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Bubble evolution and properties in homogeneous nucleation simulations
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We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations
of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide
a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately
measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth
into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities
at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured
in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those
of the surrounding bulk liquid. In the case of rapid bubble growth—typical for the cavitation regime—compression
of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to
alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected
from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical,
yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good
agreement in the cavitation regime.
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I. INTRODUCTION

The cavitation and growth of microbubbles in superheated
or stretched liquids is a common process in nature and is
relevant in many areas of fundamental science, medicine,
and engineering. Examples include phase changes in the
early universe [1], the direct detection of dark matter [2],
targeted drug delivery [3], stimulating accelerated healing
of bone fractures [4], cavitation corrosion of water-exposed
materials [5,6], volcano fountaining [7,8], and flavor infusion
of plant matter into alcohol in the kitchen [9]. However, our
understanding of bubble kinetics and dynamics is very limited.
This is largely due to the current inability to test various models
and frameworks because the properties of the microbubbles,
such as surface tension [10], temperature profiles, density
profiles, and shapes are not well known [11]. This is partially
due to the practical limitations of measuring the properties
of nanobubbles under laboratory conditions [12]. Most
molecular dynamics (MD) simulations of bubble nucleation
and kinetics that have been done up to now are limited to small
computational volumes [13–20], resulting in sharp pressure
increases as bubbles begin to form [16,18]. An option is to
barostat the system [15,17,20], by either increasing the box
size by moving the boundaries or by rescaling the positions;
however, both are unphysical.

In this paper we report on the physical properties of bubbles
formed from homogeneous nucleation events in Lennard-
Jones molecular dynamics simulations in large computational
volumes. The large number of particles (half a billion) is neces-
sary to mitigate finite-size effects not found in nature, as well as
to ensure realistic bubble growth and high signal-to-noise when
measuring bubble nucleation rates and physical properties.
To our knowledge, properties of nucleating nanobubbles
have not been described before, and realistic bubble growth
curves have been presented only once. Just a few sufficiently
large MD simulations of bubble nucleation exist [21–24], but
bubble properties were not reported in these works. Bubble

growth curves in the extreme, very fast cavitation regime
were analyzed in Kuksin et al. [21]. Our simulations cover
the cavitation and the boiling regimes, and they initially
contain a metastable fluid— a superheated or subpressurized
Lennard-Jones liquid at a chosen temperature and pressure,
which is allowed to naturally nucleate bubbles which continue
to grow. The simulations we examine here are part of a larger
set of runs; whose results regarding nucleation rates, critical
sizes, size distributions, and accompanying comparisons to
nucleation models and experiments are reported in Diemand
et al. [25]. This paper reports on the physical properties of the
bubbles from their spontaneous nucleation near the critical
size to their continued growth by factors of up to 8000 in
volume. We measure their temperatures, constituent radial
velocities, shapes, densities, and growth rates. We use this
information to test the Rayleigh-Plesset bubble growth model
paradigm.

II. NUMERICAL SIMULATIONS

The large-scale atomic/molecular massively parallel simu-
lator (or LAMMPS) computer program [26] was used to perform
the simulations. The pure Lennard-Jones (LJ) potential reads

uLJ(r)

4ε
=

(
σ

r

)12

−
(

σ

r

)6

. (1)

However, we truncate and force-shift it (TSF) so both the
potential and its first derivative vanish at the cut-off radius rc.
This is done by setting the interaction potential to

uTSF(r) = uLJ(r) − uLJ(rc) − (r − rc)
duLJ(rc)

dr
. (2)

The properties of the TSF-LJ fluid depends on the cut-off
scale. We set ours at rc = 2.5σ, as done in recent nucleation
simulation studies [17,20]. In the argon system, the units are
σ = 3.405 Å, ε/k = 161.3 K, and τ = 2.16 ps. The integra-
tion routine is the Verlet integrator, with a time step of either
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FIG. 1. (Color online) Left: Cross section through a bubble near the critical size r0 = 6.0σ = 2.0 nm in run T85r3. Particles in a slab of
thickness 4σ in the z direction are shown and colored according to their potential energy. Right: The same bubble 875τ or 189 ns later. The
“+” markers indicate their center of masses. We find incongruous shapes typical for small bubbles.

�t = 0.0025τ or �t = 0.004τ (for the lower temperature
runs). The simulations are NVE: constant particle num-
ber, volume, and energy. All simulations contain N =
536 870 912 particles and cover four temperatures kT =
0.6,0.7,0.8,0.855 ε/k at pressures which extend from the cav-
itation to the boiling regime. In many cases it is useful to com-
pare measured thermodynamic bubble quantities to the gas-
liquid coexistence value at the same temperature of the bubble
run. To this end, we have performed supplementary slab coex-
istence simulations. More details on these simulations, includ-
ing convergence tests, may be found in Diemand et al. [25].

At each temperature a number of simulations are performed
at different pressures; however, we do not analyze the complete
set in this paper. In this paper there are two types of simulation-
outputted data which we analyze:

(1) Bubble size and location data. By overlaying a (3σ )3

cell-length grid on the simulation box, at regular intervals, the
positions of all cells with a number density less than 0.2σ−3

are outputted. These then may be linked together by iteratively
checking for nearby low-density cells. This procedure is
computationally cheap and so is done regularly, usually
every 1000 integration time steps. Under the assumption of
sphericity, these voids may be converted into a bubble radius
r . We used this information to measure nucleation rates and
bubble size distributions in Ref. [25]. In this paper we use this
information to analyze the bubble growth rates, see Sec. VI.

(2) Particle data of bubbles and their surroundings. To
analyze the physical properties of the bubbles, more in-

formation is necessary. For this, we output the positions,
velocities, coordination numbers, and potential energies of
all the particles within a cubic volume centered around the
bubble. This outputted region typically extends deep into the
liquid (usually at least a few times larger than the bubble itself),
because, as we shall report, only far from the bubble do the
liquid properties settle to the bulk expectations.

Full particle data of bubbles and their surroundings from
four simulations are analyzed in this paper, three in the
cavitation regime and one in the boiling:

(a) T6r2: Our most-negative pressure run. Bubble growth
is extremely rapid here, although the nucleation rate is low. We
measure growth velocities up to 0.55 σ/τ (92 ms−1). At the
end of the simulation, we analyze the three (and only) bubbles
which form. By the end of the run, the liquid pressure has
increased by 6%.

(b) T7r2: This negative liquid pressure run saw the nu-
cleation of only a few stable bubbles. We examine its largest
bubble at four different times: 100, 200, 300, and 400τ after its
formation time t∗. Up until 300τ after the formation time, the
pressure has risen by only 4%. By 400, however, it has halved.

(c) T8r2: This run is also in the cavitation regime. We
analyze its four largest bubbles at the end of the simulation.
The liquid pressure rises by 1% over the entire run.

(d) T85r3: In this positive-pressure run we analyze seven
bubbles, three of these at two different times and the last only
at the later time. Over this time the liquid pressure rises by
10%. The smallest bubble we analyze in this run has volume

TABLE I. Average simulation temperature T and average liquid pressure Pl over the run, up to, and including the pressure increases in
later stages. Details on the measurements of the critical bubble sizes r∗ and nucleation rates J may be found in Diemand et al. [25]. tend is
the duration of the simulation run. Pe is the equilibrium pressure at the run temperature, nv the equilibrium vapor number density at the run
temperature, nl the equilibrium liquid number density at the run temperature, and γ the planar surface tension at the run temperature. We have
calculated the thermodynamic parameters from equilibrium slab simulations.

T Pl r∗ J tend Pe nv nl γ

Run ID (ε/k) (ε/σ 3) (σ ) (σ−3τ−1) (τ ) (ε/σ 3) (1/σ 3) (1/σ 3) (ε/σ 2)

T6r2 0.6 −0.336 2.9 ± 0.4 2.5 ± 1.2×10−11 328 0.0034 0.006 06 0.792 0.511
T7r2 0.703 −0.162 3.0 ± 1.0 2.0 ± 1.1×10−11 1300 0.0118 0.0198 0.729 0.329
T8r2 0.800 −0.371 5.2 ± 0.3 4.2 ± 2.8×10−11 437.5 0.0303 0.0505 0.652 0.168
T85r3 0.855 0.0200 6.9 ± 0.2 2.9 ± 0.6×10−12 2885 0.0461 0.0833 0.595 0.0900
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approximately equal to the critical bubble volume. This bubble
is pictured at two different times in Fig. 1.

Further details on the simulations and the relevant thermo-
dynamic variables are given in Table I.

Because the theoretical models to which we shall compare
our numerical results assume bubbles to be spherical, it is con-
venient to radially bin measured quantities, even if the bubble
is not completely spherical. To do this, we must first choose
a center for the spherical coordinate system, which should
correspond to the bubble center. The bubble center is chosen
to be the average of all particles with a coordination number
[for a chosen search distance of rs = 1.6 (σ )] less than or equal
to 2. This effectively results in the estimated center positions
being most heavily weighted by particles within the inner part
of the transition region, as members of the gas typically have
zero neighbors and those of the liquid typically more than 6.
Unless otherwise indicated, the radial bins are of size 0.7σ.

Section III analyses the density profiles of the bubbles.
In Sec. IV we measure the bubble temperature profiles and
bulk motions. Section V uses principal component analysis
to determine the bubble shapes. Finally Sec. VI measured
growth velocities and compares them to expectations from
hydrodynamics.

III. DENSITY PROFILES

For each bubble, we calculate its center and radially bin
the particle number density. These are plotted in Fig. 2 for
a few bubble examples. For gas-liquid interfaces it is often
convenient to fit a fitting function of the form

n(r) = 1

2

[
ng + nl − (ng − nl)

(
tanh

2(r − r0)

d

)]
, (3)

where ng and nl are the inner and outer densities, r0 is the
midpoint of the transition region, and d is half the transition
region width. Square gradient theory [27] qualitatively predicts
this density profile behavior over the gas-liquid interface.

Figure 2 also shows examples of the fits of Eq. (3) to the
measured binned number densities. These fits provide a useful
bubble size definition r0, which we will use in coming sections.
The bubble profile fits also allow us to calculate the equimolar
radius R of each bubble. Nucleation and bubble kinetic theory
are formulated in the sharp-bubble-interface paradigm. When
comparisons are made to these theories we therefore use the
equimolar radius size R. Fit results for the gas and liquid
bubble densities and transition widths along with comparisons
to bulk values are plotted in Fig. 3.

We find that:
(i) For bubbles in the cavitation regime, the liquid density

directly outside the bubble has a higher density (5% at
kT = 0.7ε) than the bulk liquid. This overdensity decreases
gradually further away from the bubble, indicating the pres-
ence of a shock wave due to the rapid bubble expansion and
the comparatively low sound speed.

(ii) The gas density within the bubble is significantly lower
than that expected from coexistence simulations at the run
temperature. At kT = 0.7ε, the gas density for all bubbles is
50% of the run temperature coexistence value, at kT = 0.8ε

FIG. 2. (Color online) Bubble density profiles for three runs. The
dotted vertical lines indicate the center of the transition region
according to the fit to Eq. (3). The solid purple vertical lines mark
the equimolar radii. For the kT = 0.6,0.7ε runs, we note that the
densities directly outside the bubble are noticeably higher than the
simulation averages, yet they are observed to decrease yet further
into the liquid. This is because the rapid bubble growth at low
pressures creates a shock wave around the bubble (see the discussion
in Sec. VI). The smallest bubbles in T85r3 and T8r2 show significantly
larger transition regions than the larger bubbles. This is likely an
artificial contribution from their asphericity (see Fig. 11 for principle
component shape analysis). Figure 3 shows the resulting fit values
and associated errors for these bubbles.
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FIG. 3. (Color online) Gas density ng (upper panel) and interface
transition width d (lower panel) from fitting Eq. (3) to the bubble
profiles in Fig. 2. The horizontal axis is the fitted transition region
midpoint r0. Over all runs the gas density is between 50 and 80%
of the coexistence value at the run average temperature. This is
likely due to the lower temperatures measured in the bubble gas.
A similar discrepancy is evident for the bubble interface widths. The
nonisothermality over the transition regions may be responsible for
this discrepancy.

between 50 and 70%, and at kT = 0.855ε, between 60 and
90%. However, we note that the bubble gas densities are close
to the equilibrium value at the lower temperature measured for
the gas. (See Sec. IV.)

(iii) Bubble transition regions are broader in the higher-
temperature runs than in the lower; however, in all runs, they
are lower than the target temperature coexistence values by
typically between 50 and 80%. As above for the gas densities,
we again note that the widths are close to the equilibrium
value at the temperature of the gas or the interface. (See
Sec. IV.) That higher temperatures result in broader transition
regions is expected from density functional theory applied to
bubbles [28].

(iv) For bubbles sizes �20σ , we do not have strong-enough
statistics to make conclusions as to how the radius of curvature
affects the transition region width. However, for bubbles
�20σ , the transition widths have converged to within 5% of
their final values.

FIG. 4. (Color online) Transition region radial velocity probabil-
ity distributions for the three bubbles of run T6r2. Only particles
within the radial bin covering the transition region are used. The black
dotted curve is a reference Gaussian for the average run temperature.
Due to the rapid bubble growth in the cavitation regime, the entire
distribution is shifted to the right. The thin solid vertical lines
indicate the midpoints of the fitted Gaussians, while the dotted purple
line indicates the expected bubble linear regime terminal velocity
vmax = 0.55σ/τ for this run. The thicker vertical black line indicates
the sound speed in the liquid.

The nonisothermality of the gas plays a major role in
offsetting the measured values from their bulk average run
temperature values, which we discuss in the next section.
Small bubble curvature is expected to play a more minor
role. The density profile, together with the pressure tensor
profile provides the surface tension. We have attempted to
directly calculate the pressure tensor bubble profiles using the
Kirkwood-Irving method [29]; however, the signal-to-noise is
too low to make useful conclusions.

IV. TEMPERATURES AND BULK MOTIONS

Bubble nucleation and evolution models typically assume
that the bubble formation and growth process is isother-
mal [30], and takes place at the temperature of the liquid. In
this section we test this assumption by considering the kinetic
energies of the particles.

The temperature of an ensemble of atoms is typically
defined from their mean kinetic energy,

kT ≡ 2

3
〈Ekinetic,thermal〉 = 1

3N

N∑
i=1

miv
2
i , (4)

where N is the total number of atoms in the ensemble, mi

are the atom masses, and the velocities vi are those relative to
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FIG. 5. (Color online) Transition region radial velocity probabil-
ity distributions for the bubbles in run T7r2. The thick vertical black
line indicates the sound speed in the liquid.

the simulation box. However, in the case of growing bubbles,
which exhibit a preferred direction of motion we must take
care to disentangle bulk particle motion from random thermal
motion. For each bubble, for each radial bin, we convert
Cartesian velocities to radial velocities. As examples, Figs. 4–6
plot the radial velocity probability distributions of the radial
bin covering r = r0, the midpoint of the transition for a
few bubbles. From these we may determine the magnitude
of the bulk radial motion in each radial bin. This artificial
contribution to the temperatures may then be removed at each
radial bin, yielding the temperature profile. For the same two
runs, these are plotted against scaled bubble size in the upper
panels of Figs. 7–9, while the lower panels plot the radial
velocity excess. Transition region and gas temperature aver-
ages are shown in Fig. 10.

In Diemand et al. [25], we show that the initial formation
(nucleation) of bubbles is an isothermal process as the event is
not preceded by above-average temperatures (local hot-spots).
Here, however, we demonstrate that bubble growth on the other
hand is strongly nonisothermal, especially for cavitation runs
with large negative liquid pressures. Specifically:

(a) Bulk bubble growth motions in the transition region
and beyond is measurable from per-particle radial velocity
averages. For the two runs at significant negative pressure,
the bubble growth is rapid enough for this signal to be sig-
nificantly higher than the noise, allowing for accurate bubble
velocity measurements. These measurements agree with the
velocities determined from the increase in the bubble volume.
This velocity is close to that expected from the cavitation
linear regime terminal speed (see Sec. VI). The bulk motion

FIG. 6. (Color online) Transition region radial velocity probabil-
ity distributions for bubbles in run T85r3. Bubble growth is typically
less rapid in the boiling than in the cavitation regime. The thick
vertical black line indicates the sound speed in the liquid.

FIG. 7. (Color online) Temperatures (upper panel) and radial
velocities (lower panel) for T6r2 bubbles. Per-bin temperatures
have been calculated from per-bin radial velocity distributions. (An
example of one such distribution is plotted in Fig. 4 for this run.) This
bulk-motion adds an excess to the kinetic energies, which can be
subtracted away to yield the temperature, plotted in the upper panel.
The horizontal axis in both panels denotes the scaled-and-shifted
radius, which centers all bubbles on top of one another. The purple
horizontal line in the lower panel indicates the expected linear regime
velocity. The radial velocity falloff deep into the liquid is parabolic,
as expected from mass conservation [31]. Best-fit parabolas are
overplotted with solid black lines.
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FIG. 8. (Color online) Temperatures (upper panel) and radial
velocities (lower panel) for T7r2 bubbles.

contribution to the kinetic energies must be taken into account
to calculate the temperature.

(b) For all bubbles, in all runs, we find that the gas temper-
atures are up to 20% colder than the ambient run temperature.
We observe a general trend of lower gas temperatures for
increasing bubble sizes. This is expected from the latent heat
used for evaporation.

(c) For runs T85r3 and T8r2 the temperatures rise in the
transition region and reach the run’s average temperature
around 1.5r0 from the bubble centers.

(d) T7r2’s and T6r2’s temperatures also rise in the tran-
sition region, but then they become significantly higher than
the average simulation temperature (by 5%) just beyond r0.
They drop only slowly after this: One has to go out to about
4r0 before the average simulation temperature is reached.

FIG. 9. (Color online) Temperatures (upper panel) and radial
velocities (lower panel) for T85r3 bubbles.

FIG. 10. (Color online) Temperatures within the gas, as well as
over the interface. These are averages of radially binned temperature
profiles (see Fig. 8, for example). We attribute the lower temperature
in the gas to latent heat and the increased temperature outside the
bubble to the compression of the boundary in the fast bubble growth
cases, T7r2 and T6r2.

This extra heat found around these bubbles is likely due to
compression, which is significant in the cavitation regime
when the bubble growth velocities are a significant fraction
of the sound speed.
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V. SHAPES

An assumption common to almost all nucleation and bubble
evolution models is that the bubbles are spherical as this
shape minimizes the surface energy. We measure the bubble
shape by measuring their ellipsoid axes a, b, and c. This is
done by principal component analysis (PCA) of all particles
in the bubble and its vicinity with a coordination number of
two or fewer. This results in the shape measurement being
determined primarily by the inner part of the gas-liquid
interface. Details on using PCA to determine shapes of particle
distributions can be found in Zemp et al. [32] applied to dark
matter distributions and in Angélil et al. [33] applied to atom
clusters in gas-to-liquid MD simulations.v Figure 11 plots
the short-over-long a/c and medium-over-long b/c axis ratios
against bubble size r0.

Nonspherical bubbles at small sizes was also reported in
numerical simulations in Ref. [20]. We note that:

(1) The observed asphericity for smaller cluster sizes
prompts caution for quantities measured using spherical bins.
Artificial contributions to the quantity may enter due to
atypical shapes at small sizes. See, for example, the measured
interface thickness for the smallest bubbles in T7r2 and T85r2
(Fig. 2 and the lower panel of Fig. 3).

(2) Bubbles become more spherical as they grow. At the
critical size they are quite elongated with typical axis ratios of
a/c = 0.48 and b/c = 0.58. Thermal fluctuations are likely
responsible for this asphericity. This could have implications
for nucleation, as such shapes have a higher-than-expected
surface energy due to the increased surface area (preserving
the volume), leading to a higher energy cost to form the critical
bubble and thereby lowering nucleation rates.

VI. BUBBLE GROWTH

The Rayleigh-Plesset equation describes the evolution
of the radius of a spherical bubble with a hydrodynamics
description. The liquid is considered incompressible and the
interface sharp. The evolution equation is an equation for
the acceleration of the interface radius and is made up of
various competing influences, some of which promote bubble
growth, and others which squeeze the bubble. In this section
we apply this description to our simulated bubbles in order to
test the hydrodynamics framework, as well as to determine the
applicability of the model assumptions.

The Rayleigh-Plesset equation reads [34–36]

RR̈ = −3

2
Ṙ2︸ ︷︷ ︸

momentum

+ 1

mnl

[
Pg︸︷︷︸
gas

− Pl︸︷︷︸
liquid

− 2σ

R︸︷︷︸
surface

− 4μ

R
Ṙ︸ ︷︷ ︸

viscosity

]
, (5)

where R(t) (or short R) is the bubble radius at time t , Ṙ, and
R̈ its first and second time derivatives, nl is the liquid density
(mostly constant over the time we consider), Pi is the gas
pressure in the bubble, Pl is the pressure in the liquid, σ the
planar surface tension, and μ the viscosity.

Surface tension, viscosity, and the pressure difference
between the gas inside the bubble and the surrounding liquid
compete with one another:

FIG. 11. (Color online) Bubble shapes: Axis ratios of unity cor-
respond to sphericity, smaller values indicate more elongation. We
observe a general trend of bubbles becoming more spherical the larger
they are. For small sizes r0 < 10σ the bubbles are far from spherical.

(a) Surface tension, ∼R−2, works to squeeze the bubble
closed. It plays an important role when the bubble is small and
less so as it grows due to its strong inverse radius dependence.

(b) Viscosity, ∼ṘR−2, a frictional term, also acts to slow
down the growth. Typically, it reaches dominance after the
surface tension term does, as bubble growth Ṙ picks up. As
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ANGÉLIL, DIEMAND, TANAKA, AND TANAKA PHYSICAL REVIEW E 90, 063301 (2014)

the bubble growth continues, the ∼R−2 dependence sharply
damps this effect.

(c) Internal pressure, Pg , is always positive for a gas and
works to expand the bubble. This term is the one responsible for
bubble growth in the boiling regime. In the cavitation regime
it is usually irrelevant.

(d) External pressure, Pl , provides a ∼R−1 effect. This is
the only term whose influence direction is not evident a priori.
In the boiling regime (Pl > 0) the ambient liquid pressure
contributes to a subdominant squeezing, while in the cavitation
(Pl < 0) it is usually the most dominant expansion term.

In our homogeneous liquid simulations, any bubble must
start out small. According to the classic nucleation theory,
around the critical size (determined by the mechanical equi-
librium condition Ṙ = 0), the surface tension and the liquid
pressure difference are the most important contributions, and
so other influences are neglected. These classical critical size
estimates match our MD results very well [25]. In this paper
we consider the two regimes following this: the intermediate
growth regime (from the critical cluster size and onwards)
into the linear growth regime. The linear regime is somewhat
simpler as the effects of viscosity and surface tension become
negligible because of their steep inverse radius dependence.

A. Linear regime growth

Many molecular dynamics approaches to testing the
Rayleigh-Plesset equation as a description for bubble evolution
disregard the effects of surface tension and viscosity, valid
when the bubbles are large. See MD simulations for large
bubble collapse [37]. The largest bubbles in our simulations
enter the same regime towards the ends of the runs. We
can compare the large-bubble Rayleigh-Plesset regime to the
bubble growth velocities which we measure in simulations:

(i) Liquid pressure-dominated: In this regime the bubble
growth is rapid due to strong negative pressure, and the
Rayleigh-Plesset equation (5) reduces to

Ṙ =
√

−2

3

Pl

mnl

. (6)

This is typical for cavitation, where the bubble gas pressure
is a less dominant source of growth than the strong negative
liquid pressure.

(ii) Boiling regime means the Rayleigh-Plesset equation
becomes

Ṙ =
√

2

3

Pg − Pl

mnl

, (7)

where Pg is the current pressure in the bubble.
The dotted purple lines in radial velocity plots, in

Figs. 7–9, show these expected maximum velocities. Figure 12
uses histogram bubble data (explained in Sec. II) at the end of
the run to evaluate the rate at which the largest two bubbles in
each run grow.

We find the following:
(a) For the boiling regime runs at kT = 0.855ε, the

measured late stage bubble growth is half the prediction
from (7). We attribute this to uncertainties in the bubble gas
pressure Pg . We have assumed the ideal gas law and assumed

FIG. 12. (Color online) Late-stage bubble growth velocities for
the largest two bubbles in each run. The largest is indicated by the
solid markers and the second largest by black-rimmed edge markers.
The hollow markers denote the expected terminal velocity values,
Eqs. (6) and (7). The single “×” marker indicates the expected
linear growth velocity due to a nonisothermal equation of state
and an evaporation efficiency α = 0.4. We suspect that our boiling
regime bubbles have not yet reached the linear growth stage and
are still accelerating. The first three literature markers are from
Kuksin et al. (2010). However, their smaller bubbles and somewhat
higher surface tensions (due to a Lennard-Jones potential without
a force shift) may not have reached the linear regime and so are
still accelerating at the time of measurement. The fourth literature
value is from Wu (2003) [14]; however, their small computational
volumes meant that bubble genesis and growth effects an immediate
liquid pressure increase, which quickly suppresses the growth rate.
This measurement therefore may be regarded as a lower bound.
Similarly, Kinjo (1998) [13] reports bubble growth rates of ∼0.3σ/τ ,
yet at pressures <−0.7σ 3/ε, far beyond the regime we probe in our
simulations.

that the temperature is at the reduced temperature (see the first
panel in Fig. 10), with the gas number density that reported
in Fig. 2. We suspect that even the largest bubbles at this
temperature were not yet in the linear regime. This is confirmed
by the full Rayleigh-Plesset solution for run T85r3, which we
perform in the following subsection.

(b) If we replace the gas pressure in (7) with a nonisother-
mal equation of state, using the expected gas number density in
the linear regime to find the pressure assuming a temperature
not of kT = 0.855ε but rather kT = 0.8ε (as shown in the
lowest panel of Fig. 10), and choose an evaporation efficiency
[see Eq. (8)] of α = 0.4, then we find an expected linear
growth rate somewhat closer to the simulation measurement.
When we decrease the bubble gas pressure due to the lowered
temperature, the diffusion occurs more rapidly, and so the
efficiency also needs to be lowered to obtain a result which
matches with the simulation measurements for Ṙ. On Fig. 12
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we have marked this expected value for the run T85r3 with a
“×” marker.

(c) Predictions for negative-pressure-dominated bubble
growth are more accurate. Because the pressure of the liquid
increases slightly over the entire simulation, which would slow
down the bubbles down, linear regime growth rate predictions
from (6) should be taken as upper bounds, as we input the initial
liquid pressure (as given in Table I). We find that the simulation
bubbles typically grow ∼10% slower than the Rayleigh-Plesset
negative-liquid-pressure-dominated expectation.

B. Intermediate growth regime: The RP-diffusion system

In this section we test the capability of the Rayleigh-Plesset
equation to predict bubble size evolution from the critical
size on to the end of the simulation. We may not make
any size approximations in this regime. We assume that the
Rayleigh-Plesset thermodynamic parameters are taken at the
simulation’s average temperature, disregarding the (as we shall
show, likely important) complications which arise from the
nonisothermal profiles. (See Fig. 6, for example.)

The Rayleigh-Plesset equation depends on the pressure
inside the bubble, Pg , which is time dependent, not known a
priori, and difficult to measure directly in simulations. To get
the gas pressure, we must model the diffusion process through
the bubble wall. The net rate of evaporation into the bubble
is driven by the difference between gas pressure Pg and its
vapor pressure Pv(kT ). The time derivative of the number of
molecules in the bubble N (t) is provided by the Hertz-Knudsen
relation [38]

Ṅ (t) = 4παR(t)2

√
2πmkT

[Pv − Pg], (8)

where α is an evaporation efficiency. The efficiency is
analogous to the sticking probability or condensation ef-
ficiency measured from MD growth curves of liquidlike
clusters [39–41]. However, unlike the condensation efficiency,
the evaporation coefficient α may be greater than unity. This is
supported by theoretical arguments and experiments [42], as
well as recent Lennard-Jones numerical simulations of liquid
droplet [43] and liquid slab evaporation [44]. Along with
an equation of state, the Hertz-Knudsen equation provides
the gas pressure, which appears also in the Rayleigh-Plesset
equation (5). Together, Eqs. (5) and (8) form a coupled system
which we will solve simultaneously.

The vapor pressure in the bubble differs from the equilib-
rium vapor pressure because the liquid pressure is less than its
equilibrium pressure. The relevant shift is called the Poynting
correction and is

Pv = Peδ + Pl(1 − δ), (9)

which depends on the liquid-gas density ratio,

δ = 1 − ng

nl

+ 1

2

(
ng

nl

)2

. (10)

This amounts to a significant correction of 10% for our
kT = 0.855 simulations. See Table I for the values of the ther-
modynamics parameters which we use. Although techniques
exist for directly measuring the pressure within the bubble
Pg (using the Kirkwood-Irving pressure tensor [29]), we are

unable to do so due to low signal-to-noise levels. Instead, we
work with the number density within the bubble ng . To convert
the bubble gas density ng into Pg , which appears both in (5)
and (8), we require an equation of state. Either we

(1) assume an ideal gas (as we shall do for T7r2), replacing
Pg(t) with

Pi(t) = 3N (t)kT

4πR(t)3
(11)

or
(2) use a simulation-based equation of state estimate. We

perform 2.5σ TSF-LJ gas simulations at the bubble gas
temperatures and number densities and measure the bulk
gas pressure. We may further implement nonisothermality by
lowering the Pg by the temperature ratio. As we shall show,
this is a necessary addition to the Rayleigh-Plesset model to
accurately reproduce bubble growth for T85r3.

The Rayleigh-Plesset equation and the diffusion equation
form a coupled system of ordinary differential equations. We
solve the RP-diffusion equation system as a shooting problem,
using an optimizer to adjust the viscosity. We fit the Rayleigh-
Plesset solution to the bubble sizes (red markers in Fig. 13), as
well as to the final bubble gas density measurements. We do
this for the largest bubbles in runs T7r2 and T85r3. The results
for the predicted sizes are shown as solid blue curves in Fig. 13
and the bubble growth rate and gas densities in Fig. 14:

(a) T7r2: Here we use an ideal gas equation of state and
treat the system as isothermal. The best fit viscosity for this
bubble growth solution is μ = 0.58 ± 0.01 and efficiency α =
1.69 ± 0.34. We note that in the cavitation regime, this value
for the efficiency is not constrained by the bubble growth R(t)
measurements (upper panel Fig. 13) but by bubble gas density
measurements (upper left panel Fig. 14). This is because the
Hertz-Knudsen equation (8) couples weakly to the RP equation
due to the bubble gas pressure playing a subdominant role in
bubble growth (see the blue curve on the lower left panel of
Fig. 14).

(b) T85r3: For the largest bubble in T85r3, no isothermal
model is able to match the bubble evolution (see the black
line in Fig. 13). Implementing a nonisothermal equation of
state, however, which lowers the pressure proportional to the
measured bubble gas temperature (see Sec. IV) gives a good fit,
with best fit solution μ = 0.52 ± 0.08 and α = 0.41 ± 0.03.

In both cases, the best fit viscosity values seem reasonable
in comparison with the range of values predicted by MD
viscosity measurement simulations [45–49] for LJ liquids with
cutoff scales of 2.5σ and larger. We did not find viscosity
values for our TSF-LJ liquid; however, the viscosities are
quite robust to variations around the LJ potential from Galliéro
et al. [49]. Classical models implicitly assume an evaporation
efficiency of unity [30]. However, Lennard-Jones numerical
simulations of droplet evaporation support the possibility of
larger efficiencies [43], as we have found in the cavitation
regime case fits, with α = 1.69 ± 0.34. In the boiling regime
we find a significantly smaller efficiency α = 0.41 ± 0.03.
Low efficiencies have also been derived from growth curves of
liquidlike clusters in homogeneous vapor-to-liquid nucleation
simulations [40,41].

The fits are successful; however, we caution that the
system is overdetermined because of the simplicity of the
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FIG. 13. (Color online) Simulation bubble sizes measured (red
markers) for the largest bubbles in runs T7r2 and T85r3. The solid
lines are the Rayleigh-Plesset model fits. The accompanying bubble
growth rates and the bubble gas densities (all three are coupled)
solutions are in the first two rows of Fig. 14. With the isothermal
model, the cavitation regime fit, T7r2, matches well, and the boiling
regime somewhat poorly, predicting in particular a different linear
growth rate than the one we measure. However, we get a good fit
when using a nonisothermal gas pressure estimate.

growth curves. We have attempted to add sophistication to
the RP model by including a Tolman length [50] δ into the
surface tension (promoting σ → σ = σ0 − 2δ/R) as part of
the parameters-to-be fitted, since a small, positive δ seems to
better fit droplet evaporation [51] rates and bubble nucleation
rates [21,25,52,53]. However, the system quickly becomes
overdetermined as the correlation between the fit parameters
is close to unity, leading to inconclusive results.

Summarizing, we find that:
(a) While in the example solved here, we have set the initial

value for the gas density ng to the gas equilibrium density, the
final value for the gas density ng is largely unaffected by its
initial value. During the evolution, density drops below the

vapor pressure at the simulation average temperature, likely
because of the reduced vapor pressure due to the reduced local
temperature.

(b) Bubble growth in the cavitation and boiling regimes
differ remarkably from one another, as shown in the third row
of Fig. 14. In both cases almost all terms in the Rayleigh-
Plesset model play an important role. The difference between
the two regimes is when they come into play and the different
phases of dominance that the individual terms have. For
example, when the bubbles are small, in the cavitation regime,
the acceleration due to the liquid pressure is balanced by the
surface tension and the viscosity which decelerate the growth.
At size ∼12σ, the momentum, viscosity, and surface tension
terms are all contribute equally to balance the growth due to
the liquid pressure. In the boiling regime case, the acceleration
is caused by the bubble gas pressure term and is balanced by
the surface tension and liquid pressure which work to slow
down the growth.

(c) For the boiling regime case, where bubble acceleration
is dominated by diffusion into the bubble due to the vapor
pressure–gas pressure difference (8), the addition of a non-
isothermal gas pressure is necessary because the latent heat
produced by the transformation has lowered the temperature.
This lower gas pressure increases the rate at which diffusion
into the bubble occurs. This is then balanced by an evaporation
efficiency α = 0.4 in order to produce the correct behavior.

Our implementation of the Rayleigh-Plesset bubble growth
model has weaknesses:

(i) While we have attempted to include a nonisothermal
bubble gas pressure, there are other ways nonisothermal effects
would enter in a more complete description. Thermodynamic
quantities such as viscosity and planar surface tension are not at
the run’s average temperature. A more complete heat diffusion
treatment which includes latent heat, compressive heat, and
convective effects and their couplings to the fluid mechanics
of bubble growth, as well as their effects on the Hertz-Knudsen
evaporation relation, would be a more realistic [31,42,54–56],
albeit challenging, approach.

(ii) The compression of the liquid outside the bubble in
T7r2 (discussed in Sec. III) is likely significant enough to
alter the viscosity of the fluid directly outside the bubble, not
only because of the raised temperature but also because of
the raised density [45–49]. The inclusion of a more intricate
viscosity profile may marginally improve the model accuracy
when the bubble growth is rapid, typical for the cavitation
regime.

(iii) The assumption of constant liquid pressure may hurt
the late-time RP evolution. In most runs the pressure is raised
by a few percentages by the end of the simulation. Replacing
Pl with a time-dependent liquid pressure may improve the
evolution prediction late in the run.

(iv) The Rayleigh-Plesset model assumes a Heaviside-like
sharp density profile over the bubble interface. Simulation
and experimental bubbles have interfaces often of order their
sizes. A more realistic model would attempt to provide not
R = R(t) but n = (R,t), i.e., the evolution not of the radius
but the density profile.

(v) At small sizes where the surface tension is important,
and the curvature of the interface significant, a Tolman-
like [50] correction to the surface tension may be more
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FIG. 14. (Color online) Top row: Gas densities solutions, Eq. (8), for the coupled RP-diffusion system. The fit via viscosity μ and α is
done for the bubble sizes (red dots in Fig. 13). The black markers are the final densities measured in Sec. III (black markers). Middle row:
Growth rate solutions. The markers are the measured radial velocity profile excesses, detailed in Sec. IV, and show good agreement with the
Rayleigh-Plesset solution. Notice that the RP solution does not quite reach the linear growth regime, especially for T85r3. This means that
the linear-regime growth estimates in Sec. VI A should be taken as upper bounds when comparing to the bubble growth rates at the end of
each run. Bottom: The acceleration breakup of the competing influences which make up the RP model, in other words, the right-hand-side of
Eq. (5). These panels illustrate the contrast in bubble growth influence factors in the boiling vs cavitation regimes. The black line is the total
acceleration (the sum of the others).

realistic [21,25,51–53] and could be included in the surface
tension in the Rayleigh-Plesset equation. Similarly, curvature
could affect the vapor pressure of small droplets [42,51].

(vi) The RP model implementation relies on knowing
the bubble gas pressure, entering in both the Rayleigh-
Plesset as well as the Hertz-Knudsen equations. For small

bubbles this fluid is an intermediate phase, whose equation
of state is unknown. A better understanding of this fluid,
such as numerical simulations which measure pressure tensors
directly for these small bubbles, would improve the model
accuracy. Alternatively, in the boiling regime, by using energy
conservation it may be possible to relate the bubble growth to
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energy flux and use the Hertz-Knudsen relation to determine
the bubble gas pressure [43].

VII. CONCLUSIONS

Our simulations have allowed us to measure the properties
of bubbles in 2.5σ cutoff TSF-LJ simulations. An understand-
ing of the bubble properties will help to identify weaknesses
in bubble nucleation and evolution models. We summarize our
most interesting findings below.

(i) Fast growing bubbles (typically in the cavitation
regime) create a shock wave in the liquid, evident due to a 5%
overdensity in the liquid surrounding the bubble. This induces
compression heating of the surrounding liquid, also up to 5%.

(ii) Bubble gas temperatures are 20% lower than the
ambient run temperatures. They continue to drop as the bubbles
grow. This internal temperature drop is due to the latent heat
of transformation.

(iii) Bubble gas densities are lower than expected from
bulk simulations at the simulation average temperature, yet do
agree with the densities expected from bulk simulations at the
reduced temperatures.

(iv) Liquid-gas interfacial transition regions are measured
to be 50–80% thinner than measured from slab coexistence
simulations at the target temperature. They agree well with
slab predictions for the lower temperatures found in the gas
and the interface.

(v) We measure a critically sized bubble to have axis
ratios a/c = 0.48 and b/c = 0.58, which correspond to an

ellipsoidal shape, contrary to the spherical assumption used
by most nucleation models. The bubbles quickly become
spherical as they grow.

(vi) The Rayleigh-Plesset bubble growth model exhibits
good agreement with the linear regime growth rates (within
20%) in the cavitation regime. For the boiling regime, the
comparison is more difficult. The nonisothermality affects
the diffusion rate into the bubble (the primary growth force),
making computing the linear growth velocities more involved.
Furthermore, our late-stage boiling regime bubbles are not yet
in the linear growth regime.

(vii) The Rayleigh-Plesset bubble growth model is able to
correctly match the intermediate behavior, where surface ten-
sion and viscosity are important for bubble growth, when we fit
for viscosity. The best-fit shear viscosity values are consistent
with those measured in dedicated MD simulations [45,50].
Using a nonisothermal equation of state, in the boiling regime,
the best-fit evaporation efficiency is α = 0.41 ± 0.03. For the
cavitation regime case which we analyze, we find a best-fit
evaporation efficiency greater than unity, α = 1.69 ± 0.34.
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