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Low-frequency nonlinear wave dynamics is investigated in a two-dimensional inhomogeneous electron
magnetohydrodynamic (EMHD) plasma in the presence of electron viscosity. In the long-wavelength limit,
the dynamics of the wave is found to be governed by a novel nonlinear equation. The result of the moving-frame
nonlinear analysis is noteworthy, which shows that this nonlinear equation does have a breather solution and
electron viscosity is responsible for the breather. A breather is a nonlinear wave in which energy accumulates in
a localized and oscillatory manner. Analytical solution and time-dependent numerical simulation of this novel
equation reveal the collapse of a soliton (localized pulse) into a weak noise shelf and formation of shocklike
structures.
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I. INTRODUCTION

Electron magnetohydrodynamic (EMHD) plasma [1,2]
occurs in various physical problem going from the laboratory
to space plasma. In EMHD plasma the characteristic frequency
is high (ωci � ω � ω2

p/ωce, where ωce,ωci are electron and
ion gyrofrequencies and ωp is electron plasma frequency)
and the current flow velocities are larger compared to the
mass velocities. In such a plasma electrons take part in the
dynamics, whereas comparatively massive ions provide a
charge-neutralized static background [1,2]. The characteristic
spatial scale lies between electron and ion Larmor radius
(ρe � λ/2π � ρi) where ρe,ρi are electron and ion gyroradii,
and λ is the typical wavelength. In current plasma physics
research, EMHD is of profound interest due to its relevance to
both basic plasma physics and its applications. The EMHD also
plays an important role in fundamental astrophysical processes
like reconnection of magnetic field lines in solar flares [3–7],
which are believed to cause a large release of magnetic energy
into particle energy. Also EMHD has applications to fast
ignition (FI) [8–10], inertial confinement fusion (ICF), laser
plasma interaction [11,12], fast Z pinches [13], plasma opening
switches [14], and pseudosparks [15].

Various linear and nonlinear EMHD phenomena in plas-
mas are investigated including the dispersive Whistler wave
(a small-amplitude magnetic field fluctuation oscillating
above the ion cyclotron frequency [16]). The magnetic drift
wave [17], a low-frequency magnetic field fluctuation in the
presence of density inhomogeneity oscillating in the frequency
regime ω < k⊥c,ωp,ωce is obtained with k⊥ as the perpendic-
ular wave number, ωp = (4πn00e

2/m)1/2 the electron plasma
frequency, ωce = eB0/mc the electron cyclotron frequency, m
the electron mass, B0 the homogeneous magnetic field, and
n00 the equilibrium density. The nonlinear EMHD activities
in plasma arise when the large electron current modifies
the properties of background plasma, and the fluctuating
field is comparable to the background magnetic field. The
nonlinearity in EMHD plasmas triggers interesting physical
phenomena such as magnetic field structure formation [18,19],

Weibel instability [20], electron vortex structures [1,21–23],
and contributing magnetic turbulence [24–26].

Being a lighter mass compared to ions electrons can be
easily accelerated to high energies. These accelerated electrons
can be regarded as a source of high energy and may be
employed to heat the classical overdense region of the plasma
medium. During this process these energetic electrons have to
traverse through an inhomogeneous background, and eventu-
ally a magnetic drift wave can be excited in such a plasma.
Thus the objective of this present work is to investigate by
theoretical and computational means the transport dynamics
of the nonlinear low-frequency magnetic drift wave in an
inhomogeneous plasma in the presence of electron viscosity.
Our analysis shows that the dynamics of the wave is governed
by a novel nonlinear equation, which is the Korteweg–de
Vries-Zakharov-Kuztensov (KdV-ZK) equation with a higher
(fourth) order dissipative term. The analytical solution and
time-dependent numerical simulation of this novel equation
reveal that a single soliton (localized pulse) first collapses
into a weak noise shelf and then forms a shock structure.
We also analyze the nonlinear equation in a moving-frame
by posing the problem as an autonomous dynamical system.
This moving-frame nonlinear analysis confirms the shocklike
structures and also predicts the existence of breather solution:
a breather is a nonlinear wave in which energy concentrates in
a localized and oscillatory fashion. In an EMHD plasma such
nonlinear structure is predicted for the first time in the presence
of viscosity, which is a novel result in this work. The breather
oscillations are attributed through the well-known spatially
periodic sine-Gordon equation and nonlinear Schrödinger
equation [27–30]. Here we predict that the derived KdV-ZK
equation with fourth order dissipation also supports breather
oscillations, and here the electron viscosity is responsible for
the breather formation.

The paper is organized as follows: In Sec. II we present
the nonlinear equation that governs the dynamics of magnetic
drift wave in a viscous EMHD plasma. We investigate the
solution of the nonlinear equation analytically and numerically
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in Sec. III. Section IV deals with the moving-frame analysis
of the nonlinear equation. Finally, we conclude with physical
applications of our results in Sec. V.

II. NONLINEAR EVOLUTION EQUATION

To formulate the problem and to find the explicit final
results, the physical assumptions are as follows:

(i) The plasma is magnetized and inhomogeneous. The
magnetic field is in the z direction, and the effects of
magnetic geometry are neglected. Only the fluctuations of
the axial magnetic field are considered. Here we consider a
two-dimensional (2D) slab geometry (i.e., ∂/∂z = 0) system
with no variation along the z direction, and thus all the variables
are functions of two spatial coordinates (x,y) and time t only.

(ii) We consider that the time scale for electron response
is much shorter than ion response time scale, and therefore the
ions are considered to be immobile forming a static charge-
neutralizing background.

(iii) We assume a low-beta plasma where the magnetic
pressure much higher than kinetic pressure the pressure
gradient force is ignored. To incorporate the dissipative effects,
a phenomenological viscosity (perpendicular to the magnetic
field) is considered. The viscosity is used as an effective energy
sink [24].

(iv) For the low-frequency [ω � min(ωp,ω2
p/ωce)] oscil-

lation, we neglect the displacement current as well as the
density fluctuations, which are the EMHD approximation
compatible with ∇ · J = 0, where J is the current density.
This EMHD approximation leads us to determine the current
by the electron flow velocity ve only as the ions are stationary.

On the basis of these facts, we consider the following
electron momentum equation:

mn

(
∂

∂t
+ ve · ∇

)
ve = −ne

(
E + 1

c
ve × B

)
+ μe∇2ve,

(1)

where m(e) is the electron mass (charge), E is the electric
field, B is the magnetic field, and μe is the phenomenological
electron viscosity coefficient. The electric field E in electron
momentum equation (1) can be obtained using Faraday’s law:

∇ × E = −1

c

∂B
∂t

. (2)

Dividing Eq. (1) by mn taking the curl and using Eq. (2), we
get the following self-consistent nonlinear electron vorticity
equation:(

∂

∂t
+ ve · ∇

)
(� − �c) + [∇ · ve](� − �c)

= [(� − �c) · ∇]ve + μ∇2�, (3)

where � = ∇ × ve is the electron vorticity, μ = μe/mn is
the kinematic viscosity, and �c = eB/cm is the cyclotron
vorticity. Because of the physical assumption (iv) from
Ampere’s law, we obtain the following expression of electron
velocity:

ve = −c∇ × B
4πen

, (4)

where n is the electron number density. The EMHD theory
describes the dynamics of magnetized electrons in the presence
of both a self-generated and an externally applied magnetic
field [1]. Therefore, the magnetic field B can be written in the
form

B = êz[B0 + b̃(x,y,t)] so that ∇ × B = −êz × ∇b̃, (5)

where B0 is the average homogeneous magnetic field and
b̃ is the fluctuating magnetic field. In EMHD, normally
density fluctuations are ignored, therefore n is only equilibrium
density. Equations (3)–(5) are basic equations that describe
waves in an inhomogeneous EMHD plasma.

To write equations in dimensionless form we use a time
scale as L2

n/δeVA (where δe = c/ωp is the electron skin depth
and VA = B0/

√
4πn00m is the electron Alfven velocity),

a typical field intensity B0, and a typical inhomogeneous
spatial scale length Ln. Then eliminating ve from the vorticity
equation with the help of Eq. (4), we finally obtain the leading
order nonlinear dimensionless electron vorticity equation [17]:

(
∂

∂t
+ êz × ∇⊥b · ∇⊥

)[
b −

(
δe

Ln

)2

∇2
⊥b

]
+ ∂b

∂y

+
[
b −

(
δe

Ln

)2

∇2
⊥b

]
∂b

∂y
= −μ

(
δe

Ln

)2

∇2
⊥∇2

⊥b, (6)

where ∇⊥ = êx∂/∂x + êy∂/∂y, b ≡ b̃/B0, and μ ≡ μ/

(δeVA). In this equation, the axial field fluctuation b acts like
a stream function of the electron flow êz × ∇⊥b. Equation (6)
is the governing equation of the magnetic field fluctuations for
the low-frequency nonlinear wave in inhomogeneous EMHD
plasmas in the presence of electron viscous diffusion.

To study the linear properties of this equation, first, we
switch off the nonlinear terms in Eq. (6) and obtain the linear
equation

∂

∂t

[
b −

(
δe

Ln

)2

∇2
⊥b

]
+ ∂b

∂y
= −μ

(
δe

Ln

)2

∇2
⊥∇2

⊥b. (7)

Assuming the Fourier mode solution of the magnetic field
perturbation b ∼ exp[−i(ωt − k · r)], we obtain from Eq. (7)
the real (ωr ) and imaginary (ωi) parts of the frequency ω as
follows:

ωr = ky

1 + k2
⊥

and ωi = − μk4
⊥

1 + k2
⊥

,

where k2
⊥ = k2

x + k2
y . Since ωi < 0 the mode is damped, and

the expression for ωi suggests that this damping is due to the
viscous diffusion of electrons. In dimensional form ωr reads
as

ωr = ω∗

1 + k2
⊥δ2

e

where ω∗ = kyδeVA/Ln is the drift frequency. The expression
of the real frequency given above clearly shows that the
low-frequency magnetic drift wave is dispersive in nature
and also identifies two scale length regimes of interest:
the long-wavelength regime k⊥δe < 1 and short-wavelength
regime k⊥δe > 1. However, here we concentrate on the
long-wavelength regime to study the nonlinear properties of
the dispersive magnetic drift wave. For the finite amplitude
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nonlinear wave, we consider that the electron skin depth δe

is smaller than the spatial inhomogeneity length Ln so that
δe/Ln < 1. This permits us to take δ2

e /L
2
n = ε(�1), which

defines the strength of the field variables. For the usual
perturbation analysis, we take ε as the perturbation parameter
and introduce the following space coordinates (ξ, η) and slow
time scale (τ ):

ξ = 1
2 (y − t), η = 1

2x and τ = 1
2ε t.

The field variable b is then represented in terms of the small
parameter ε as b = εφ. Substituting all these in Eq. (6),
the lowest order approximation finally yields the following
nonlinear equation in two spatial dimension:

∂φ

∂τ
+ φ

∂φ

∂ξ
+ 1

4

∂

∂ξ

(
∂2

∂ξ 2
+ ∂2

∂η2

)
φ

+ μ

8

(
∂2

∂ξ 2
+ ∂2

∂η2

)2

φ = 0. (8)

In the absence of electron viscosity (μ = 0), we recover the
well-known Korteweg-de Vries-Zakharov-Kuztensov (KdV-
ZK) equation in two dimensions, which exhibits a soliton so-
lution. The analytical solution and its stability are discussed in
detail in Ref. [31]. For oblique propagation in two dimensions,
we denote ζ = ξ + αη, where α is the wave inclination in the
ξ -η plane. Then Eq. (8) reduces to the following equation:

∂φ

∂τ
+ φ

∂φ

∂ζ
+ β

∂3φ

∂ζ 3
+ ν

∂4φ

∂ζ 4
= 0, (9)

where

β = 1 + α2

4
and ν = μ(1 + α2)2

8
. (10)

The presence of viscosity introduces a dissipative effect in the
system that can be seen from the term ν. The solutions of this
equation are interesting and applicable in different fields of
physics and mathematics as described below.

First, to reduce the number of parameters of Eq. (9), we
introduce the rescaling as φ = 6β1/3φ̄, ζ = β1/3ζ̄ , and ε =
ν/β4/3. These transformations turn Eq. (9) into (omitting the
bars)

∂φ

∂τ
+ 6φ

∂φ

∂ζ
+ ∂3φ

∂ζ 3
+ ε

∂4φ

∂ζ 4
= 0. (11)

Here ε represents the effect of electron viscous diffusion.
In the absence of this effect, i.e., if ε = 0, we recover the
well-known KdV equation. Here we must emphasize that the
KdV equation was derived in a fluid system (water waves)
and its solution, soliton, is applicable in nearly all branches
of physics. Since dissipation is inherently present in almost
every physical system, therefore dissipation-modified KdV
should be applicable mostly to all physical systems where
such equations arise.

III. SOLUTION IN A WAVE FRAME

First, at the simplest level, we present an exact solution
of the Eq. (11) in a frame moving with the phase velocity of
the wave. We hope that this will improve our understanding
of the behavior of the nonlinear system [Eq. (11)]. To

investigate the nonlinear solution, we transform Eq. (11) into
the moving frame χ = ζ − Mτ , where M is the Mach number
(normalized phase velocity). Then integrating the transformed
equation once subject to the boundary conditions φ → 0,
all derivatives → 0 as χ → ∞, and we finally obtain the
following nonlinear ordinary differential equation:

ε
d3φ

dχ3
+ d2φ

dχ2
+ 3φ2 − Mφ = 0. (12)

A. Nonlinear analysis in the absence of electron diffusion

For a nonlinear analysis, first, we neglect the electron
diffusion term (ε = 0) in Eq. (11), which then reduces to the
usual KdV equation, and the corresponding nonlinear ordinary
differential equation (12) becomes

d2φ

dχ2
+ 3φ2 − Mφ = 0. (13)

Next we recast the nonlinear equation (13) in the following
two simultaneous equations:

dφ

dχ
= ψ,

dψ

dχ
= Mφ − 3φ2. (14)

In the φ-ψ plane, this dynamical system has the following two
physically possible equilibrium (stationary) points:

(0,0) and

(
M

3
,0

)
.

To investigate the nature of these two stationary points, we
calculate the variational matrix of the system (14) at these two
stationary points. These matrices are as follows:

J(0,0) =
[

0 1
M 0

]
, J( M

3 ,0) =
[

0 1
−M 0

]
. (15)

The corresponding pair of eigenvalues are determined from
the following characteristic (quadratic) equations:

γ 2
(0,0) − M = 0 and γ 2

(M/3,0) + M = 0, (16)

which are ±√
M (real and distinct) and ±i

√
M (purely

imaginary), respectively. Thus the stationary point (0,0) is
a saddle point, and the stationary point (M/3,0) is a center or
elliptic fixed point.

Then we solve the dynamical system (14) for M = 4 with
(0,0) and (M/3,0) as the initial conditions by the Runge-Kutta-
Fehlberg (RKF) method. The solutions are shown graphically
in Figs. 1 and 2. The phase-space trajectories in the φ-ψ
plane of the dynamical system (14) are shown graphically
in Fig. 1. Figure 1(a) shows that a small perturbation around
the equilibrium point (0,0) (saddle point) forms a homoclinic
orbit (separetrix) in the φ-ψ plane, which is the signature of
the soliton solution. On the other hand, Fig. 1(b) shows the
elliptic orbit with center at (M/3,0) in the φ-ψ plane, which is
the signature of the oscillatory solution. Figures 2(a) and 2(b)
confirm the soliton solution and also the oscillatory solution
of the system (14).

In the next section, we investigate how the electron viscosity
affects the nonlinear dynamics of the system.
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FIG. 1. Phase-space trajectories in the φ-ψ plane of the dimen-
sionless dynamical system (14) with M = 4. (a) Homoclinic orbit
of a small disturbance around the stationary point (0,0). (b) Elliptic
orbit of a small disturbance around the stationary point (M/3,0).

B. Nonlinear analysis in the presence of electron diffusion

Here we investigate the effects of electron viscosity on the
dynamical behavior of the nonlinear equation (11). Therefore,
we recast the nonlinear equation (12) in the following three
simultaneous equations:

dφ

dχ
= ψ,

dψ

dχ
= ϕ,

dϕ

dχ
=

(
M

ε

)
φ −

(
3

ε

)
φ2 −

(
1

ε

)
ϕ. (17)

In the φ-ψ-ϕ hyperplane, this dynamical system has the
following two physically possible equilibrium (stationary)
points:

(0,0,0) and

(
M

3
,0,0

)
.

To study the nature of these stationary points, we calculate the
variational matrix of the system (17) at these two stationary

0 2 4 6 8 10 12 14
1.28

1.30

1.32

1.34

1.36

1.38
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0.0
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Φ

FIG. 2. (Color online) Numerical solution of the dynamical sys-
tem (14) with M = 4. (a) Formation of a soliton of a dimensionless
small disturbance around the stationary point (0,0). (b) Oscillatory
solution of a dimensionless small disturbance around the stationary
point (M/3,0).

points. These matrices are as follows:

J(0,0,0) =
⎡
⎣ 0 1 0

0 0 1
M
ε

0 − 1
ε

⎤
⎦ ,

J( M
3 ,0,0) =

⎡
⎣ 0 1 0

0 0 1
−M

ε
0 − 1

ε

⎤
⎦ . (18)

The eigenvalues of these variational matrices are given by the
following characteristic (cubic) equations:

ελ3 + λ2 − M = 0 and ε�3 + �2 + M = 0, (19)

where λ and � are the eigenvalues corresponding to the
stationary points (0,0,0) and (M/3,0,0). Note that in the
absence of ε, the three-dimensional dynamical system (17)
reduces to a 2D system (14), and as a consequence the
characteristic equations (19) become identical with that for
the KdV equation (16). Thus presence of electron viscosity
does modify the eigenvalues. Let us check how it changes the
character of the eigenvalues. The eigenvalues of Eq. (19) for
ε = 0.1 and M = 4 are as follows:⎡

⎣λ1

λ2

λ3

⎤
⎦ =

⎡
⎣−9.56

−2.28
1.84

⎤
⎦ and

⎡
⎣�1

�2

�3

⎤
⎦ =

⎡
⎣ −10.37

0.19 + 1.95 i

0.19 − 1.95 i

⎤
⎦ .

These sets of eigenvalues clearly demonstrate that the station-
ary point (0,0,0) is a saddle node, whereas the stationary point
(M/3,0,0) is a saddle focus as the pair of conjugate eigenvalues
have a positive real part. It is interesting to note that in the case
of KdV eigenvalues, the stationary point (M/3,0) is a center as
the pair of conjugate eigenvalues are purely imaginary [roots
of second equation of (16)]. Thus, the presence of electron
viscosity indeed changes the character of the eigenvalues
and leads to new interesting features of the solution of the
system (17).

Let us apply the Shilnikov’s criteria [32] for the existence
of a stable periodic orbit of the system around the stationary
point (M/3,0,0). For this we calculate the saddle value
σ [=2 × Re(�) + �1] < 0, and according to the criteria, the
system has a stable periodic orbit in the small neighborhood
of (M/3,0,0).

Next we solve the dynamical system (17) by the RKF
method by taking the stationary point (0,0,0) as the initial
condition with ε = 0.1 and M = 4. Then starting from a small
perturbation of the initial condition (0,0,0) and upon numerical
integration of the dynamical system, it is seen that the
perturbation develops into a shocklike structure as illustrated
in Fig. 3(a) with an oscillating transition corresponding to
the second stationary point (M/3,0,0). The projection of the
phase-space trajectory on the φ-ψ plane of the dynamical
system (17) is shown graphically in Fig. 3(b). This phase-space
trajectory clearly shows a stable closed periodic orbit around
the stationary point (M/3,0,0).

Finally we solve the dynamical system (17) by the RKF
method with the stationary point (M/3,0,0) as the initial
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FIG. 3. (Color online) Numerical solution of the dimensionless
dynamical system (17) with ε = 0.1, M = 4, and (0,0,0) as the initial
condition. (a) Formation of a shocklike structure for φ (dimensionless
magnetic field fluctuations) with moving frame χ . (b) Projection of
the phase portrait trajectory of (17) in the φ-ψ plane.

condition for two sets of parameters: ε = 0.5, M = 2 and
ε = 1, M = 4. The corresponding eigenvalues are

⎡
⎣�1

�2

�3

⎤
⎦

(ε=0.5,M=2)

=
⎡
⎣ −2.59

0.3 + 1.2 i

0.3 − 1.2 i

⎤
⎦ and

⎡
⎣�1

�2

�3

⎤
⎦

(ε=1,M=4)

=
⎡
⎣ −2

0.5(1 + i
√

7)
0.5(1 − i

√
7)

⎤
⎦ . (20)

These values again satisfy Shilnikov’s condition for the stable
periodic orbit of the dynamical system (17) in the vicinity
of the saddle focus (M/3,0,0). As a consequence, a small
perturbation around this stationary point develops into a
breather solution as illustrated in Fig. 4. A breather is a
nonlinear wave in which energy concentrates in a localized
and oscillatory manner. It is a localized periodic solution of
a nonlinear system. A breather is described as an oscillatory
solution (wave packet) about a stationary point whose envelope
and oscillatory part move with different velocities [33]. One
breather is determined by a couple of complex conjugated
eigenvalues, and therefore it is a two-parameter solution
(nonzero real and imaginary parts of �) which in general
behaves like a wave packet. We can see from the computation
and also the character of the eigenvalues (20) of the dynamical
system (17) that indeed the solutions represented in Fig. 4
resemble the situation of a breather. The electron viscous

0 20 40 60 80 100 120 140
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0.6668
0.6670

Χ

Φ

FIG. 4. (Color online) Breather solutions of the dimensionless
dynamical system (17) with (M/3,0,0) as the initial condition.
(a) Single breather for ε = 0.5, M = 2. (b) Multiple breather for
ε = 1, M = 4.

diffusion is responsible for this breather solution because
of the fact that electron viscous term is responsible for the
nonzero real part of the complex conjugated eigenvalues. In
the absence of this electron viscosity we have only purely
imaginary eigenvalues, which corresponds to the oscillatory
solution [Fig. 2(b) as in case of KdV equation].

IV. COLLAPSE OF A SOLITON INTO A NOISE SHELF
AND FORMATION OF SHOCK STRUCTURES

A. Analytical solution

The KdV equation is a completely integrable Hamiltonian
system for an infinite set of conservation laws [34]. These
conservation laws (integrals of motion) are essential to
study the propagation dynamics as well as the localized
structures formed by the nonlinear evolution equation. In
the case of ε = 0, a solution of Eq. (11), satisfying the
boundary conditions φ(ζ,τ ) → 0 at |ζ | → ∞, has a soliton
form φ(ζ,τ ) = 2κ2sech2κ(ζ − V τ ), where V is the soliton
velocity, 2κ2 is the soliton amplitude, and κ−1 is the width
of the soliton. However, here we investigate the solution (if
it exists) of Eq. (11) in the presence of finite (but small)
ε using the same boundary conditions at |ζ | → ∞. In the
presence of weak dissipation, one can obtain an approximate
solution by the soliton perturbation analysis [35]. Actually,
a weak perturbation has a small influence on the formation
of solitons, and as a consequence one can treat solitons as
noninteracting and hence can find, as a first approximation, the
influence of perturbation on a single soliton. Here we adopt this
perturbation procedure to find an approximate time evolution
solution of Eq. (11) with ε � 1 as the perturbed parameter. To
apply this perturbation, we consider the following perturbed
single soliton solution described by

φ(ζ,τ ) = φs[κ(τ ),θ (τ )] + δφ(ζ,τ ),

= 2κ2(τ )sech2�(τ ) + δφ(ζ,τ ), (21)

where �(τ ) = κ(τ )[ζ − θ (τ )], dθ (τ )/dτ is the soliton ve-
locity, and δφ is the perturbed soliton. Actually, one of the
important results of the soliton perturbation is the generation of
a “tail”: a wave packet of small amplitude following behind, or,
in some cases, in front of, a soliton [35]. The length of the “tail”
increases approximately with time, and as a result it spreads
with time. The “tail” may contain “energy” and “momentum”
comparable to and even larger than those of solitons [35].
Once the “tail” is formed, it becomes disconnected from
its “mother-soliton” kinetics and transforms into a “noise
shelf” [36]. This δφ gives the analytical expression for the
“tail part” of the soliton given by

φtail = lim
ζ→−∞

δφ

≡ − ε

4κ3(τ )

∫ ∞

−∞

∂4φs

∂ζ 4
tanh2 �(τ ) dζ =

(
32

21

)
εκ2(τ ).

(22)

We know that to explain the effects of disturbance (here
dissipation) on the initial soliton (leading order), the judicial
choice is the use of conservation laws [36]. Thus to find
the analytical expression for κ(τ ), we consider the energy
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conservation law of Eq. (11), which reads as

∂E
∂t

= −ε

∫ ∞

−∞

(
∂2φs

∂ζ 2

)2

dζ, E ≡
∫ ∞

−∞

1

2
φ2

s dζ. (23)

Finally substitution of (21) in Eq. (23) yields the following
expressions for soliton amplitude and energy:

κ2(τ ) = κ2(0)
[
1 + (

1040
21

)
ετκ4(0)

]−1/2
,

E = (
8
3

)
κ3(0)

[
1 + (

1040
21

)
ετκ4(0)

]−3/4
. (24)

These clearly show that the viscosity-induced dissipation
causes the soliton amplitude and energy to decay algebraically
with time τ . It is interesting to note that the total soliton mass
is conserved:

∫ ∞
−∞ φsdζ = 0, because the matter ejected from

the damping soliton encounters a phase transition between the
“soliton state” and “noise state” that allows the necessary mass
conservation.

Note that the above solution is the approximated (leading
order) solution of Eq. (9) [rescaled Eq. (11)], and higher order
terms in the perturbation analysis introduce only corrections
(the change in amplitude, velocity, and width remain the same
as obtained in the leading order approximation) [35].

B. Time-dependent numerical simulation

In the previous section, we have seen that the exact solution
of Eq. (11) is not possible, but one can find approximate
solution by treating the equation as a perturbed KdV equation.
However, in this section we numerically simulate the nonlinear
equation (9) using a MATHEMATICA-based finite difference
scheme. For the time-dependent numerical solution, we
use the soliton solution as the initial waveform: φ(ζ,0) =
3Usech2(

√
U/4βζ ), ζ ∈ [−L,L], where L is approximately

the system size. The boundary conditions are φ(±L,τ ) =
3Usech2(±√

U/4βL) and φζ (−L,τ ) = 0 = φζ (L,τ ). To ob-
tain adequate results through computation, we take L = 40 and
U = 1. The time-dependent numerical solutions are shown
in Fig. 5. These solutions show the decrease of soliton
amplitude (and increase of width) due to the presence of
dissipation and also clearly demonstrate the formation of
soliton noise-tail structures at different time. Finally, a shock
structure is seen to be formed [Fig. 5(b)]. Thus, the time-
dependent numerical solutions agree well with the preceding
time-dependent analytical analysis.

100

40 20 0 20 40
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

Ζ

Φ

0
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80
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0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ζ

Φ

FIG. 5. (Color online) Time-dependent numerical solution of (9)
with soliton solution as an initial profile. The physical parameters
are μ = 0.2, α = 0.1, and U = 1. (a) Decreasing soliton amplitude
and noise-tail formation at τ = 40 and τ = 80. (b) Oscillatory shock
structure is formed at τ = 100.
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FIG. 6. (Color online) Time-dependent numerical solution of (9)
with Gaussian initial profile φ(ζ,0) = exp(−ζ 2/2). (a) Decreasing
amplitude and formation of noise tails at τ = 20 and τ = 40.
(b) Oscillatory shock structure is formed at τ = 180. In the simulation
the physical parameters are as in Fig. 5.

To confirm our simulation result, we also simulate Eq. (9)
with different initial condition; namely, we use a Gaus-
sian profile φ(ζ,0) = exp(−ζ 2/2) ζ ∈ [−L,L] as the initial
profile. The boundary conditions are as before φ(±L,τ ) =
exp[−(±L)2/2)] and φζ (−L,τ ) = 0 = φζ (L,τ ) with L = 30.
The solutions are depicted in Fig. 6. The figure again shows that
due to the presence of dissipation, first noise tails are formed
at slower time and then as time passes shock structures are
formed. All these time-dependent numerical solutions again
confirm the shock solution of Eq. (9).

V. DISCUSSION

The nonlinearity of a physical system manifests itself in
the form of coherent complex structures. These structures are
best understood by the analytical solutions and numerical
simulations of the dynamical equations. Therefore, in the
present work, we investigate the nonlinear structure of a
low-frequency wave in a 2D EMHD plasma in the presence
of electron viscosity. The dynamics of the nonlinear wave is
shown to be governed by a nonlinear equation. This nonlinear
equation is the KdV-ZK equation with a higher (fourth) order
dissipative term that arises due to the electron viscosity.

First, at the simplest level, we analyze the nonlinear system
in a moving frame by posing the problem as an autonomous
dynamical system. Our analysis predicts the formation of
breathers that have solitonic structures. In the present situation
the breather solution is a nonlinear traveling wave. Apart from
this the standing breathers correspond to localized solutions
whose amplitude varies in time (they are sometimes called
oscillons). The breather solution presented here is a novel
nonlinear structure in a magnetized electron plasma, besides
the usual shock structure. Furthermore, this novel equation is
analyzed analytically with the help of the dissipative pertur-
bation technique and also by the time-dependent numerical
simulation. The analytical and simulation results reveal that a
single solitonic or Gaussian pulse first collapses into a weak
noise shelf, and then it forms shock structure in EMHD plasma.
The observed shock is compressive in nature, and the total
dissipated energy estimate associated with the shock can be
written as

Q ∼ ε

∫ (
∂2φ

∂ζ 2

)2

dζL ∼ ε
φ2

�3
L.
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Here L and � are the typical (normalized) distance tra-
versed in the inhomogeneity layer and the (normalized)
shock width. Using Ampère’s law (4), we can express the
magnetic field fluctuation b(∼ φ) in terms of the typical
incoming current filament dimension a and the electron
velocity ve. Thus φ ∼ ave and the total dissipated energy then
becomes

Q ∼ ε
a2v2

e

�3
L.

This process of collisionless electron energy dissipation and
the variation of the electron velocity (magnetic filed fluctu-
ations) resulting from propagation of compressional shock
waves is of significant importance in the FI experiments [9],
which is a simple variant of the ICF technique. The electrons
are energized by the passing of the shock wave due to the
conversion of wave energy into particle kinetic energy, which
drives the particle acceleration. As a result, the electrons can
be good source of energy for plasma heating, and the high-
energy electrons can penetrate the high-density overdense

region, which is not accessible by the laser fields. Thus, these
high-energy collisionless electrons can also be employed for
creating an ignition spark in FI experiments [9].

The breather oscillation is the outcome of interactions
between two-phase waves. So the formation of breather is
the signature of the phase mixing of waves. Similar types of
phenomena (wave synchronization) of typical magnetic field
fluctuations from repeated discharge pulses are observed in
the EMHD plasma experiment [37]. This is the signature
of the experimentally observed breather-like structures in
EMHD plasma. Moreover, the observed breather-like localized
structures in EMHD plasma exchange energy between the
structure and the plasma. Thus the breather-like solution is also
applicable to the penetration of electrons into the overdense
plasma in the FI experiments in ICF.

Finally, EMHD plays an important role in magnetic con-
finement plasmas as well as in space plasmas. Thus, the results
of the present investigations could be useful to understand the
physics of electron transport phenomena in laboratory and
space plasmas.
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