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Ultrashort optical waveguide excitations in uniaxial silica fibers: Elastic collision scenarios
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In this work, we investigate the dynamics of an uniaxial silica fiber under the viewpoint of propagation of
ultimately ultrashort optical waveguide channels. As a result, we unveil the existence of three typical kinds
of ultrabroadband excitations whose profiles strongly depend upon their angular momenta. Looking forward
to surveying their scattering features, we unearth some underlying head-on scenarios of elastic collisions.
Accordingly, we address some useful and straightforward applications in nonlinear optics through secured data
transmission systems, as well as laser physics and soliton theory with optical soliton dynamics.
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I. INTRODUCTION

One trend in the development of modern laser physics and
coherent nonlinear optics is the formation of light pulses with
shorter and shorter durations. Advances made in the realm of
laser technologies make it possible to perform experimental
investigations into the processes of nonlinear interactions
between matter and electromagnetic waves. Now pulses
containing only few periods of electromagnetic oscillations
can be generated in the laboratory [1].

The propagation of ultimately short pulses in a medium
actually reveals its nonlinear properties owing to their high
power ∼1013˜W cm−2. The short absolute duration of such
pulses leads in turn to a delay in the medium’s polarization
response, i.e., to a dispersion effect. In the present work,
we report some interesting properties of the silica optical
fibers within the viewpoint of propagation of ultimately short
excitations (USEs) in the medium.

As is well known in the literature, the tradeoff between the
dispersion tendency to flatten the wave, and the nonlinearity
tendency to increase the wave slope, can result in the formation
of robust solitons, i.e., stable solitary waves that can propagate
with a constant velocity and interact elastically with similar
waves. These robust properties point to the possibility of
effectively applying USEs to optical communication systems
[2]. The possibility of soliton modes of propagation of such
USEs in various nonlinear media stands to be one of the most
important and interesting questions in this connection. Due
to the fact that the well-developed nonlinear optics formalism
of approximation of a slowly varying wave-field amplitude
is inapplicable in extremely short durations, the theoretical
analysis of physical phenomena arising in the interactions of
USE becomes very complicated and delicate.

In nonlinear optics, the propagation equation governing the
evolution of complex envelope of optical pulses plays a key
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role. Such an equation would contain only the first derivative
with respect to the spatial coordinate along the propagation
direction in the situation where the assumption of slowly
varying envelopes is made. This offers in turn a great benefit
with substantial smaller computational effort than Maxwell’s
wave equations [3]. Vector-polarized solitons represent a
very important class of localized solutions as the nonlinear
birefringence induced by the optical Kerr effect becomes
significant and polarization evolution altered drastically [4].
This can provide a new dimension of laser parameters while
allowing quantum control in molecules and nanostructures
[5,6].

The conversion of envelope solitons described by the
nonlinear Schrödinger equation and its modifications to wave
solitons containing a few oscillation cycles is an interesting
and important step in the theory of nonlinear wave phenomena
[7]. In this context, Kartashov et al. [8] found a newly
class of few-cycle solitary solutions of the wave equation
with Kerr-type nonlinearity that describes the propagation of
electromagnetic pulses of a circularly polarized field. In the
present work, we aim at discussing the above analysis for the
silica optical fiber dynamics within a well-defined frequency
range of the visible. We want to show that the previous uniaxial
fibers can support the propagation of an arbitrary typical
polarization field described by USEs whose profiles strongly
depend upon their angular momenta. We then need to study
in detail the interacting features of these structures which,
are very important in ultrafast communication systems with
superdense information packing.

Accordingly, the paper is organized as follows. In Sec. II,
focusing the study on the plane-wave dynamics propagating
along the longitudinal axis of the aforementioned linear silica
fiber, we derive the basic nonlinear system of equations de-
scribing the dynamics of each modal component of the electric
field in an account of the short-wavelength perturbation. In
this section, we pay particular interest to the fundamental field
mode while transforming its governing dynamical equation to
a simpler and more manageable one. In Sec. III, we present
the results of our analysis and we make a discussion of these
features while determining the shifts of the individual solitons
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in interaction. The details of the derivation of these results
are presented in the Appendix for a better understanding of
the above features. Finally, in the last section, we end this
work with a brief summary while addressing some underlying
and straightforward applications in nonlinear optics through
secured data transmission systems, as well as laser physics
and soliton theory with optical soliton dynamics.

II. ELECTRIC FIELD MODAL SYSTEM

Considering a nonmagnetic dielectric isotropic medium,
Maxwell’s equations of the electromagnetic wave propagation
in such a milieu are easily reduced to the form

∇ × ∇ × E + μ0Dt t = 0, (1)

where vector E is the electric field of the light wave, electric
induction D characterizes the response of the medium, and
constant μ0 is the magnetic permeability of vacuum. The
variable t stands for the time coordinate. We also mention that
the subscripts with respect to the spacetime variables refer to
their partial derivatives.

Theoretical studies of extremely short waves are most fully
developed for plane waves. This approximation is actually
consistent with fundamental mode dynamics in guiding struc-
tures such as hollow-core waveguides when the input power
is below the critical power for self-focusing, and also where it
is possible to neglect the longitudinal field component. Based
upon the above assumption where we consider vector E(x,t) =
Ey(x,t)ey + Ez(x,t)ez, unit vectors ey and ez spanning the
perpendicular plane to the propagation axis, the wave equation
(1) becomes

Exx − Et t /c
2 = μ0

(
PL

tt + PNL
tt

)
, (2)

where variable x denotes the spatial coordinate in the direction
of propagation, and vector PL represents the linear part of the
medium polarization, expressed as (see Ref. [9] and references
therein)

PL(x,t) = ε0

∫ t

−∞
χ (1)(t − t ′)E(x,t ′) dt ′, (3)

in such a way that to enforce causality, the susceptibility χ (1)

must satisfy χ (1)(t ′) = 0 if t ′ < 0. Typically, for silica fibers
and for light in the visible to mid-infrared range, the Fourier
transform χ̂ (1) of the susceptibility χ (1) can be expressed as
[9]

χ̂ (1)(λ) = 0.696λ2

λ2 − 0.06842
+ 0.4079λ2

λ2 − 0.1162
+ 0.8974λ2

λ2 − 9.8962
,

(4)

where λ is the wavelength of light satisfying to 0.25 μm < λ <

3.5 μm. Within the infrared range 1600–3000 nm, Eq. (4) is
approximated by [10]

χ̂ (1)(λ) � χ̂
(1)
0 − χ̂

(1)
2 λ2, (5)

where χ̂
(1)
0 = 1.1104 and χ̂

(1)
2 = 0.010 63 μm−2.

In general, in the case of few-cycle vector solitons with
arbitrary polarization, the nonlinear part PNL of the medium
polarization appearing in Eq. (2) above satisfies [11,12]

∂tPNL = α|E|2Et + βE × (E × Et ), (6)

with the constants α and β representing the cœfficients of
the instantaneous nonlinearity of the medium polarization
response. These parameters actually characterize the electronic
and electronic-vibrational nonlinearity on the evolution of a
light signal in a medium, respectively [13]. As the duration
of ultrashort excitations decreases, the relative influence
of the character of the self-action of the waves decreases
significantly. In this context, the parameter β mentioned
previously can be neglected. We note that for the case of a
transparent medium as it is considered presently, the parameter
α is always positive-valued, i.e., α > 0 and proportional to the
third-order susceptibility χ (3) of the medium [14].

Based upon the approximation of the susceptibility given
by Eq. (5), the Fourier transform of the linear part of Eq. (2)
is given by

Êxx + (
1 + χ̂

(1)
0

)
(ω2/c2)Ê − (2π )2χ̂

(1)
2 Ê = 0, (7)

where the angular frequency ω = 2πc/λ, and Ê is the
Fourier transform of the field E. Setting the constants c1 =
c/

√
1 + χ̂

(1)
0 ≡ 2.065 × 108 ms−1 and c2 = 1/2π

√
χ̂

(1)
2 ≡

1.59 μm, we account for the nonlinear term in the polarization
by taking the inverse Fourier transform of Eq. (7) so as to yield

Exx = Et t /c
2
1 + E/c2

2 + α(|E|2Et )t , (8)

which stands for an accurate approximation of the reductive
Maxwell’s equation (1) of vector ultrabroadband optical
waveguide channels propagating in the silica fiber within the
1600–300 nm wavelength regime.

For a better investigation of the wave propagation in the
silica fiber above, it is suitable to get its linear behavior by
sending in the medium a light wave of the form A exp(ıωt +
ıκx) where constant vector A is arbitrary, and quantities ω and
κ here stand for the angular frequency and the wave number
of the plane wave. Also ı2 = −1. Hence, it becomes

ω2/c2
1 = 1/c2

2 + κ2, (9)

standing for the dispersion relation whose representation is
depicted in Fig. 1. From this figure, when ω → ∞, the angular
frequency is proportional to the wave number. We will be
interested in studying this short-wave limit. Thus, suppose
κ ∼ κ0/ε with ε � 1, and furthermore that ω(κ) is bounded
or has a pole of at least order one in κ; that is to say, we could
write

ω = ω−1/ε + ω1ε + · · · . (10)

This assumption corresponds just to the requirement that
short waves exist in the linear limit. With such a dispersion
relation, we have that the phase velocity and the group velocity
are always bounded in the short-wave limit. This results to
finite velocity propagation of geometrical characteristics and
of energy. Thus, replacing the expression given by Eq. (10)
into the dispersion relation above provides ω−1 = ±c1κ0

and ω1 = ±c1/2c2
2κ0. We note that the constant κ0 can be

calculated as κ0 = 2π/λ0 with λ0 = 9.896 μm. Consequently,
the phase ı(ωt + κx) ≡ ıκ0(x ± c1t)ε−1 + ıω1(εt). With such
an expression, we can introduce two independent variables X

and T defined as

X = (x ± c1t)/ε, T = tε, (11)
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FIG. 1. (Color online) Dispersion relation and wave steepening. (a) Dispersion relation; (b, c) 3D representation of the steepening
of an initially singlevalued profile to a multivalued one. In the numerics, we have arbitrarily considered the initial condition E(ξ,0) =
exp(ıξ )/

(
1 + ξ 2

)
.

to study in detail the full nonlinear system. Accordingly, it is
suitable to expand the vector field E as E = ∑∞

n=1 Enε
n for

ultrabroadband optical excitations. Thus, transforming Eq. (8)

in terms of the new variables above while collecting the terms
of order εn, n = 1,2,3, . . . , we obtain the generic governing
equation of each mode En as follows:

− (2/σ )En,XT = En/c
2
2 + En−2,T T /σ 2 + α

(
n−1∑
m=4

m−1∑
l=3

(En−m · Em−lEl−2,T )T

+2σ

n−1∑
m=2

m−1∑
l=1

(En−m · Em−lEl,X)T + σ 2
n−1∑
m=0

m−1∑
l=−1

(En−m · Em−lEl+2,X)X

)
, (12)

where constant σ = ±c1. As a matter of illustration, we
provide below the equations for the three first modes, i.e.,
n = 1, n = 2, and n = 3:

(i) For n = 1, we find
− (2/σ )E1,XT = E1/c

2
2 + ασ 2(|E1|2E1,X)X. (13)

This fundamental mode can also be derived from the viewpoint
of another physical onset based upon the excitation-dependent
refractive index of a two-level system (TLS) [15]. In this
base point, the reduced Maxwell-Bloch equations are derived,
accordingly. The mathematical equivalence is achieved under
the assumption that the TLS polarization PTLS = d21ρ12 +
d12ρ21 is proportional to |E|2Et , where d12 and d21 are elements
of the dipole matrix, and ρij (i,j = 1,2) is the density matrix of
the TLS. However, this condition does not hold systematically
for all material and details need to be specified structurally in
order to ensure such an assumption.

(ii) For n = 2, we find
−(2/σ )E2,XT

= E2/c
2
2 + ασ 2[(|E1|2E2,X)X + 2(E1 · E2E1,X)X].

(14)

(iii) For n = 3, we find
−(2/σ )E3,XT

= E3/c
2
2 + E1,T T /σ 2 + ασ 2[(|E1|2E3,X)X + (|E2|2E1,X)X

+ (2/σ )(|E1|2E1,X)T + 2(E1 · E3E1,X)X

+ 2(E1 · E2E2,X)X]. (15)

The process can continue for n � 4.

We pay particular interests to the fundamental mode n =
1, which actually stands for the “seed” mode of the whole
system. In fact, getting inside its whole dynamics suffices to
generate the other modes. This constitutes our present concern.
Selecting arbitrarily the constant σ = −c1 within Eq. (12), we
derive the following complex-valued evolution equation:

Eτ − (1/2)EE�Eξ −
∫ +∞

−∞
K(ξ − s)Es(s,τ ) ds = 0, (16)

provided E = E
y

1 + ıEz
1 (ı2 = −1), ξ = X/(c1c2

√
2α), and

τ = (c2
1

√
α/2)T/c2. Note that the star (�) symbol refers to the

complex conjugation. The function K represents the kernel
of the above integral term defined by K(s) = |s|/2. The
introduction of the kernel actually assumes that the observable
E asymptotically decreases rapidly. The form given by Eq. (16)
is very convenient for a proper discussion of the existence of
traveling waveguide excitations which would result from the
tradeoff between the nonlinearity and the dispersion.

Let us provide a straightforward analysis of the system (16).
We consider a single model equation given by

Eτ − (1/2)EE�Eξ = 0, (17)

which is free from any dispersion and dissipation. Thus, any
initial smooth solution with vanishing boundary conditions,
i.e., limξ→±∞ E = 0 + ı0, becomes ambiguous in the final
analysis. This stems from the dependency of the absolute
wave-front velocity to the square amplitude EE�. A graphical
representation of such features is depicted at Fig. 1 showing
how an initial single-valued profile deforms or steepens as time
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FIG. 2. (Color online) Rotating one-breather-like soliton with hump envelope depicted at times τ = −250,0,250 (a, b, c) corresponding
to three moving states represented by magenta (thin line), black (small thickness), and green (large thickness), respectively. The parameters
μ = 4 and Re(κ) = 0.3 are selected such that the computed angular velocity of such a solitary wave is � = 0.2493. The energy functional
of these waves is depicted in panel (d) with the specified colors above. The solid line, dotted line, and broken line refer to their total energy,
kinetic energy, and potential energy densities, respectively.

elapses and at the final analysis becomes multivalued. Now,
when the dissipation ρEξξ (constant ρ 
= 0) is considered,
the resulting equation becomes the modified complex-valued
Burgers system [16]. The inclusion of this dissipative term
transforms the solutions so that they cannot be ambiguous as a
result of evolution. Following this analysis, the question log-
ically arises whether the inclusion of the integral term would
give rise to unambiguous solutions or rather coherent profiles.
From the mathematical point of view, the ambiguous solutions
do not present difficulties while the physical interpretation
of ambiguity always has some difficulties. Thus, the problem
of ambiguous solutions is regarded to be underlying. It is
actually questionable whether the ambiguity has a physical
nature or is related to the incompleteness of mathematical
models, particularly to the lack of dissipation.

III. RESULTS AND DISCUSSIONS

In order to properly investigate the variations of the first
modal electric field above, we use Hirota’s bilinearization
method [17] under the boundary conditions E → 0 + ı0 as
ξ → ±∞. Accordingly, it seems straightforward to try the
solutions to Eq. (16) of the form E = G/F with ξ = y −
2(ln F )τ + ξ0 where constant ξ0 is an arbitrary parameter, and
the dependent functions G and F satisfy the bilinear equations
DyDτG · F = GF and D2

τF · F = GG�/2, symbols Dy and
Dτ referring to Hirota’s operators [16] with respect to the
arbitrary implicit variable y and time τ , respectively. The
motivation of choosing the form of E has been pointed
out previously while discussing the effect of nonlinearity.
According to the usual procedure, the dependent functions
G and F should be expanded into suitable power series of a
perturbation parameter. In addition, Eq. (16) has a canonical
formulation: the Lagrangian L and the Hamiltonian H of the
system can easily be found. Noticing that the system is natural,
the potential V and the kinetic T energy densities of the
system derive straightforwardly from the relations V = (H −
L)/2 and T = (H + L)/2. Actually, the individual excitations
parameters are explicitly given by the complex-valued wave

number κ = Re(κ) + ı
√

μ2 − Re(κ)2 and frequency ω =
vRe(κ) + ı� with constant μ being an arbitrary parameter.
The linear velocity and the angular velocity are expressed
as v = −1/μ2 and � =

√
μ2 − Re(κ)2/μ2, respectively. It

should be noted that −μ � Re(κ) � μ, provided μ > 0. The
discussion below of the different features depicted by the
electric field E is done in account of the different values taken
by the above parameters with respect to the “single” wave
motion of the observable E and its scattering scenarios.

While determining the operator ∂ξ = ∂y/[1 − 2(ln F )τy], it
appears straightforward to introduce a parameter λ defined as
λ = −2vRe(κ)2. Accordingly, we found three important cases
to be properly investigated:

(a) For λ < 1, the rotating one-soliton solution has the
form of a breather with hump envelope in such a way
that the parameter Re(κ) satisfies to the following condition
−μ/

√
2 � Re(κ) � μ/

√
2. The illustration is presented in

Fig. 2 showing the breather states with hump envelope at
τ = −250, τ = 0, and τ = 250 associated to magenta (thin
line), black (small thickness) and green (large thickness),
respectively. The angular velocity of these waveguide channels
is given by � = 0.2493 showing that they rotate clockwise
around the ξ axis. The energy functional of these waves is
depicted in Fig. 2 showing a negative-valued potential energy
which actually ascribes a relative stability to such a waveguide
channel.

(b) For λ = 1, the rotating one-soliton solution has the
form of a breather with cusp envelope in such a way that the
parameter Re(κ) satisfies Re(κ) = ±μ/

√
2. The illustration

is presented in Fig. 3 showing the breather states with
cusp envelope at τ = −20, τ = 0, and τ = 20 associated
to magenta (thin line), black (small thickness) and green
(large thickness), respectively. The angular velocity of these
waveguide channels is given by � = 0.1768 showing that they
rotate clockwise around the ξ axis. The energy functional of
these waves is depicted in Fig. 3 showing a negative-valued
potential energy which actually ascribes a relative stability
to such a waveguide channel. However, comparing the two
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FIG. 3. (Color online) Rotating one-breather-like soliton with cusp envelope (thin black line) depicted at times τ = −20,0,20 (a, b, c)
corresponding to three moving states represented by magenta (thin line), black (small thickness), and green (large thickness), respectively. The
parameters μ = 4 and Re(κ) = 2.8284 are selected such that the computed angular velocity of such a solitary wave is � = 0.1768. The energy
functional of these waves is depicted in panel (d) with the specified colors above. The solid line, dotted line, and broken line refer to their total
energy, kinetic energy, and potential energy densities, respectively.

potential energies above, it appears that the first configuration
is the most stable one.

(c) For λ > 1, the rotating one-soliton solution has the
form of a loop in such a way that the parameter Re(κ) satisfies
the following condition Re(κ) ∈] − μ, − μ/

√
2[∪]μ/

√
2,μ[.

The illustration is presented in Fig. 4 showing the breather
states at τ = −250, τ = 0, and τ = 250 associated to magenta
(thin line), black (small thickness) and green (large thickness),
respectively. The angular velocity of these waveguide channels
is given by � = 0.0556 showing that they rotate clockwise
around the ξ axis. The energy functional of these waves is
depicted in Fig. 4 showing a potential energy likely to take
negative or positive values with respect to the propagating
amplitudes. Thus, comparing the potential energies above, it
appears that this configuration is less stable than the first ones.

One physical comment which stems from the above profiles
is that the electric field excitations can be produced as short as
to reach a one-cycle period as shown in Fig. 3. However, though
the energy functionals show that the most stable profile is that
of Fig. 2, by tuning suitably the parameter 1/Re(κ) to small

values, i.e., reducing the length of the wave train significantly,
one would hence generate a very shorter single-valued light
wave for an ultrabroadband optical soliton very close to the one
presented in Fig. 3. Now, concerning the multivalued wave of
Fig. 4, it is actually questionable whether the silica optical fiber
would support such an excitation. As far as we are concerned,
no experimental investigation of such kind of structures in
optics propagation has been reported. However, in a recent
pioneering analysis, some complex multivalued excitations
have been unearthed in the light fields analytically by Kedia
et al. [18] as a new family of null solutions to Maxwell’s
equations in free space whose field lines encode all torus
knots and links. Actually, the relation between the multivalued
solutions above and the knot solutions derived by Kedia et al.
[18] are not well founded owing to the fact that knot solutions
are essentially three-dimensional. Nonetheless, the existence
of the knot solutions indicates that even singular short waves
with infinite derivatives at some localized points can be
solutions to the Maxwell’s equations. While the question
logically arises whether the lower-dimensional Maxwell’s
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FIG. 4. (Color online) Rotating one-loop soliton solution depicted at times τ = −20,0,20 (a, b, c) corresponding to three moving states
represented by magenta (thin line), black (small thickness), and green (large thickness), respectively. The following parameters μ = 4 and
Re(κ) = 3.9 are selected such that the computed angular velocity of such a solitary wave is � = 0.0556. The energy functional of these waves
is depicted in panels (d), (e), and (f) with the specified colors above.
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equations can support such ambiguous short waves, Sazonov
and Ustinov [19] investigated recently the propagation of
extremely short looplike solitons in a “biaxial” crystal under
the conditions of conical refraction. They performed the
physical analysis of these multivalued waves while reporting
their physical sense for the one-dimensional medium (optical
fiber). However, the worth interesting and challenging work to
do is to setup experiments in the context in order to measure
experimentally the time durations of such short waves, and
then compare with the analytical values. This is currently under
investigation.

Now, let us analyze how the above traveling structures
would behave in the silica optical fiber when they head-on to
each other. This analysis would actually open some interesting
perspectives in the area of optical communication systems.
In such a context, we first discuss the space shifts of each
interacting excitations. The problem is addressed in terms of an
asymptotical consideration of the expression of the two-soliton
solution to the previous system. Thus, we assume that v2 < v1

[with Re(κm) > 0,m = 1,2] meaning that the soliton 2 is
moving faster than the soliton 1. With such an hypothesis
which does not breakdown the generality, the shifts δ1 and δ2

of the previous solitons expressed within the (ξ,τ ) coordinates
are easily found in the following way.

(i) We consider that only the phase Re(θ2) varies. Naturally,
the phase Re(θ1) is constant.

(a) In the limit τ → −∞, i.e., Re(θ2) → +∞, it be-
comes

E → C2 exp[ıIm(θ1) − δ11 − δ12]

2A2
sech [Re(θ1)+δ11+δ12] ,

(18a)

z → y − 4Re(ω2) − 2∂τ ln[1+ exp (2Re(θ1)+2δ11+2δ12)],

(18b)

where δ11 = (1/2) ln A1 and δ12 = (1/2) ln(B12/A1A2).
(b) In the limit τ → +∞, i.e., Re(θ2) → −∞, it be-

comes

E → exp[ıIm(θ1) − δ11]

2
sech [Re(θ1) + δ11] , (19a)

z → y − 2∂τ ln {1 + exp[2Re(θ1) + 2δ11]} . (19b)

Consequently, the phase-shift of the soliton moving with
velocity v1 is

Re(�φ1) = −4Re(κ1)Re(ω2) + 1

2
ln

(
B12

A1A2

)
,

Im(�φ1) = −4Im(κ1)Re(ω2) − ı ln

[
A12(ω1 − ω2)2

|A12||ω1 − ω2|2
]

.

(20)

The term Re(�φ1) represents the shift due to nonlinear
interactions in the (y − τ ) spacetime, while the other term
Im(�φ1) is due to rotation. Returning to the initial variables
ξ and τ , the shift in space of the previous soliton is hence

δ1 = −4Re(ω2) + 1

2Re(κ1)
ln

(
B12

A1A2

)
. (21)

(ii) We now consider that only the phase Re(θ1) varies.

(a) In the limit τ → −∞, i.e., Re(θ1) → −∞, it be-
comes

E → exp[ıIm(θ2) − δ22]

2
sech [Re(θ2) + δ22] , (22a)

z → y − 2∂τ ln {1 + exp[2Re(θ2) + 2δ22]} , (22b)

where δ22 = (1/2) ln A2.
(b) In the limit τ → +∞, i.e., Re(θ1) → +∞, it be-

comes

E → C1 exp[ıIm(θ2) − δ22−δ12]

2A1
sech [Re(θ2)+δ12+δ22] ,

(23a)

z → y − 4Re(ω1) − 2∂τ ln {1+ exp[2Re(θ2)+2δ12+2δ22]} .

(23b)

Hence, the phase shift of the soliton moving with velocity
v2 is

Re(�φ2) = −4Re(κ2)Re(ω1) + 1

2
ln

(
B12

A1A2

)
,

Im(�φ2) = −4Im(κ2)Re(ω1) + ı ln

[
A12(ω1 − ω2)2

|A12||ω1 − ω2|2
]

.

(24)

The term Re(�φ2) represents the shift due to nonlinear
interactions in the (y − τ ) spacetime, while the other term
Im(�φ2) is due to rotation. Returning to the initial variables
ξ and τ , the shift in space of the previous soliton is hence

δ2 = 4Re(ω1) − 1

2Re(κ2)
ln

(
B12

A1A2

)
. (25)

In Eqs. (21) and (25), the first term of the shift is due
to two rotating solitons repelling, attracting each other, or
traveling along another. The second terms show the shift
caused by the nonlinear interaction between the solitons. The
ratio of the amplitude of these interacting waves is given
by r = Re(ω2)/Re(ω1). For the discussion of the interacting
features, we arbitrarily select μ1 = 4 and μ2 = 2. This leads
to the ratio r = 4Re(κ2)/Re(κ1). The graphical representation
of the previous shifts is presented at Fig. 5 showing that the
slower soliton always shifts forwards while the faster soliton
can shift forwards or backwards depending upon the ratio of
their amplitudes.

As an illustration of the previous analysis, a two-soliton
solution feature is presented in Fig. 6 which describes the inter-
action between two rotating breathers with humplike envelope
Re(κ1) = 0.3 and Re(κ2) = 0.2 of dissimilar amplitudes with
ratio r = 2.6667. As we can see in this figure, the two single
solitary waves seem to attract each other while moving to
the left-hand side of the ξ axis. In fact, the larger breather
overtakes the small one, and they all overlap in the scattering
area. During this process, they shift forwards with δ1 = 0.0060
and δ2 = 0.2160 as materialized by the density plot, and at
the end of the analysis, they recover their initial shapes. The
angular velocities of these waveguide channels are given by
�1 = 0.2493 and �2 = 0.4975 showing that the larger soliton
precesses greatly than the other as they propagate.
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FIG. 5. (Color online) Shifts δ1 and δ2 of the interacting waveguide channels solutions. From this figure, the shift δ1 (a) is always
positive-valued meaning that the slower soliton is always shifted forwards by the interaction. The faster soliton can however shift forwards or
backwards (b).

In the wake of the above features, another kind of two-
soliton solution feature is presented in Fig. 7 which describes
the interaction between two rotating breathers with cusplike
envelope Re(κ1) = 2.8284 and Re(κ2) = 1.414 of dissimilar
amplitudes with ratio r = 2. As we can see in this figure, the
two single solitary waves attract each other while moving to the
left-hand side of the ξ axis in such a way that the larger breather
overtakes the small one and they all overlap in the scattering
area. During this process, they shift forwards with δ1 = 0.8452
and δ2 = 0.4309 as materialized by the density plot, and at
the end of the analysis, they recover their initial shapes. The
angular velocities of these waveguide channels are given by
�1 = 0.1768 and �2 = 0.3536 showing that the larger soliton
precesses greatly than the other as they propagate.

Finally, we examine in Fig. 8 a typical kind of two-soliton
solution feature which describes the interaction between two
rotating multivalued solitons [20] Re(κ1) = 3.9 and Re(κ2) =
1.9 of dissimilar amplitudes with ratio r = 1.9487. As we can
see in this figure, the two single solitary waves attract each
other while moving to the left-hand side of the ξ axis in such a
way that the smaller soliton travels along the larger one before
being shifted. During this process, they shift forwards with

δ1 = 1.3579 and δ2 = 0.1377 as materialized by the density
plot and at the end of the analysis, they recover their initial
shapes. The angular velocities of these waveguide channels
are given by �1 = 0.0556 and �2 = 0.1561 showing that the
larger loop soliton precesses greatly than the other as they
propagate.

Now, let us extend the previous results to the investigation of
the asymptotical behavior of the three-soliton optical signal, a
solution to the aforementioned system. In this context, without
any loss of generality, we assume that v3 < v2 < v1 [with
Re(κm) > 0,m = 1,2,3], meaning that soliton 3 is moving
faster than the others. With such an hypothesis, the shifts δ1,
δ2, and δ3 of the previous solitons expressed within the (ξ,τ )
coordinates are easily derived as follows:

(a) We consider that only the phases Re(θ2) and Re(θ3)
vary.

(i) In the limit τ → −∞, i.e., Re(θ2) → +∞ and
Re(θ3) → +∞, it becomes

E → exp[ıIm(θ1) + ıψ − δ11]

2
sech [Re(θ1) + ϕ123 + δ11] ,

(26a)

−0.1
0

0.1 τ = −250

−0.1
0

0.1 τ = −125
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−80 −60 −40 −20 0 20 40 60 80
−0.1

0
0.1 τ = 250

ξ

(a) (b)

FIG. 6. (Color online) Rotating two-breather soliton with humplike envelope depicted within the time interval −250 � τ � 250. These
elastic interacting features are depicted with the selected parameters [μ1 = 4,Re(κ1) = 0.3] and [μ2 = 2,Re(κ2) = 0.2] such that the computed
angular velocities of the interacting waves are �1 = 0.2493 and �2 = 0.4975. These amplitudes are dissimilar (r = 2.6667), and they shift
forwards with a rate evaluated as δ1 = 0.0060 and δ2 = 0.2160 as depicted in the right-hand panel of the density plot.
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FIG. 7. (Color online) Rotating two-breather soliton with cusplike envelope (black color) depicted within the time interval −50 � τ � 50.
These elastic interacting features are depicted with the selected parameters [μ1 = 4,Re(κ1) = 2.8284] and [μ2 = 2,Re(κ2) = 1.414] such that
the computed angular velocities of the interacting waves are �1 = 0.1768 and �2 = 0.3536. These amplitudes are dissimilar (r = 2), and they
shift forwards with an amount rate evaluated as δ1 = 0.8452 and δ2 = 0.4309 as depicted in the right-hand panel of the density plot.

z → y − 4Re(ω2 + ω3) − 2∂τ ln {1 + exp[2Re(θ1)

+ 2ϕ123 + 2δ11]} , (26b)

where δ11 = (1/2) ln A11, ψ = −ı ln(F12323/|F12323|) and
ϕ123 = ln(|F12323|/D2323).

(ii) In the limit τ → +∞, i.e., Re(θ2) → −∞, and
Re(θ3) → −∞, it becomes

E → exp[ıIm(θ1) − δ11]

2
sech [Re(θ1) + δ11] , (27a)

z → y − 2∂τ ln {1 + exp[2Re(θ1) + 2δ11]} . (27b)

Consequently, the phase shift of the soliton moving with
velocity v1 is

Re(�φ1) = −4Re(κ1)Re(ω2 + ω3) + ln

( |F12323|
D2323

)
,

Im(�φ1) = −4Im(κ1)Re(ω2 + ω3) − ı ln

(
F12323

|F12323|
)

.

(28)

The term Re(�φ1) represents the shift due to nonlinear
interactions in the (y − τ ) spacetime, while the other term
Im(�φ1) is due to rotation. Returning to the initial variables
ξ and τ , the shift in space of the previous soliton is hence

δ1 = −4Re(ω2 + ω3) + 1

Re(κ1)
ln

( |F12323|
D2323

)
. (29)

(b) We now consider that only the phases Re(θ1) and Re(θ3)
vary.

(i) In the limit τ → −∞, i.e., Re(θ1) → −∞ and
Re(θ3) → +∞, it becomes

E → exp[ıIm(θ2) + ψ−δ22]

2
sech [Re(θ2)+ϕ213+δ22] ,

(30a)

z → y − 4Re(ω3) − 2∂τ ln {1+ exp[2Re(θ2)+2ϕ213+2δ22])}
(30b)
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FIG. 8. (Color online) Rotating two-loop soliton depicted within the time interval −20 � τ � 20. These elastic interacting features are
depicted with the selected parameters [μ1 = 4,Re(κ1) = 3.9] and [μ2 = 2,Re(κ2) = 1.9] such that the computed angular velocities of the
interacting waves are �1 = 0.0556 and �2 = 0.1561. These amplitudes are dissimilar (r = 1.9487), and they shift forwards with an amount
rate evaluated as δ1 = 1.3579 and δ2 = 0.1377 as depicted in the right-hand panel of the density plot.
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where δ22 = (1/2) ln A2, ψ = −ı ln(C233/|C233|), and
ϕ213 = ln(|C233|/A33).

(ii) In the limit τ → +∞, i.e. Re(θ1) → +∞ and
Re(θ3) → −∞, it becomes

E → exp[ıIm(θ2) + ψ ′ − δ22]

2
sech[Re(θ2) + ϕ′

213 + δ22],

(31a)

z → y − 4Re(ω1) − 2∂τ ln{1 + exp[2Re(θ2)+ϕ′
213+2δ22]},

(31b)

where ψ ′ = −ı ln(C121/|C121|) and ϕ′
123 = ln(|C121|/A11).

Hence, the phase shift of the soliton moving with velocity
v2 is

Re(�φ2) = 4Re(κ2)Re(ω1 − ω3) − 2 ln

( |C121|A33

|C233|A11

)
,

Im(�φ2) = 4Im(κ2)Re(ω1 − ω3) + ı ln

( |C121|C233

|C233|C121

)
.

(32)

The term Re(�φ2) represents the shift due to nonlinear
interactions in the (y − τ ) spacetime, while the other term
Im(�φ2) is due to rotation. Returning to the initial variables
ξ and τ , the shift in space of the previous soliton is hence

δ2 = 4Re(ω1 − ω3) − 1

Re(κ2)
ln

( |C121|A33

|C233|A11

)
. (33)

(c) Finally, we consider that only the phases Re(θ1) and
Re(θ2) vary.

(i) In the limit τ → −∞, i.e., Re(θ1) → −∞ and
Re(θ3) → −∞, it becomes

E → exp[ıIm(θ3) − δ33]

2
sech [Re(θ3) + δ33] , (34a)

z → y − 2∂τ ln {1 + exp[2Re(θ3) + 2δ33]} , (34b)

where δ33 = (1/2) ln A11.
(ii) In the limit τ → +∞, i.e., Re(θ1) → +∞ and

Re(θ2) → +∞, it becomes

E → exp[ıIm(θ3) + ıχ − δ33]

2
sech [Re(θ3) + ϕ312 + δ33] ,

(35a)

z → y − 4Re(ω1 + ω2) − 2∂τ ln{1 + exp[2Re(θ3)

+ 2ϕ312 + 2δ33]}, (35b)

where χ = −ı ln(F12312/|F12312|) and ϕ312 =
ln(|F12312|/D1212).
Consequently, the phase shift of the soliton moving with
velocity v3 is

Re(�φ3) = 4Re(κ3)Re(ω1 + ω2) − ln

( |F12312|
D1212

)
,

Im(�φ3) = 4Im(κ3)Re(ω1 + ω2) + ı ln

(
F12312

|F12312|
)

.

(36)

The term Re(�φ3) represents the shift due to nonlinear
interactions in the (y − τ ) spacetime, while the other term

Im(�φ3) is due to rotation. Returning to the initial variables
ξ and τ , the shift in space of the previous soliton is hence

δ3 = 4Re(ω1 + ω2) − 1

Re(κ3)
ln

( |F12312|
D1212

)
. (37)

In Eqs. (29), (33), and (37), the first term of the shift is
due to three rotating solitons repelling, attracting each other,
or traveling along another. The second terms show the shift
caused by the nonlinear interaction between the solitons.

For the discussion of the interacting features, we arbitrarily
select μ1 = 4, μ2 = 2, and μ3 = 1. As illustration of the
previous analysis, a three-soliton signal feature is presented in
Fig. 9 which describes the interaction between three rotating
breathers with humplike envelope [Fig. 9(a)] Re(κ1) = 0.3,
Re(κ2) = 0.2, and Re(κ2) = 0.1 of dissimilar amplitudes. As
depicted, the three single excitations attract each other while
moving to the left-hand side of the ξ axis. In fact, the larger
breather overtakes the small one and they all overlap in
the scattering area. During this process, they shift forwards
with δ1 = 0.3619, δ2 = 0.2312, and δ3 = 0.6270, and at the
end of the analysis, they recover their initial shapes. The
angular velocities of these waveguide channels are given by
�1 = 0.2493, �2 = 0.4975, and �3 = 0.9950 showing that
the larger soliton precesses greatly than the other as they
propagate.

In the wake of the above features, one can render these wave
trains as shorter as possible such as to generate ultrashort
optical signals very important in nonlinear optics. Thus, a
typical three-soliton feature is presented in Fig. 9 which
describes the interaction between three rotating breathers
with cusplike envelope [Fig. 9(b)] Re(κ1) = 2.8284, Re(κ2) =
1.414, and Re(κ3) = 0.7071 of dissimilar amplitudes. As
depicted, the three single solitary waves attract each other
while moving to the left-hand side of the ξ axis in such a way
that the larger breather overtakes the small one and they all
overlap in the scattering area. During this process, they shift
forwards with δ1 = 3.4488, δ2 = 2.1213, and δ3 = 1.0542
such as recovering their initial shapes at the end of the analysis.
The angular velocities of these waveguide channels are given
by �1 = 0.1768, �2 = 0.3536, and �3 = 0.7071 showing
that the larger soliton precesses greatly than the other as they
propagate.

From a practical viewpoint, these elastic interaction be-
tween three optical excitations show that no matter compli-
cated is the process in the scattering area, the silica fiber
under the conditions specified previously actually supports
the propagation of subsequent optical data under different
rates of transmission with recovery of the initial properties.
This useful property of the silica fiber opens perspectives in
communication systems with data transmission elements in
optical fiber. The additional parameter of angular momentum
of the signals endows the process with a secure transmission.

IV. SUMMARY

In this paper, we have investigated the dynamics of an uniax-
ial silica fiber within the viewpoint of propagation of ultimately
ultrashort optical waveguide channels. From the standpoint of
a nonmagnetic dielectric isotropic medium, we have written
Maxwell’s equations of the electromagnetic wave propagation
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FIG. 9. (Color online) Rotating two-breather solitons: Humplike envelope (a) depicted within the time interval −250 � τ � 250 and
cusplike envelope (b) depicted within the time interval −50 � τ � 50. These elastic interacting features are depicted with the following selected
parameters: For panel (a), [μ1 = 4,Re(κ1) = 0.3], [μ2 = 2,Re(κ2) = 0.2], and [μ2 = 1,Re(κ3) = 0.1] such that the computed angular velocities
of the interacting waves are �1 = 0.2493, �2 = 0.4975, and �3 = 0.9950. For panel (b), [μ1 = 4,Re(κ1) = 2.8284], [μ2 = 2,Re(κ2) = 1.414],
and [μ2 = 1,Re(κ3) = 0.7071] such that the computed angular velocities of the interacting waves are �1 = 0.1768, �2 = 0.3536, and
�3 = 0.7071. These amplitudes are dissimilar, and they shift forwards with an amount rate evaluated as δ1 = 0.3619, δ2 = 0.2312, and
δ3 = 0.6270 for humplike envelopes, and δ1 = 3.4488, δ2 = 2.1213, and δ3 = 1.0542 for cusplike envelopes.

in such a milieu. Paying particular interest to a domain wave-
length of light in the visible, i.e., 0.25 μm < λ < 3.5 μm,
we have reduced the initial equations to a lower-dimensional
system expressed in terms of the electric field of the light
wave. Using the reductive perturbation method of analysis, we
isolated different modal states of the electric field, according
to the perturbation orders involved. We paid attention to the
fundamental mode of the electric field. We found that this field
actually describes three kinds of ultrabroadband excitations
whose profiles strongly depend upon their angular momenta.
We studied the interactions between these structures, and
we unearthed some underlying head-on scenarios showing
elastic collision features. Discussing these features in depth,
we computed the shifts of the individual solitons, and we found
that they comprise two main terms: the first term characterizing
the nonlinear interaction, and the second term due to two
rotating solitons repelling, attracting each other or traveling
along another. The energy functional analysis revealed that
the wave train with a humplike envelope is the most stable.
Nonetheless, by tuning suitably the parameter 1/Re(κ) to small
values, i.e., reducing the length of the wave train significantly,
we would hence generate a very shorter single-valued light
wave for an ultrabroadband optical soliton, very close to
the cusplike envelope presented in Fig. 3. This generating
process is actually very important both from the physical and
practical issues in view of the considerable advances in laser
technology in the generation of ultrashort light pulses as short
as a few optical oscillation periods. Such USEs would hence
have a number of wide potentialities for their scientific and
engineering applications, among which possible superdense
information packing with the use of such ultrashort waves and
the corresponding ultrafast communications [1,21].

We would like to emphasize that our work is mainly and
essentially physical though we made use of a powerful method,
Hirota’s bilinearization [18], to investigate the structural
dynamics of the derived system (fundamental mode). This

actually explains why we report all details of the calculus
in the Appendix in view of focusing our interest mainly
on the physical aspects. From a physical viewpoint, what is
not known hitherto is the physical onsets of the propagation
of ultrashort pulses with nonzero angular frequency within
the silica fibers. For the first time, we derived a generic
governing modal system (n = 1,2,3, . . .) describing in detail
the propagation of the previous rotating excitations. Though
the physical onset of the Maxwell-Bloch equations for TLS
can also lead to the two-component SW equation (fundamental
mode), it is important to mention that only these features can
be observed for a specific range of the incident electromagnetic
waves. It is also worth mentioning that the governing coupled
system (fundamental mode) that we derived casually has
previously been reported by the present authors [22], though
less investigated in detail at the time. At that current time,
there was no any physical explanation of the derived system
hitherto. Though this system has been subjected to further
interests in different contexts (see Ref. [23] and references
therein), we personally want to detail and engineer the calculus
in the Appendix within the viewpoint developed in Ref. [22].
This is in view of computing explicitly the angular frequency
of the propagating ultimately short waves along the fiber and
to show that these waves depict different shapes with respect
to the different values of their angular frequencies, but also
for numerical computations of the subsequent modes. One
important advantage of these results is the physical onset
of the secured data transmission systems through rotation
phenomenon and the angular momentum-dependent profiles
of the interacting signals. In fact, in order to localize the
propagating excitations, it is not sufficient to get only the
position and the velocity of the waves. Thus, one needs to
know about their nontrivial angular velocities.

In addition, another important result is that from one point
to another in the transmission line, it is possible to send
more than two signals moving with different velocities and
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undergoing complicated interacting features, and then retrieve
all these properties at the end point of the transmission optical
line. Indeed, looking forward to getting more ideas about the
interaction of more than two optical signals (fundamental
modes) within the silica fiber, we found that in the range
of light specified previously, that is, the domain wavelength
of light in the visible, i.e., 0.25 μm < λ < 3.5 μm, the
signals interact elastically and preserve their initial properties
while rotating along the optical fiber. The details for the
interacting features of three optical signals along the silica
fiber have been presented. The phase shifts of the individual
signals are also determined in order to quantify the effects
due to rotation and the nonlinearity. Though our work
stands to be essentially physical, it actually offers further
perspectives in the transmission data analysis within the
framework of interactions of multisignals along the optical
chain.

The results obtained for the fundamental mode (n = 1)
and presented previously are actually and importantly useful
for numerical computations of the subsequent modes n =
2,3,4, . . . , in view of getting more ideas about the whole
dynamics of the electric field in the silica optical fibers
within the light range specified in the paper. This is cur-
rently under in-depth investigation within the computational
approach developed by Skobelev and Kim [3,8], and the
results will be reported in a separate paper. In addition,
recently Yamane et al. [24] have proposed a high-precision
method for measuring the orbital angular momentum spec-
trum of ultrabroadband optical-vortex pulses from forklike
interferograms between OV pulses and a reference plane-
wave pulse. It would hence be interesting to compare our
computations to the experimental results to be obtained within
the framework of the previous experimental method. This
subject is currently under investigation and will be reported
elsewhere.

The previous findings are actually of potential interest for
applications to many areas of research, such as in nonlinear op-
tics with the propagation of short-light excitations in nonlinear
optical fibers, alongside quantum electronics, optoelectronics,
and laser physics of extremely nonlinear optics [25], among
others (see Refs. [3,26] and references therein). In soliton
theory [17,27] where the characterization of the nonlinear
scattering between the interacting waves (soliton network) is
particularly underlying, understanding whether the interaction
is elastic or not is very important within the viewpoint of the
propagation of stable waveguide excitations in the system. This
includes solitons in optical fibers for optical communication
systems [14,28].
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APPENDIX A: BILINEARIZATION

Let us introduce two independent variables (y,t̄) such that
E(y,t̄) describes a single-valued function of y. It is convenient
to set

ϕdy = dξ + EE� dτ/2, t̄ = τ, (A1)

where ϕ is an arbitrary function of (y,t̄). Thus, Eq. (16)
transforms to

Et̄ =
∫ +∞

−∞
K(ξ − s)Es ds, ϕt̄ = −(EE�)y/2. (A2)

Setting ϕ = zy , Eq. (A2) reads

Et̄ =
∫ +∞

−∞
K(ξ − s)Es ds, zt̄y = −(EE�)y/2, (A3)

with ξ = z + ξ0, ξ0 being an arbitrary constant.
Equation (A3) has a canonical formulation. Indeed, noticing

from Eq. (A3) that the expression Eyt̄ = zy

∫ +∞
−∞ K(ξ −

s)Ess ds holds, the Lagrangian L and the Hamiltonian H of
the system are expressed as

L = Et̄E
�
y + E�

t̄ Ey + 2zy (zt̄ + EE�)

4
,

(A4)
H = 4[γ yγ t̄� + γ y�γ t̄ + χt̄ (χy − EE�/2)/2],

where the generalized momenta γ y , γ t̄ , χy , and χt̄ read

γ y = E�
t̄ /4, γ t̄ = E�

y/4, χy = (zt̄ + EE�)/2,

χ t̄ = zy/2. (A5)

Equation (A3) is obtained from the Lagrangian system

δL
δE

= 0,
δL
δz

= 0. (A6)

Since the system is natural, the potential V and the kinetic
T energy densities read

V = (H − L)/2, T = (H + L)/2. (A7)

Equation (A3) can written into its bilinear form by means
of the Hirota’s method [17]. As a result, we derive

DyDt̄G · F = GF, D2
t̄ F · F = GG�/2, (A8)

provided

E = G/F, z = y − 2 (ln F )t̄ . (A9)

The symbols Dy and Dt̄ refer to the Hirota’s operators [17]
with respect to the variable y and t̄ , respectively. According
to the usual procedure, the dependent functions G and F are
expanded into suitable power series of a perturbation parameter
ε. In this paper, we arguably expand the functions G and F as
follows:

G = εG1 + ε3G3 + ε5G5 + · · · ,
(A10)

F = 1 + ε2F2 + ε4F4 + ε6F6 + · · · ,

where the functions Gi , Fi , (i = 1,2,3, . . .) are expansion
coefficients of the above series. Substituting this expansion
into Eq. (A8) and collecting the terms of each order of ε, we
obtain the results presented below.
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APPENDIX B: SOLITON SOLUTIONS

1. The one-soliton solution

The one-soliton solution to Eq. (A8) is obtained from the
following truncation:

G = exp(θ ), F = 1 + exp(θ + θ� + 2δ0), (B1)

where constant δ0 = − ln[4Re(ω)] with 2Re(ω) = ω + ω� and
the phase θ is defined by

θ = ωt̄ − κy + θ0, (B2)

with constants κ and ω being complex-valued wave number
and frequency of the traveling wave, and constant θ0 being an
arbitrary parameter. The dispersion relation reads ωκ = −1.
Solving the dispersion equation above, we find

κ = Re(κ) + ı
√

μ2 − Re(κ)2, ω = vRe(κ) + ı�, (B3)

where ı2 = −1, constant μ is an arbitrary parameter, and the
linear velocity and the angular velocity are expressed as

v = −1/μ2, � =
√

μ2 − Re(κ)2/μ2. (B4)

Thus, the traveling waves are left-moving. It should be noted
that −μ � Re(κ) � μ, provided μ > 0.

From Eq. (A9), while determining the operator ∂ξ =
∂y/[1 − 2 (ln F )yt̄ ], it is straightforward to introduce an ar-
bitrary parameter λ defined as

λ = −2vRe(κ)2, (B5)

so as to discuss its different values.

2. The two-soliton solution

The two-soliton solution to Eq. (A8) is obtained from the
following truncation:

F = 1 + A1 exp[2Re(θ1)] + A2 exp[2Re(θ2)] + A12 exp(θ1 + θ�
2 ) + A�

12 exp(θ�
1 + θ2) + B12 exp[2Re(θ1) + 2Re(θ2)], (B6a)

G = exp(θ1) + exp(θ2) + C1 exp[θ2 + 2Re(θ1)] + C2 exp[θ1 + 2Re(θ2)], (B6b)

where

Am = 1/16Re(ωm)2, C1 = 4(ω2 − ω1)2A1A
�
12, C2 = 4 (ω2 − ω1)2 A2A12, (B7a)

A12 = 1/4(ω1 + ω�
2)2, B12 = 16|ω2 − ω1|4A1A2|A12|2, (B7b)

and ωm = ωmt̄ − κmy + θ0m (m = 1,2), θ0m standing for arbitrary constants. The dispersion equation is given by ωmκm + 1 = 0
(m = 1,2), from which a solution

κm = Re(κm) + ı

√
μ2

m − Re(κm)2, ωm = vmRe(κm) + ı�m (B8)

is derived and

vm = −1/μ2
m, �m =

√
μ2

m − Re(κm)2/μ2
m, (m = 1,2), (B9)

which stands for the linear velocity and the angular velocity of the solitary wave of number m. It should be noted that
−μm � Re(κm) � μm, provided μm > 0 (m = 1,2).

3. The three-soliton solution

The three-soliton solution to Eq. (A8) is obtained from the following truncation:

G = exp(θ1) + exp(θ2) + exp(θ3) + C121 exp[2Re(θ1) + θ2] + C131 exp[2Re(θ1) + θ3] + C122 exp[2Re(θ2) + θ1]

+C232 exp[2Re(θ2) + θ3] + C133 exp[2Re(θ3) + θ1] + C233 exp[2Re(θ3) + θ2] + C231 exp(θ2 + θ3 + θ�
1 )

+C132 exp(θ1 + θ3 + θ�
2 ) + C123 exp(θ1 + θ2 + θ�

3 ) + F12312 exp[2Re(θ1) + 2Re(θ2) + θ3]

+F12313 exp[2Re(θ1) + 2Re(θ3) + θ2] + F12323 exp[2Re(θ1) + 2Re(θ3) + θ1], (B10a)

F = 1 + A11 exp[2Re(θ1)] + A22 exp[2Re(θ2)] + A33 exp[2Re(θ3)] + A12 exp(θ1 + θ�
2 ) + A13 exp(θ1 + θ�

3 )

+A23 exp(θ2 + θ�
3 ) + A�

12 exp(θ�
1 + θ2) + A�

13 exp(θ�
1 + θ3) + A�

23 exp(θ�
2 + θ3) + D1212 exp[2Re(θ1) + 2Re(θ2)]

+D1313 exp[2Re(θ1) + 2Re(θ3)] + D2323 exp[2Re(θ2) + 2Re(θ3)] + D1312 exp[2Re(θ1) + θ3 + θ�
2 ]

+D1213 exp[2Re(θ1) + θ2 + θ�
3 ] + D2312 exp[2Re(θ2) + θ3 + θ�

1 ] + D1223 exp[2Re(θ2) + θ1 + θ�
3 ]

+D2313 exp[2Re(θ3) + θ2 + θ�
1 ] + D1323 exp[2Re(θ3) + θ1 + θ�

2 ] + q123123 exp[2Re(θ1) + 2Re(θ2) + Re(θ3)],

(B10b)

where

Aij = 1/4(ωi + ω�
i )2, (i,j = 1,2,3), (B11a)

C121 = 4A11A
�
12 (ω2 − ω1)2 , C131 = 4A11A

�
13 (ω3 − ω1)2 , C122 = 4A22A

�
12 (ω2 − ω1)2 , (B11b)
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C232 = 4A22A
�
23 (ω3 − ω2)2 , C133 = 4A33A13 (ω3 − ω1)2 , C233 = 4A33A23 (ω3 − ω2)2 , (B11c)

C231 = 4A13A
�
12 (ω3 − ω2)2 , C132 = 4A12A

�
23 (ω3 − ω1)2 , C123 = 4A13A23 (ω2 − ω1)2 , (B11d)

D1212 = A22 |C121|2 /A11, D1313 = A33 |C131|2 /A11, D2323 = A33 |C232|2 /A22, D1312 = A�
23C

�
121C131/A11, (B11e)

D2312 = A�
13C

�
122C232/A22, D2313 = A�

12C
�
133C233/A33, D1213 = D�

1312, D1223 = D�
2312, D1323 = D�

2313, (B11f)

F12312 = 4D1212D1312 (ω3 − ω2)2 /C�
121, F12313 = 4D1313D2313 (ω2 − ω1)2 /C�

133, (B11g)

F12323 = 4D2323D1223 (ω3 − ω1)2 /C�
232, q123123 = A11 |F12323|2 /D2323, (B11h)

with ωm = ωmt̄ − κmy + θ0m, (m = 1,2,3), θ0m standing for arbitrary constants. The dispersion equation is given by ωmκm + 1 =
0, and the wave constants are expressed by Eqs. (B8) and (B9).
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