, (2.31)

where �n ≡ �(−), we write the relation as

�n+1 =
M∏

s=1

K (M)
s �n. (2.32)

Defining

�n+s/M ≡ K (M)
s �n+(s−1)/M, (2.33)

we solve for �n+1 recursively, starting from

�n+1/M = K
(M)
1 �n. (2.34)

Assuming that �(−) ≡ �n is known from ψ(x,t) and N (x,t),
we determine �n+1/M from Eq. (2.34), which has a form
similar to that of Eq. (2.12). This is repeated to obtain in succes-
sion �n+2/M,�n+3/M, . . . ,�n+(M−1)/M,�n+1 ≡ �(+). Since
the operators K (M)

s commute, they can be applied in any order.
Note that ψn+1,j can be extracted from �n+1 and �n can be
constructed from ψn,j . In each case it is assumed that N (x,t)
and its time derivatives are known. The �

(+)
n+1 is obtained from

�(−)
n by means of a unitary operator. Hence the normalization

of the two functions is the same, although this is in general not
so for ψ . Nevertheless the integration process is stable.

Let us return to the time evolution within a step �t ,

�n+s/M = K (M)
s �n+(s−1)/M =

s∏
s ′=1

K
(M)
s ′ �n. (2.35)

The form of the operator is1

K (M)
s = 1 + (iH�t/�)/z(M)

s

1 − (iH�t/�)/z̄(M)
s

(2.36)

with z(M)
s a root of the numerator of the [M/M] Padé

approximant of ez. In general z(M)
s is a complex number.

Nevertheless K (M)
s is a unitary operator. In effect K (M)

s

increases the time by a complex increment −2�t/z(M)
s . As

a check on the time increment formula one can show that the

1There is an error in Ref. [1]. The plus and minus signs in Eq. (3.4)
of that paper should be interchanged.

roots z(M)
s for a particular M obey the relationship

M∑
s=1

1

z
(M)
s

= −1

2
. (2.37)

It is interesting to note that the times tn, tn+1 = tn + �t ,
tn+2 = tn + 2�t , etc., are real, but the intermediate times
tn − 2�t

∑s
s ′=1(1/z

(M)
s ′ ) are complex. The times between tn

and tn+1 can be denoted as

tn+s/M = tn − 2�t

s∑
s ′=1

1

z
(M)
s

, s = 1,2, . . . ,M. (2.38)

We define the dimensionless time increment

�τ (M)
s ≡ tn+s/M − tn

�t
= −2

s∑
s ′=1

1

z
(M)
s ′

. (2.39)

In Fig. 1 we plot �τs on the complex time plane.
The recursion (2.33) effectively gives us functions �n+s/M ,

which are related to the wave function at complex times; these
wave functions need not be calculated since the iteration only
involves the �n+s/M . As we go through the M operations of
the K (M)

s we make, as it were, an excursion away from the real
axis in the complex-time plane, but after the Mth operation
we are back on the real axis. By placing the z(M)

s in different
order we can follow different paths from the initial to final
points; those paths however are not all as smooth. One possible
path is one which involves complex conjugates next to each
other; then every other point lies on the real axis and points
in between make excursions off the real axis. However, since
the operators K (M)

s commute the final point and time advance
will be the same after completing a full time step �t . The
significance of this comment is that even when N (x,t) is a real

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

Im
(Δ

τ s(M
) )

Re(Δτs
(M))

Δτs
(20)

-2/zs
(20)

Δτs
(10)

Δτs
(4)

FIG. 1. (Color online) The �τ (M)
s for each s = 1, . . . ,M from

left to right plotted as dots on the complex plane. In this graph
M = 20, 10, and 4. The individual contributions for M = 20, namely
−2/z(20)

s , are plotted as green dots.
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quantity with real arguments, in the calculation N and t need
to be complex [see Eq. (2.29)].

As a final task we need to evaluate N (x,t) and its partial
time derivatives. Even if N (x,t) is known analytically, only for
the simplest form can one write down the time derivative of
arbitrary order. There may be problem-specific ways in which
any-order time derivative can be obtained in a straightforward
manner for more complex situations.

D. Evaluation of the Bernoulli numbers

The Bernoulli polynomials Bn(x) are defined through the
generating function [14, formula 23.1.1]

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (2.40)

The Bernoulli numbers are Bn = Bn(0). Some special values
are B0 = 1, B1 = −1

2 , and B2n+1 = 0 for n = 1,2, . . . . The
remaining Bernoulli numbers can calculated using the Fourier
expansion for the Bernoulli polynomial [14, formula 23.1.16]

Bn(x) = −2
n!

(2π )n

∞∑
k=1

cos
(
2πkx − 1

2πn
)

kn
, (2.41)

which converges when n > 1, 0 � x � 1. The Bernoulli
numbers occur when x = 0 so that

B2n = −2(−1)n
(2n)!

(2π )2n

∞∑
k=1

1

k2n
. (2.42)

The following relations, due to Ramanujan, provide an efficient
method for calculating Bernoulli numbers for even m:
for m ≡ 0 mod 6,(

m + 3

m

)
Bm = m + 3

3
−

m/6∑
j=1

(
m + 3

m − 6j

)
Bm−6j ; (2.43)

for m ≡ 2 mod 6,(
m + 3

m

)
Bm = m + 3

3
−

(m−2)/6∑
j=1

(
m + 3

m − 6j

)
Bm−6j ; (2.44)

and for m ≡ 4 mod 6,(
m + 3

m

)
Bm = −m + 3

6
−

(m−4)/6∑
j=1

(
m + 3

m − 6j

)
Bm−6j .

(2.45)

As we observe from Table I, the Bernoulli numbers are
increasing in magnitude with n. This is a manifestation of the
asymptotic nature of the Euler-MacLaurin series. One expects
the convergence of the series in Eq. (2.29) to depend on the
magnitude of �t .

E. Errors

In Ref. [1] we analyze truncation errors in the solution wave
function obtained from the homogeneous equations. These are
expressed as

e(r) = C(r)(�x)2r and e(M) = C(M)(�t)2M+1, (2.46)

TABLE I. The Bernoulli coefficients Bn.

n Bn n Bn

0 1.00000×10+00 18 5.49712×10+01

2 1.66667×10−01 20 −5.29124×10+02

4 −3.33333×10−02 22 6.19212×10+03

6 2.38095×10−02 24 −8.65803×10+04

8 −3.33333×10−02 26 1.42552×10+06

10 7.57576×10−02 28 −2.72982×10+07

12 −2.53114×10−01 30 6.01581×10+08

14 1.16667×10+00 32 −1.51163×10+10

16 −7.09216×10+00 34 4.29615×10+11

for the spatial and temporal dependencies. The constants C(r)

and C(M) are expected to be slowly varying functions of r and
M , respectively. The variables x and t are independent. When
a particular precision of the wave function has been achieved
in one variable, we can increase the order of approximation
for the other variable and will reach that precision, saturating
the process; the results will continue to be identical regardless
how much more the order of the second variable is increased.
This is shown in Refs. [4,17].

For the solutions of the nonhomogeneous equations we
have taken the same orders of approximation for the wave
function and for the Euler-MacLaurin expansion. Depending
on the particular equation, it may be more efficient to consider
different orders. For instance, if N (x,t) is much slower varying
function of x and t than ψ(x,t), lower orders in the Euler-
MacLaurin expansion may be appropriate. In our examples
we do not know that ahead of time, so we use the same orders.
We do emphasize, however, that the constants C(M) and C(r)

depend on the higher-order partial derivatives of the wave
function and the source term, and hence are model dependent.

When the exact solution is known the error of the numerical
calculation at final time t1 can be obtained using the formula

(e2)2 =
∫ xJ

x0

dx |ψ(x,t1) − ψexact(x,t1)|2. (2.47)

A small value of e2 is indicative of near equality of both the
modulus and the phase of ψ and ψexact. For this integral, and
other integrals such as the normalization, we use the formula

∫ xJ

x0

dx f (x) = �x

J∑
j=0

f (xj ). (2.48)

Peters and Maley [18] have shown that this formula is an
approximation to the integral to O[(�x)(2r+1)] provided one
includes correction terms, which involve f (xi) where i =
0,1, . . . ,r and i = J − r,J − r + 1, . . . ,J . Since the correc-
tion terms depend only on the wave function near the extreme
ends of the spatial range, they do not contribute significantly
in our examples since the wave function is (nearly) zero there.

In cases for which the exact solution is not known we can
estimate the error by comparing the results for M and r with
those for M + 1 and r + 1. To that end we define the quantity

(ηM,r )2 =
∫ xJ

x0

dx|ψ (M,r)(x,t1) − ψ (M+1,r+1)(x,t1)|2. (2.49)
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Here the exact solution in Eq. (2.47) is approximated by
ψ (M+1,r+1)(x,t).

III. NUMERICAL STUDIES

A. Example 1: Nonspreading wave packet

The examples for the numerical studies are chosen so that
they have exact analytic solutions to which the numerical
solutions can be compared. They do not correspond in detail to
actual physical systems. Hopefully once the numerical method
is validated, the method can be used for realistic systems.

Nonspreading or nondispersive wave packets have been
discussed and observed recently [19]. Such Michelangelo
packets rely on an absorption process that removes the
unwanted spreading part of the wave function so that the
packet retains its width and shape in coordinate space. Earlier
nonspreading wave packets in free space, that are expressed
in terms of Airy functions, were discussed by Berry and
Balazs [20,21]. Somewhat related are the diffraction-free
beams of particles for which there is no spreading in the
transverse direction [22,23].

Given the results of our calculations, the stationary non-
spreading wave packet provides as rigorous a test for the
method as the traveling free (spreading) wave packet. Thus in
order to test the numerical procedure we consider the stationary
nonspreading wave packet,

φ(x,t) = (2πσ 2)−1/4 exp

[
− (x − xinit)2

(2σ )2

+ ik0(x − xinit) − i�

2m
k2

0 t

]
, (3.1)

where xinit is the expectation value of the position of the wave
packet at time zero. This wave packet is a solution of(

i�
∂

∂t
+ �

2

2m

∂2

∂x2

)
φ(x,t) = N (x,t) (3.2)

when

N (x,t) = �
2{(x − xinit)2 − 2σ 2[1 + 2ik0(x − xinit)]}

8mσ 4
φ(x,t).

(3.3)

This nonspreading wave packet is also a solution of the
time-dependent homogeneous Schrödinger equation with the
potential function

V (x) = �
2

8mσ 4
{(x − xinit)

2 − 2σ 2[1 + 2ik0(x − xinit)]}.
(3.4)

In the example we used the same parameters as for the free
traveling wave packet studied in I, and earlier in Ref. [24], i.e.,
σ = 1/20, k0 = 50π , x0 = −0.5, xJ = 1.5, and xinit = 0.25
with the units chosen so that � = 2m = 1. We set �t = 2(�x)2

and allow as much time as would be required for the free
traveling packet to move from xinit = 0.25 to around 0.75.
In our case the packet does not move at all, but that does
not detract from the validity of the test, since inaccurate
calculations show definite movement of the packet. The results
are tabulated in Table II. The CPU time is the approximate

TABLE II. Summary of computational parameters and errors
for example 1 with k0 = 50π . The quantity τ is the CPU time
(processor A) in seconds and ν = (�x)2.

M r J �t e2 ηM,r τ

1 1 2000 2ν 5.83×10−2 5.82×10−2 4.5
2 2 2000 1.76×10−4 1.75×10−4 15
3 3 2000 7.10×10−7 7.06×10−7 44
4 4 2000 3.19×10−9 3.18×10−9 110
5 5 2000 1.59×10−11 1.54×10−11 238
6 6 2000 5.66×10−13 9.35×10−14 457

2 19 260 2ν 1.98×100 1.95×100 .20
4 19 260 5.13×10−3 4.99×10−3 .86
6 19 260 2.90×10−6 2.85×10−6 2.5
8 19 260 1.71×10−9 1.39×10−9 5.7

10 19 260 9.54×10−10 6.54×10−10 .44 Ka

12 19 260 9.55×10−10 6.54×10−10 .75 Ka

14 19 260 9.55×10−10 6.55×10−10 1.2 Ka

18 19 260 ν 9.55×10−10 5.96×10−10 134

aCalculation done in quadruple precision with processor B.

time of computation and depends on the computer. For
the same computer the CPU times indicate relative times
of computation. We used two different computers, labeled
as processor A (default, double precision) or B. Times for
different computers should not be compared.

We graph the errors as a function of M for given values of
r in Fig. 2. For this graph we use the parameters of Table II
with 2ν and J = 200. The plateaus in the graph indicate a
convergence of the error to a limit value. The estimated error
in this region tends to be smaller than the exact error. However
the two are of the same order of magnitude and, for the cases
shown, the estimated error is no smaller than one third the
exact error. This graph also indicates an approach to estimating
the error when the exact solution is not known. If one is in
the region of the plateaus, increasing M will not change the
error, but increasing r will move one to a lower plateau. In a
subsequent section we see similar plateaus for constant M as
r is varied. So to estimate the error by increasing both M and
r covers both instances.

10-6

10-5

10-4

10-3

10-2

10-1

10-0

 0  2  4  6  8  10  12  14

e 2
;η

M
,r

M

e2: r = 6
η: r = 6

e2: r = 11
η: r = 11
e2: r = 15
η: r = 15
e2: r = 19
η: r = 19

FIG. 2. (Color online) The errors (exact and estimated) for the
calculations with the parameters of Table II including �t = 2ν and
J = 200. The η in the legend of the graph refers to ηM,r .

063309-7



W. VAN DIJK AND F. M. TOYAMA PHYSICAL REVIEW E 90, 063309 (2014)

TABLE III. Same calculation as of Table II with k0 = 1.

M r J �t e2 ηM,r τ

1 1 2000 2ν 1.25×10−5 1.25×10−5 4.5
2 2 2000 1.53×10−9 1.53×10−9 15
3 3 2000 3.04×10−13 3.04×10−13 2.3 Ka

4 19 260 2ν 1.90×10−13 1.90×10−13 43a

6 19 260 6.38×10−18 6.38×10−18 .11 Ka

8 19 260 1.01×10−21 1.89×10−21 .24 Ka

10 19 260 1.16×10−20 6.39×10−20 .44 Ka

aCalculation done in quadruple precision with processor B.

We also considered a case with k0 = 1, since that involves
a smaller kinetic energy and a smaller (more reasonable) time
derivative of N (x,t). The results are given in Table III.

We expect the same qualitative behavior for smaller values
of k0. Such values of k0 may make the differential equation
less stiff and thus provide precise results with less effort.
By judicious choice of the time and space discretization and
orders of approximation one can obtain extremely accurate
results. For this example one needs values of M > 4, whereas
the traditional CN approach corresponds to M = 1. We
note, however, that to obtain good results when M � 8 the
calculation need to be done in quadruple precision indicating
that a substantial loss of significant figures in the computation
occurs. The likely reason for this is the need to raise the
Hamiltonian matrix to higher powers.

B. Example 2: Coherent oscillations

In this example we construct a nonhomogeneous
Schrödinger equation from the one-dimensional harmonic

oscillator,

− �
2

2m

∂2

∂x2
φnh(x,t) + 1

2
Kx2φnh(x,t) = i�

∂

∂t
φnh(x,t).

(3.5)

The coherent oscillating wave packet, that is an exact solution,
is

φnh(x,t) = α1/2

π1/4
exp

[
−1

2
[ξ − ξ0 cos(ωt)]2

− i

(
1

2
ωt + ξξ0 sin(ωt) − 1

4
ξ 2

0 sin(2ωt)

)]
,

(3.6)

where ω = √
K/m, α = (mK/�

2)1/4, ξ = αx, and ξ0 = αa.
The quantity a is the initial position of the wave packet. We
can also consider φnh(x,t) to be a particular solution of the
nonhomogeneous Schrödinger equation[

i�
∂

∂t
+ �

2

2m

∂2

∂x2

]
φ(x,t) = N (x,t) (3.7)

where

N (x,t) = 1
2Kx2φnh(x,t). (3.8)

The general solution of Eq. (3.7) is the general solution of the
associated homogeneous equation plus a particular solution of
the nonhomogeneous equation. The associated homogeneous
equation is the free-particle equation which has as solution the
free-particle wave packet

φh(x,t) = (2πσ 2)−1/4[1 + i�t/(2mσ 2)]−1/2 exp

{−(x − xinit)2/(2σ )2 + ik0(x − xinit) − i�k2
0 t/(2m)

1 + i�t/(2mσ 2)

}
. (3.9)

Thus a solution of Eq. (3.7) is the superposition of the traveling
free wave packet and oscillating coherent wave packet, i.e.,

φ(x,t) = φh(x,t) + φnh(x,t). (3.10)

An important consideration is the fact that we need to
calculate the partial time derivative of various orders of the
function N (x,t). Whereas in principle function (3.8) can
be differentiated in closed form with respect to time an
arbitrary number of times, such repeated differentiation is
not practical because of the complexity of the dependence of
φnh as a function of time. Numerical differentiation becomes
inaccurate quickly as the order increases. However, φnh(x,t)
satisfies Eq. (3.5), which we can write as

Hnhφnh(x,t) = i�
∂

∂t
φnh(x,t). (3.11)

Thus we obtain the lth time derivative of N as

∂l

∂t l
N (x,t) = 1

2
Kx2 ∂l

∂t l
φnh(x,t)

= 1

2
Kx2

(−i

�

)l

H l
nhφnh(x,t). (3.12)

The lth partial derivative obtained in this way is quite accurate
and is (can be) obtained from the numerical wave function.

For the initial test we choose the parameters of I: ω = 0.2,
a = 10, x0 = −80, xJ = 80 and final time t1 = 10π , where the
units are chosen such that � = m = 1. From these parameters
we determine K and α. For the free wave packet we choose
σ = 1/α, k0 = 0 and xinit = 0. Thus the free wave packet
part of the wave function is stationary but is dispersing. The
interference of the two wave packets can create significant
oscillations in the overall wave function. Figure 3 shows
the components and the total wave function at t = 0 and at
t = 2.5π .

The results of the comparison of the exact and the numerical
solutions are displayed in Table IV.

IV. TIME-DEPENDENT HAMILTONIAN

In this section we examine time-dependent Hamiltonians,
or rather time-dependent potential functions. The method of I
does not apply since it was assumed that the operators K (M)

s

for different values of s commute. That is no longer the case if
H = H (t) is a function of time. A more fundamental way of
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FIG. 3. (Color online) The wave functions of example 2 at
(a) t = 0 and at (b) t = 2.5π . The units used are such that � = m = 1.

seeing that is that H in the time-evolution operator is a function
of time. Successive operations of the evolution operators
at different times introduce nonzero commutators of the

TABLE IV. The computational parameters and errors for example
2. The common parameters are ω = 0.2, a = 10, x0 = −80, xJ = 80,
t1 = 10π , dt = π/20, σ = 1/α, k0 = 0, and xinit = 0. The units used
are such that � = m = 1.

M r J e2 ηM,r τ

1 1 8000 1.67×10−1 2.04×10−1 5.7
2 2 4000 7.21×10−4 8.78×10−4 10
2 2 2000 8.54×10−4 1.04×10−3 3.7
2 2 1000 3.08×10−3 3.69×10−3 1.7
4 4 1000 1.79×10−6 2.17×10−6 14
6 6 1000 2.34×10−9 2.74×10−9 58
8 8 1000 4.40×10−12 5.11×10−12 6.9 Ka

10 10 1000 3.33×10−14 1.26×10−14 16 Ka

12 12 1000 3.11×10−14 4.30×10−17 32 Ka

10 10 800 8.57×10−13 9.59×10−13 12 ka

10 10 300 5.69×10−5 3.80×10−5 110
15 15 300 1.59×10−6 9.17×10−7 560
19 19 300 1.44×10−7 7.54×10−8 1400

aCalculation done in quadruple precision with a different CPU, i.e.,
processor B.

Hamiltonian at different times. In Ref. [16] the authors suggest
an approach based on the Magnus expansion (see Ref. [25] for
a review), where one can in principle systematically obtain
solutions with an error to O[(�t)2M ], but beyond M = 2 the
method becomes cumbersome (see also Ref. [26]). Our attempt
involves considering the time-dependent potential term as the
nonhomogeneous term in the equation, and then extract the
wave function at the end of the time step from �(+) by iteration.

We proceed as follows. Suppose the equation to be solved is[
i�

∂

∂t
− H0 − V (x,t)

]
ψ(x,t) = 0, (4.1)

where H0 could include another potential term which is
independent of t . We can rewrite the equation as(

i�
∂

∂t
− H0

)
ψ(x,t) = V (x,t)ψ(x,t)

≡ N [x,t ; ψ(x,t)]. (4.2)

We explicitly indicate the dependence of N on ψ . At the
beginning of a time interval ψ(x,t) is known and we construct
�(−)(x,t) using Eq. (2.29). In the process we need the time
derivatives of N [x,t ; ψ(x,t)] = V (x,t)ψ(x,t). We obtain
them from

∂l

∂t l
N [x,t ; ψ(x,t)] =

l∑
l′=0

(
l

l′

)
∂l−l′V

∂t l−l′
∂l′ψ

∂tl
′ . (4.3)

The partial time derivatives of V (x,t) need to be calculated
analytically, but those of ψ can be obtained using the
following approach. We rewrite Eq. (4.1)

∂

∂t
ψ(x,t) = A(x,t)ψ(x,t), (4.4)

where A(x,t) = (− i
�

)[H0(x) + V (x,t)]. We form a recursion
to obtain the lth partial derivative with respect to t , i.e.,

∂l

∂t l
ψ(x,t) = fl(A)ψ(x,t) (4.5)

with

f0 = 1 and fl(A) = ∂fl−1

∂t
+ fl−1(A)A, (4.6)

for l = 1,2,3, . . . . The first five functions fl(A) are

f1(A) = A

f2(A) = A2 + ∂A

∂t

f3(A) = A3 + A
∂A

∂t
+ 2

∂A

∂t
A + ∂2A

∂t2

f4(A) = A4 + A2 ∂A

∂t
+ 2A

∂A

∂t
A + 3

∂A

∂t
A2 + A

∂2A

∂t2

+ 3

(
∂A

∂t

)2

+ 3
∂2A

∂t2
A + ∂3A

∂t3

f5(A) = A5 + A3 ∂A

∂t
+ 2A2 ∂A

∂t
A + 3A

∂A

∂t
A2 + 4

∂A

∂t
A3

+A2 ∂2A

∂t2
+ 3A

∂2A

∂t2
A + 3A

(
∂A

∂t

)2

+ 4
∂A

∂t
A

∂A

∂t
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+ 8

(
∂A

∂t

)2

A + 6
∂2A

∂t2
A2 + A

∂3A

∂t3
+ 4

∂A

∂t

∂2A

∂t2

+ 6
∂2A

∂t2

∂A

∂t
+ 4

∂3A

∂t3
A + ∂4A

∂t4
. (4.7)

Any order of the derivative of the wave function can be
obtained, but in practice the formulas become increasingly
more onerous to work with as l increases.

After one time increment we obtain �(+)(x,t) at the
incremented time. From it we extract the new ψ(x,t). (Note
that t → t + �t , but for convenience we write t .) Thus

ψ(x,t) = �(+)(x,t) − i�t

2�
N [x,t ; ψ(x,t)] + F [x,t ; ψ(x,t)],

(4.8)

where

F (x,t ; ψ(x,t)) =
M−1∑
k=1

B2k

2k
(�t)2k

2k−1∑
l=0

1

(2k − 1 − l)!l!

(
i

�

)2k−l

×H 2k−1−l
0 N (l)[x,t ; ψ(x,t)] (4.9)

for M � 2. Note that F [x,t ; ψ(x,t)] is at least O[(�t)2]. Thus
we can write

ψ(x,t) = �(+)(x,t) + F [x,t ; ψ(x,t)]

1 + i�t
2�

V (x,t)
. (4.10)

We solve this equation iteratively by making an initial
approximation

ψ (0)(x,t) = �(+)(x,t) + F [x,t ; ψ(x,t − �t)]

1 + i�t
2�

V (x,t)
, (4.11)

and evaluating successively

ψ (i+1)(x,t) = �(+)(x,t) + F [x,t ; ψ (i)(x,t)]

1 + i�t
2�

V (x,t)
, i = 0,1, . . . .

(4.12)

We continue the process until e(i) defined as

(e(i))2 =
∫ xJ

x0

dx |ψ (i+1)(x,t) − ψ (i)(x,t)|2 (4.13)

is smaller than a prescribed amount. In other words we look
for the convergence

lim
i→∞

ψ (i)(x,t) = ψ(x,t). (4.14)

Example 3: Time-dependent oscillator

As a last example we will consider the harmonic oscillator
with time-dependent frequency [27] (see also Ref. [28] and
references contained in it). The potential has the form

V (x,t) = 1
2mω2(t)x2 (4.15)

with ω2(t) = ω2
0(1 − f e−μt ) where f is a positive proper

fraction and μ a positive number. Systems with such potentials
are known to have analytic solutions and we will compare the
numerical solution to the analytical one. The time dependence
of V (x,t) is of such a nature that partial derivatives with respect
to time can easily be obtained. On the other hand by choosing

 0

 20

 40
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 100

-15 -10 -5  0  5  10  15

V(x,t)
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10V(x,2)
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FIG. 4. (Color online) The potential of Eq. (4.16) as a function
of x at t = 0 and t = 2. Since V (x,2) is relative small, the curve
plotted is magnified by a factor of ten. The units used are such that
� = 2m = 1.

different values of μ we can make the potential term vary
slowly or rapidly with time.

A simpler potential can be obtained using the method
of Fityo and Tkachuk [29]. When � = 1 and m = 1/2 the
potential

V (x,t) = (
4e−2t − 1

16

)
x2 − 2e−t (4.16)

yields a normalized wave function

ψ(x,t) =
(

2

π

)1/4

exp

(
−x2e−t − 1

4
t + i

8
x2

)
. (4.17)

The advantage of this potential as a test case is that it is easily
differentiable with respect to time to any order. In order to
obtain the derivatives of N (x,t) we use Eqs. (4.3) and (4.6)
with

∂lV

∂t l
= (−1)l(2l+2e−2t x2 − 2e−t ) (4.18)

for l � 1. To obtain a feel for the potential and the wave
function they are plotted in Figs. 4 and 5 respectively.
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FIG. 5. (Color online) The wave functions Eq. (4.17) as a func-
tion of x at t = 0 and t = 2. The units used are such that � = 2m = 1.
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TABLE V. Parameters and errors for example 3.

M r J �t e2 ηM,r τ a

1 19 200 0.0075 3.22035×10−5 3.22173×10−5 27
0.0010 5.72355×10−7 5.72353×10−7 210
0.0001 5.72356×10−9 1.9 K

2 0.0075 7.60367×10−9 7.60056×10−9 91
0.0010 2.40331×10−12 2.40328×10−12 590

3 0.0075 3.85317×10−12 3.84974×10−12 310
0.0010 7.16318×10−15 2.20551×10−17 1.8 K

4 0.0075 8.77841×10−15 1.2 K
0.0010 7.16561×10−15 6.5 K

aTime to calculate e2 in quadruple precision with processor B.

The sample calculations were done with −15 � x � 15
and a final time of t = 2. The initial wave function was that of
Eq. (4.17) with t = 0. The results are tabulated in Table V.

We observe an increase in efficiency and precision of the
calculation with increasing values of M for relatively small
M . When M is larger than 3 or 4, increasing the size of �t

gives unstable solutions in the sense that the convergence of
the fixed point iteration (4.12) does not occur. The criterion
of convergence that we used is that the iterative procedure is
terminated when e(i) < 10−20.

In Fig. 6 we show the deviations from the exact solutions e2

and the deviations from the next higher order approximation
ηM,r . We obtain plateaus on which the values are very nearly
the same. For instance for M = 2 for the six highest values
of r each of the two errors are identical to seven significant
figures and e2 = ηM,r to three significant figures. On the graph
all the values of e2 and ηM,r for the same parameters are
indistinguishable.

(As an aside, another candidate to test the method for time-
dependent potentials is the linear time-dependent potential
discussed by Guedes [30].)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 0  5  10  15  20

e 2
,η

M
,r

r

e2: M = 1
η: M = 1
e2: M = 2
η: M = 2
e2: M = 3
η: M = 3
e2: M = 4

FIG. 6. (Color online) The errors (exact and estimated) for the
calculations with the parameters x0 = −15,xJ = 15,J = 200,�t =
0.0075. The units used are such that � = 1,m = 1/2. For the M = 3
case we terminate iteration for i when e(i) < 10−19. The η in the
legend of the graph refers to ηM,r .

V. CONCLUDING REMARKS

We have developed accurate numerical methods for solving
the TDSE with sources and/or time-dependent potentials.
Since the function that is evaluated numerically, i.e., �(+),
from which the solution is extracted, is a normalized function
the generalized CN method provides for a stable procedure.
The examples of exactly solvable systems indicate that
extremely accurate numerical solutions can be obtained. We
employed double precision in the initial calculations, but with
quadruple precision truncation errors could be driven down
further (see Ref. [4]). There is a caveat, however, since the
Euler-MacLaurin series is an asymptotic series; for a given
�t increasing the order of the approximation will eventually
cause the precision to decrease.

The method allows for a calculation to arbitrary order of �t

and of �x. In the calculations of the examples we calculate
an error, which corresponds to the deviation from the exact
solution. However, considering the difference of the numerical
solution with one that is one order higher in both variables,
we have an estimate of the error, which is of the same order
of magnitude as the actual error. This permits one to estimate
errors when no exact analytic solution is available.

The calculations were done in one dimension. They would
be similar for partial wave calculations as was done in I. A
natural extension is to consider systems of coupled equations
as in Ref. [31]. Two- or three-dimensional calculations are a
subject for future work.
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APPENDIX: HARMONIC OSCILLATOR
WITH TIME-DEPENDENT FREQUENCY

To obtain potential (4.16) we use the method of Fityo and
Tkachuk [29].2 Using their notation, we choose

f̃ (x,t) = x2e−t . (A1)

Thus we obtain

F (t) =
∫ ∞

−∞
e−2f̃ (x,t) dx =

√
π

2
et/2, (A2)

which leads to

f (x,t) = f̃ + 1
2 ln F = x2e−t + 1

4 t + 1
4 ln π/2. (A3)

We generate g(x,t) from Eq. (5) of Ref. [29]

g(x,t) = 1

2

∫ x

0
e2f (y,t) ∂

∂t

∫ y

−∞
e−2f (z,t) dzdy = −1

8
x2.

(A4)

2Equation (16) of Ref. [29] has a typo: the 3 should be replaced
by 2.
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Note that we remove a (constant) additive infinity from g(x,t)
by integrating over y from 0 to x rather than from −∞ to x

as in Ref. [29]. This has no consequence for the potential, but
eliminates a (constant) infinite phase from the wave function.

The potential is obtained from

V (x,t) = gt + f 2
x − g2

x − fxx (A5)

and the normalized wave function is

ψ(x,t) = e−f (x,t)−ig(x,t). (A6)

It is straightforward to verify that this wave function
satisfies the time-dependent Schrödinger equation with
potential (A5).

[1] W. van Dijk and F. M. Toyama, Phys. Rev. E 75, 036707 (2007).
[2] Z. Wang and H. Shao, Comp. Phys. Comm. 180, 842 (2009).
[3] H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
[4] W. van Dijk, J. Brown, and K. Spyksma, Phys. Rev. E 84, 056703

(2011).
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[19] R. Stützle, M. C. Göbel, T. Hörner, E. Kierig, I. Mourachko,

M. K. Oberthaler, M. E. Efremov, M. V. Federov, V. P. Yakovlev,
K. A. H. van Leeuwen, and W. P. Schleich, Phys. Rev. Lett. 95,
110405 (2005).

[20] M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[21] I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, Am. J.

Phys. 62, 519 (1994).
[22] J. Durnin and J. J. Miceli, Jr., Phys. Rev. Lett. 58, 1499 (1987).
[23] C. Ryu, K. C. Henderson, and M. G. Boshier, New J. Phys. 16,

013046 (2014).
[24] A. Goldberg, H. M. Schey, and J. L. Swartz, Am. J. Phys. 35,

177 (1967).
[25] S. Blanes, F. Casas, J. Oteo, and J. Ros, Phys. Rep. 470, 151

(2009).
[26] K. Kormann, S. Holmgren, and H. O. Karlsson, J. Phys. Chem.

128, 184101 (2008).
[27] K. Husimi, Prog. Theor. Phys. 9, 381 (1953).
[28] H. Moya-Cessa and M. F. Guasti, Phys. Lett. A 311, 1 (2003).
[29] F. Fityo and V. Tkachuk, J. Phys. Stud. 9, 299 (2005).
[30] I. Guedes, Phys. Rev. A 63, 034102 (2001).
[31] K. Houek, in Numerical Analysis and Applied Mathematics,

International Conference 2009, edited by T. E. Simos,
G. Psihoyios, and C. Tsitouras (American Institute of Physics,
College Park, 2009), Vol. 1, pp. 293–296.

063309-12

http://dx.doi.org/10.1103/PhysRevE.75.036707
http://dx.doi.org/10.1103/PhysRevE.75.036707
http://dx.doi.org/10.1103/PhysRevE.75.036707
http://dx.doi.org/10.1103/PhysRevE.75.036707
http://dx.doi.org/10.1016/j.cpc.2008.11.022
http://dx.doi.org/10.1016/j.cpc.2008.11.022
http://dx.doi.org/10.1016/j.cpc.2008.11.022
http://dx.doi.org/10.1016/j.cpc.2008.11.022
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1103/PhysRevE.84.056703
http://dx.doi.org/10.1103/PhysRevE.84.056703
http://dx.doi.org/10.1103/PhysRevE.84.056703
http://dx.doi.org/10.1103/PhysRevE.84.056703
http://dx.doi.org/10.1063/1.3098940
http://dx.doi.org/10.1063/1.3098940
http://dx.doi.org/10.1063/1.3098940
http://dx.doi.org/10.1063/1.3098940
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1063/1.3312531
http://dx.doi.org/10.1103/PhysRevLett.83.2867
http://dx.doi.org/10.1103/PhysRevLett.83.2867
http://dx.doi.org/10.1103/PhysRevLett.83.2867
http://dx.doi.org/10.1103/PhysRevLett.83.2867
http://dx.doi.org/10.1103/PhysRevC.65.024608
http://dx.doi.org/10.1103/PhysRevC.65.024608
http://dx.doi.org/10.1103/PhysRevC.65.024608
http://dx.doi.org/10.1103/PhysRevC.65.024608
http://dx.doi.org/10.1007/978-3-7091-6114-2_21
http://dx.doi.org/10.1007/978-3-7091-6114-2_21
http://dx.doi.org/10.1007/978-3-7091-6114-2_21
http://dx.doi.org/10.1007/978-3-7091-6114-2_21
http://dx.doi.org/10.1007/978-3-7091-6728-1
http://dx.doi.org/10.1007/978-3-7091-6728-1
http://dx.doi.org/10.1007/978-3-7091-6728-1
http://dx.doi.org/10.1007/978-3-7091-6728-1
http://dx.doi.org/10.1103/PhysRevLett.83.3158
http://dx.doi.org/10.1103/PhysRevLett.83.3158
http://dx.doi.org/10.1103/PhysRevLett.83.3158
http://dx.doi.org/10.1103/PhysRevLett.83.3158
http://dx.doi.org/10.1119/1.1619141
http://dx.doi.org/10.1119/1.1619141
http://dx.doi.org/10.1119/1.1619141
http://dx.doi.org/10.1119/1.1619141
http://dx.doi.org/10.1016/S0010-4655(99)00225-8
http://dx.doi.org/10.1016/S0010-4655(99)00225-8
http://dx.doi.org/10.1016/S0010-4655(99)00225-8
http://dx.doi.org/10.1016/S0010-4655(99)00225-8
http://dx.doi.org/10.1103/PhysRevE.79.056705
http://dx.doi.org/10.1103/PhysRevE.79.056705
http://dx.doi.org/10.1103/PhysRevE.79.056705
http://dx.doi.org/10.1103/PhysRevE.79.056705
http://dx.doi.org/10.2307/2315187
http://dx.doi.org/10.2307/2315187
http://dx.doi.org/10.2307/2315187
http://dx.doi.org/10.2307/2315187
http://dx.doi.org/10.1103/PhysRevLett.95.110405
http://dx.doi.org/10.1103/PhysRevLett.95.110405
http://dx.doi.org/10.1103/PhysRevLett.95.110405
http://dx.doi.org/10.1103/PhysRevLett.95.110405
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.17510
http://dx.doi.org/10.1119/1.17510
http://dx.doi.org/10.1119/1.17510
http://dx.doi.org/10.1119/1.17510
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1088/1367-2630/16/1/013046
http://dx.doi.org/10.1088/1367-2630/16/1/013046
http://dx.doi.org/10.1088/1367-2630/16/1/013046
http://dx.doi.org/10.1088/1367-2630/16/1/013046
http://dx.doi.org/10.1119/1.1973991
http://dx.doi.org/10.1119/1.1973991
http://dx.doi.org/10.1119/1.1973991
http://dx.doi.org/10.1119/1.1973991
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1063/1.2916581
http://dx.doi.org/10.1063/1.2916581
http://dx.doi.org/10.1063/1.2916581
http://dx.doi.org/10.1063/1.2916581
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1143/ptp/9.4.381
http://dx.doi.org/10.1016/S0375-9601(03)00461-4
http://dx.doi.org/10.1016/S0375-9601(03)00461-4
http://dx.doi.org/10.1016/S0375-9601(03)00461-4
http://dx.doi.org/10.1016/S0375-9601(03)00461-4
http://dx.doi.org/10.1103/PhysRevA.63.034102
http://dx.doi.org/10.1103/PhysRevA.63.034102
http://dx.doi.org/10.1103/PhysRevA.63.034102
http://dx.doi.org/10.1103/PhysRevA.63.034102



