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Bright solitons in nonlinear media with a self-defocusing double-well nonlinearity
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We show that stable bright solitons can appear in a medium with spatially inhomogeneous self-defocusing
(SDF) nonlinearity of a double-well structure. For a specific choice of the nonlinearity parameters, we obtain
exact analytical solutions for the fundamental bright solitons. By making use of the linear stability analysis, the
stability region in the parameter space for the exact fundamental bright soliton is obtained numerically. We also
show the bifurcation from an antisymmetric to an asymmetric bright soliton for the SDF double-well nonlinearity.
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I. INTRODUCTION

Solitons are important nonlinear waves and appear in
various physical systems, such as Bose-Einstein condensate
(BEC) [1–4] and optical systems [5,6]. In certain situations
for these systems, a nonlinear Schrödinger equation (NLSE)
provides a fundamental model for investigating the properties
of solitons. It is well-known that, in NLSEs with spatially
homogeneous nonlinearity and no linear external potentials,
self-focusing (SF) and self-defocusing (SDF) nonlinearities
support bright and dark solitons, respectively.

Recently, solitons in nonlinear media with spatially inho-
mogeneous nonlinearity have attracted extensive interest [7].
In comparison with uniform nonlinearity, nonuniform non-
linearity may lead to many novel and interesting effects.
For example, in nonlinear lattices where nonlinearity varies
periodically in space, solitons may exist with an arbitrarily
small value of the norm [8]. If the modulation strength for
nonlinear lattices is strong enough, all Bloch waves become
dynamically unstable [9]. In addition, it has been shown that
nonuniform nonlinearity can strongly modify the condition
for the existence of solitons. It has been found that in
nonuniform conservative systems a purely SDF nonlinearity
can support stable bright solitons [10,11]. The formation
of stable bright solitons requires diverging nonlinearities.
Several different types of such nonlinearities have been
discussed [10–22]. In certain situations, exact analytical
results for bright soliton solutions have been obtained. In
most of these previous works, spatially inhomogeneous SDF
nonlinearities display a single-well structure, including anti-
Gaussian [10,12,15,17,18], exponential [10,14,20–22], and
algebraic [11,16,22] nonlinearities.

In this article, we consider a type of spatially inhomoge-
neous SDF nonlinearity with a double-well structure. The SDF
double-well nonlinearity provides a previously unexplored
setting where solitons can be studied. It is shown that
stable bright solitons can appear in such a SDF double-well
nonlinearity. In particular, it is found that, for a specific choice
of the nonlinearity parameters, exact analytical solutions for
fundamental bright solitons can be obtained. With the linear
stability analysis, we present the boundary between the stable
and unstable region in the parameter plane for the exact
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fundamental bright soliton. In addition, we show that beyond
a critical norm, antisymmetric solitons with one node become
asymmetric. This effect is related to the bifurcation from an
antisymmetric to an asymmetric soliton.

II. BRIGHT SOLITONS IN A SELF-DEFOCUSING
DOUBLE-WELL NONLINEARITY

We consider the nonlinear optical system where the light
is propagating along the z direction and strongly localized in
the y direction. The light propagation in the nonlinear media
is thus described by the NLSE [5–7]

i
∂ψ

∂z
= −∂2ψ

∂x2
+ g(x)|ψ |2ψ, (1)

where ψ(x,z) is the scaled field amplitude and g(x) is the
nonlinear refractive index profile along the x direction. In
optical systems, one can use inhomogeneous doping to create
such nonlinearity modulation [23,24]. In BEC systems, the
spatially inhomogeneous nonlinearity may be generated by
using the Feshbach resonance with properly chosen external
fields [25,26]. The soliton solutions to Eq. (1) are written as
ψ(x,z) = φ(x) exp (ibz), where b is the propagation constant
and φ(x) is the real function satisfying the following equation:

bφ − d2φ

dx2
+ g(x)φ3 = 0. (2)

In the present study, we mainly focus on a three-parameter
family of the nonlinearities

g(x) = g0 + g1sech2(x) + g2 cosh2(x). (3)

After a simple calculation, one can find that under the
conditions of g1,2 > 0, g1/g2 > 1, and 2

√
g1g2 + g0 � 0, the

nonlinearity g(x) � 0 displays two local minima at x± =
±arccosh((g1/g2)1/4). If the conditions of g1,2 > 0, g1/g2 � 1,
and g0 + g1 + g2 � 0 are satisfied, the nonlinearity g(x) � 0
has one minimum at x = 0. In the following, we show that for
certain specific values of g0,1,2, the exact analytical solution
for the fundamental bright solitons to Eq. (2) can be obtained
in an explicit form.

It is found that for the special forms of g0,1,2

gex
0 = 2η(κ − 4 − η), gex

1 = 6η + κ, gex
2 = κη2, (4)
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FIG. 1. (a) Four parameter regions for the nonlinearity g(x) in
the plane (κ,η). Here κ1 = (η + 4)2/8(1 + η) with 0 < η � 4 (solid
line), κ2 = 6η/(η2 − 1) with η > 1 (dashed line), and κ3 = 2η/(1 +
η) with η � 4 (dotted line). In the I region, g(x) > 0 displays two
local minima at x± = ±arccosh[(6η + κ)1/4/(κη2)1/4], and in the II
region, g(x) > 0 displays a single minimum at x = 0. (b) Profiles of
the nonlinearity g(x) with κ = 2 for different values of η.

Eq. (2) admits the exact solution for fundamental bright
solitons:

φex(x) = cosh(x)

1 + η cosh2(x)
, (5)

with the propagation constant

bex = 1 − κ. (6)

Here η > 0 and κ > 0 are two new parameters. For the set of
specially chosen parameters (4), we have four different regions
in the parameter plane (κ,η), denoted by I–IV in Fig. 1(a).
The boundary lines between the four regions are determined
by the three curves, κ1 = (η + 4)2/8(1 + η) with 0 < η � 4
(solid line), κ2 = 6η/(η2 − 1) with η > 1 (dashed line), and
κ3 = 2η/(1 + η) with η � 4 (dotted line). At η = 4, we have
κ1 = κ2 = κ3. In the I region, g(x) > 0 displays two local
minima at x± = ±arccosh{[(6η + κ)/κη2]1/4}, and in the III
region, g(x) also has two local minima at x± but with g(x±) <

0. In the II region, g(x) > 0 displays a single minimum at
x = 0, and in the IV region, g(x) has a single minimum at
x = 0 with g(0) < 0. In Fig. 1(b), we show the profiles of
the nonlinearity g(x) with a fixed value of κ = 2 for different
values of η. It is seen that as η is increased, g(x) undergoes
a transition from the I region to the II region, and thus varies
from double well to single well.

An important issue is the stability of the exact solutions.
The stability can be analyzed with the linear stability analysis.
We may perturb them as ψ(x,z) = exp(ibz){φ(x) + [ν(x) −
w(x)] exp(εz) + [ν∗(x) + w∗(x)] exp(ε∗z)} [27], where
|ν|,|w| � 1. Upon substituting this expansion into Eq. (1)
and linearizing it, we obtain the linear stability eigenvalue
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FIG. 2. Boundary line, marked by the circles, between the stable
and unstable exact bright solitons in the parameter space (κ,η).

problem for perturbation growth rates ε [27]:

− i

(
d2

dx2
− b − gφ2

)
w = εν,

−i

(
d2

dx2
− b − 3gφ2

)
ν = εw. (7)

The exact soliton solution is linearly stable if and only if there
are no eigenvalues ε with a positive real part. We may compute
numerically the eigenvalues by using the Fourier collocation
method [27]. With linear stability analysis, we can numerically
find the boundary line for the stable and unstable exact bright
solitons. In Fig. 2, the circles are for the numerical results for
the boundary line in the parameter plane (κ,η). It is observed
that the exact fundamental bright soliton is stable in both the I
and II regions.

Now we give a brief discussion about the properties of the
exact bright soliton. In the range of 0 < η < 1, the exact bright
soliton φex(x) displays two peaks at xp

± = ±arccosh[(1/η)1/2],
and in the range of η � 1, it displays a single peak at
x = 0. The propagation constant bex for the exact solution
is less than zero, bex = 1 − κ < 0, in the I and II regions
with κ > 1. The obtained fundamental bright soliton has
the asymptotical behavior φex(x) → sech(x) as x → ±∞.
For families of fundamental bright solitons for the SDF
nonlinearity g(x) > 0, these results can also be understood
with the Thomas-Fermi (TF) approximation which neglects
the diffraction term in Eq. (2) [11]. This approximation leads to
the explicit expression for the spatial shape of the fundamental
solitons:

φTF(x) =
√−b√

g0 + g1sech2(x) + g2 cosh2(x)
. (8)

This result tells us that the fundamental bright solitons exist
for b < 0 and vary as φTF(x) → sech(x) as x → ±∞.

If the parameters g0,1,2 and b are different from those in
Eqs. (4) and (6), exact solutions for bright solitons are not
available at present. In principle, one can use the numerical
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FIG. 3. (a)–(d) Profiles of the antisymmetric and asymmetric
solitons for fixed values of η = 0.1 and κ = 2. In panel (a), b = −0.8,
and in panels (b)–(d), b = −1.2. The bottom panels are the linear
stability for panels (a)–(d). In panels (a)–(d), the dotted lines denote
the double-well nonlinearities g(x) > 0.

methods to find various types of solitons. In Figs. 3(a)–3(d),
we show the profiles of the bright solitons with one node
for two different values of b = −0.8 and b = −1.2 with
fixed values of η = 0.1 and κ = 2. Their stability is given
in the bottom panels of Fig. 3, where εr and εi are the
real and imaginary parts of ε. In the case of b = −0.8, the
antisymmetric bright soliton is stable. In the case of b = −1.2,
the corresponding antisymmetric bright soliton is unstable,
and a stable asymmetric bright soliton appears. To quantify
the asymmetry of these asymmetric solitons, we define the
population imbalance in the nonlinear double wells as

	 =
∫ 0
−∞ φ2(x)dx − ∫ ∞

0 φ2(x)dx∫ ∞
−∞ φ2dx

, (9)

where U = ∫ ∞
−∞ φ2dx is the norm of the soliton. In Fig. 4,

we display the population imbalance 	 and norm U as a
function of b for the antisymmetric solitons with one node.
It is found that there is a symmetry breaking (pitchfork
bifurcation) for the antisymmetric bright soliton [28]. As b

is decreased below a certain critical value of bc ≈ −0.84, the
stable asymmetric solitons appear, while the originally stable
antisymmetric bright solitons become unstable. The critical
value bc is related to the critical value Uc ≈ 4.65. For the
fundamental bright solitons, the symmetry breaking does not
happen.

Our results can also be illustrated by direct numerical
simulations of Eq. (1) by making use of the operator-splitting
method. In Fig. 5, we show the stable and unstable propagation
of the exact fundamental solitons for two sets of parameters,
respectively. The first set of parameters is chosen as η = 0.1
and κ = 2 in the stable I region. The second set of parameters
is given as η = 0.1 and κ = 1.1 in the unstable space of the
III region. It is found that the unstable soliton evolves into
the asymmetric state. This is possibly due to the presence of
stable asymmetric solitons, as shown in Figs. 6(b) and 6(c).
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FIG. 4. (a) The population imbalance 	 of the antisymmetric
and asymmetric bright solitons with one node as a function of b with
η = 0.1 and κ = 2. (b) The norm of the bright solitons as a function
of b. In panel (b), the dashed line denotes the unstable antisymmetric
bright solitons, and the dashed-dotted line is for the fundamental
bright solitons.

The unstable fundamental bright soliton is driven near certain
one branch of the asymmetric solitons under the action of
the noise. We note that for the second set of parameters, we
have g(x) < 0 in certain small regions, as shown in Fig. 6.
This means that although the SDF nonlinearity is dominant,
the fundamental bright solitons undergo a bifurcation under
certain conditions. This issue shall be discussed in detail in a
future study.

In our previous discussions, the SDF double-well nonlin-
earity g(x) in Eq. (3) is of the exponential shape. In fact, there
exist other forms of the nonlinearities g(x) with a double-well
structure which support exact bright soliton solutions. For

FIG. 5. (Color online) A contour plot of |ψ(x,z)|2 demonstrating
the stable and unstable propagation of the exact fundamental bright
soliton. In panel (a), η = 0.1 and κ = 2, and in panel (b), η = 0.1
and κ = 1.1.
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FIG. 6. (a)–(c) Profiles of the fundamental solitons for fixed
values of η = 0.1, κ = 1.1, and b = 1 − κ = −0.1. The bottom panel
is the linear stability of panels (a)–(c). In panels (a)–(c), the dotted
lines show the double-well nonlinearities.

example, if the nonlinearity has the anti-Gaussian form,

g(x) =
(

4κ2/η

(1 + ηx2)
− 4κ2/η

(1 + ηx2)2
+ 8κ + 2η

(1 + ηx2)3

)
e2κx2

,

(10)

exact solution for the fundamental bright solitons is
available:

φ(x) = e−κx2
(1 + ηx2), (11)

with b = −10κ . Under certain parameter conditions, for
example, η > κ > 0, g(x) > 0 shows a double-well structure,
and φ(x) has two peaks. For the algebraic nonlinearity

g(x) = g0 + g1

1 + ηx2
+ g2

(1 + ηx2)2
+ g3

(1 + ηx2)3
+ g4x

2,

(12)

with

g0 = κ
η2

2

η2
1

+ 2
η2

2

η1
+ 2κ

η2

η1

(
1 − η2

η1

)
,

g1 = η2

η1
(3η2 − 6η1), g2 = 6

η2

η1
(η1 − η2),

g3 = 6
η2

η1
+ η1 − 2η2, g4 = κ

η2
2

η1
,

we may obtain an exact solution for the fundamental bright
solitons:

φ(x) =
√

1 + η1x2

1 + η2x2
, (13)

with b = −κ . Under certain conditions, g(x) > 0 is of a
double-well structure, and φ(x) has two peaks.

III. CONCLUSION

In conclusion, we have shown that stable bright solitons
can exist in spatially inhomogeneous SDF nonlinearity with a
double-well structure. Under certain special conditions of the
nonlinearity parameters, we have presented an exact analytical
solution for fundamental bright solitons. The stability of the
exact fundamental bright solitons is analyzed numerically
by means of linear stability analysis and direct numerical
simulation. In addition, it is found that the bifurcation of
antisymmetric solitons occurs, but is absent for fundamental
solitons.
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