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Controlling the fast electron divergence in a solid target with multiple laser pulses
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Controlling the divergence of laser-driven fast electrons is compulsory to meet the ignition requirements in
the fast ignition inertial fusion scheme. It was shown recently that using two consecutive laser pulses one can
improve the electron-beam collimation. In this paper we propose an extension of this method by using a sequence
of several laser pulses with a gradually increasing intensity. Profiling the laser-pulse intensity opens a possibility
to transfer to the electron beam a larger energy while keeping its divergence under control. We present numerical
simulations performed with a radiation hydrodynamic code coupled to a reduced kinetic module. Simulation
with a sequence of three laser pulses shows that the proposed method allows one to improve the efficiency of the
double pulse scheme at least by a factor of 2. This promises to provide an efficient energy transport in a dense
matter by a collimated beam of fast electrons, which is relevant for many applications such as ion-beam sources
and could present also an interest for fast ignition inertial fusion.
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I. INTRODUCTION

The study of the transport of ultrahigh intensity (UHI)
laser-driven fast electrons is a subject of interest for many
applications including proton-ion acceleration [1] and fast
ignition inertial fusion [2]. In fast ignition approach to fusion
an UHI laser is used to produce relativistic electrons which
deposit their energy inside the precompressed fuel pellet. The
efficiency of the laser energy coupling to the fuel is defined by
the laser-electrons conversion efficiency, electron-beam mean
energy, and divergence. It is estimated [3] that for a 400 g/cc
fuel density, 11 kJ must be deposited within a sphere of a 15 μm
radius in less then 16 ps by electrons with a mean energy
of about 1.5 MeV. By using ponderomotive scaling [4] this
estimate requires the laser intensities above 1019 W/cm2 which
are commonly reached by the current generation of UHI lasers.

In the past decades the experiments all over the world
are showing that, despite the initial optimistic predictions,
the laser-driven fast-electron beam is characterized by a large
divergence which makes impossible to meet the fast ignition
requirements. The electron-beam divergence can be controlled
both by acting on the electron generation mechanism (target
manufacturing technique [5]) or by controlling the electron
transport (artificial confinement of the beam). Recently, a
two consecutive laser-pulses scheme has been proposed
by Robinson et al. [6] to optimize electron transport and
collimation in a solid target. In this scheme two collinear
laser pulses, with a given intensity ratio I2/I1, are used to
generate energetic electron beams. The resistive azimuthal
magnetic field generated by the first electron beam can guide
the electron beam generated by the second pulse. This scheme
has been successfully tested, in a experiment, two years
later [7]. Experimental results confirmed the validity of the
scheme showing that the best time delay is of the order of
the laser-pulse duration. Moreover, the limits of the scheme
have been demonstrated as the collimation was observed only
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for a special combination of the laser-pulses intensities (I2/I1).
Indeed, a more detailed analysis shows that the electrons can be
collimated in a very limited range of laser intensities and pulse
durations. As was discussed in Ref. [6], exceeding intensities
of 1020 W/cm2 for the second laser pulse, or remaining under
intensities of 1018 W/cm2 for the first laser pulse, strongly
reduce the efficiency of the scheme.

In this paper we propose an extension of the double pulses
scheme by using a sequence of several pulses with adjusted
intensity profile and delay times. An example is proposed of
splitting the second (main) pulse into two pulses with the same
amount of energy. Such a “triple pulses scheme” allows one to
increase the total delivered laser energy by keeping the single
intensity per pulse below 1020 W/cm2 and stretching the whole
duration of the process by only 33%. We show in the following
that by using this new approach the efficiency of the scheme
can be increased at least by a factor of 2, thus opening the way
for future experiments on current laser devices and possible
applications such as ion-beam sources.

The paper is organized as follows. In Sec. II we introduce
the problem of the fast-electron generation and transport with
emphasizing the role of the beam divergence. In Sec. III
we describe the double pulse scheme showing experimental
results and simulations. Finally, in Sec. IV we present the
numerical simulations and the comparison between the double
and triple pulses schemes.

II. FAST-ELECTRON-BEAM DIVERGENCE

Experiments show that the laser-driven fast-electron-beam
divergence increases with the laser intensity. Green et al. [8]
have collected the results from many experiments obtaining a
scaling law of the total beam divergence (half-angle in degrees)
as a function of the laser intensity (here for simplicity we
assume the laser wavelength λ = 1 μm):

θ1/2(IL) = 15 + 13 log
(
I 18
L

)
, (1)

where I 18
L is the laser intensity in the units of 1018 W/cm2. The

scaling demonstrates a gradual increase of the beam divergence
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for the laser intensities in the range of 1018–20 W/cm2. As was
previously discussed by Debayle et al. in Ref. [9] both the
random scattering by magnetic fields and curvature of the
target surface under the action of the ponderomotive force
cannot explain the observed macroscopic beam divergence.
The latter can be nevertheless well described by accounting
for the effect of the transverse beam velocity on the fast-
electron transport. Indeed, as the laser intensity varies within
the focal spot, the electrons may have a mean velocity
component perpendicular to the laser propagation axis and
a local propagation angle depending on the radial position.
This effect contributes to the full electron divergence. The
local mean propagation angle or the transverse beam velocity
can modify substantially the self-generated resistive magnetic
field that collimates the fast-electron beam.

The fast-electron-beam collimation due to the self-
generated resistive magnetic field was studied in Ref. [10].
It was shown that this “natural collimation” is less favorable
at high divergence angles, and fast-electron energies. It is
inefficient at intensities in excess of 1019 W/cm2. In addition
as the laser intensity increases the resistive magnetic field
changes its sign acting to hollow rather than to collimate the
electron beam. This interpretation was proposed by Davies
et al. [11] to explain the experimental observations of annular
structures in the transverse electron-beam distribution [12].
That analysis shows that the positive (defocusing) and the
negative (focusing) components of the azimuthal magnetic
field are in competition depending on the value of the
beam current density and the target resistivity. In the first
approximation one concludes that for a given current profile
(assuming a constant resistivity) the formation of a positive
magnetic field depends only on the absolute value of the
electron current and so on the absolute value of the laser
intensity. The beam divergence is limited by the collimating
magnetic field only at relatively low laser intensities.

The fast ignition approach to inertial confinement fusion
requires using an electron beam with a mean energy of the
order of 1.5 MeV with a transverse profile of about ∼15 μm at
∼100 μm depth [3]. These conditions can only be satisfied
by collimating the beam or alternatively by reducing the
initial beam divergence by modifying the composition of the
target [5]. The “natural collimation” induced by the resistive
magnetic field does not seem to be suitable for two reasons: (i)
it works only for a small fraction of the electrons contained in
the beam because the collimating magnetic field reaches the
maximum intensity only at the tail of the laser pulse; (ii) it
is less favorable at a high divergence angle, laser power, and
fast-electron mean energy and so unfavorable at intensities in
excess of 1019 W/cm2 which are required for the fast ignition.
It is also important to point out that the FI scheme means
indeed hot and compressed targets. The electrical resistivity
necessarily changes for these conditions and in consequence
the magnetic fields associated to the resistivity gradients. A
more detailed study on the resistivity-transient behavior can
be found in [13].

III. DOUBLE PULSES SCHEME

In the “double pulses scheme” [6], the laser pulse is split
in two pulses with a given intensity ratio (typically I2/I1 ∈
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FIG. 1. (Color online) Dependence of the HWHM of the Cu Kα

(red squares) and thermal emission images (black dots) from the rear
target surface on the time delay compared with (green diamonds)
numerical simulations. Copied with permission from Scott [7].

[10:100]). The first pulse (with a moderate intensity I1) creates
an electron beam which starts to propagate inside the target.
The return current generates an azimuthal magnetic field
which collimates the electrons produced by the second laser
pulse (with intensity I2) arriving on the target with a given
time delay. This scheme has been tested at the Rutherford
Appleton Laboratory and the main results of the experiment
are summarized in Ref. [7]. Figure 1 shows the half width at
half maximum (HWHM) of the main electron-beam transverse
size as a function of the time delay between the two pulses
as was obtained in the experiment and in the hybrid kinetic
simulations. These simulations show a qualitative agreement
with the electron-beam HWHM measured from the images of
the thermal radiation and the copper Kα emission. Let’s note
that the thermal spots are larger than the Kα spots due to the
late time of acquisition (100 ps later than the first interaction).
Indeed, as explained in Ref. [7] at that time, an expanding
plasma is present at the rear side of the target.

In the double pulses scheme, the resistive magnetic field
created by the first electron beam starts to collimate the
incoming second electron beam immediately upon the second
pulse arrival. The collimation of the second beam induces a
significant steepening of the current density profile, which,
in turn, increases the total resistive magnetic-field intensity.
The induced magnetic field increases in magnitude and moves
deeper into the target, then it diffuses radially, reducing in
magnitude.

A. Numerical simulations

The fast electron propagation through the target has been
modeled with the radiation hydrodynamic code CHIC coupled
to the kinetic module M1 [14,15]. This fast kinetic model
describes the collisional transport of energetic particles while
taking into account the self-generated magnetic field. Derived
from the Vlasov-Fokker-Planck equation, it involves an angu-
lar closure in the phase space leading to a set of hyperbolic
equations for the moments of the distribution function evolving
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in time, space, and energy. This method is suitable for the
computation of the fast electron transport on the hydrodynamic
time scales. It provides an alternative to prohibitive full kinetic
simulations with large, complex, and time consuming codes.

Simulations have been performed in a cylindrical geometry
(where z is the beam propagation axis and r is the radial
direction in the target surface plane). The target is a 96-μm-
thick (along the z direction) aluminium cylinder of radius of
96 μm. The simulations were conducted with 4 μm resolution.
Initial conditions have been calculated assuming Beg [Eq. (2)
and Ref. [16]] and Wilks [Eq. (3) and Ref. [4]] scaling
laws for the estimate of the fast-electron mean energy as a
function of the laser intensity and the Solodow scaling law
[Eq. (4), Ref. [17]] to account for the laser-electron conversion
efficiency ξ as a function of the laser intensity:

Tb = αb

(
λ2I 18

L

)1/3
, αb = 215, (2)

Tw = αw

(√
1 + λ2I 18

L

/
2.8 − 1

)
, αw = 511, (3)

ξ = αs

(
λ2I 18

L

)1/4
, αs = 0.108, (4)

where Tb and Tw are in keV, and the laser intensity IL is in
1018 W/cm2. We have chosen Te = max [Tb,Tw] and the initial
electron-beam distribution is represented as follows:

F (r,z,E,θ ) = G1
wt

(t)��θ0 (θp(r))Gn
wr

(r)MTe
(E), (5)

where

Gn
w(x) = exp{−ln(2)(x/w)2n} (6)

is a super-Gaussian function, w is the HWHM, and n is the
super-Gaussian degree (n = 1 Gaussian). The function G1

wt
(t)

describes the time profile, Gn
wr

(r) is the radial profile, and

MTe
(E) = √

Ee−E/Te is the Maxwellian energy distribution.
The angular distribution is given by

��θ0 (θp(r)) = 1
2 [cos(�θ0) + 1] cos (θp(r)), (7)

where

θp(r) = min[θmax(r/we)b,θmax], 1 < b < 2 (8)

is the local electron mean propagation angle and �θ0 is the
local dispersion angle. As it was shown in Ref. [9], by assuming
that at the normal incidence the �J× �B heating [4] is the
dominant process, it is possible to connect the parameter b

with the slope of the radial profile n. Indeed, starting from the
ponderomotive force, the electron transverse and longitudinal
momenta can be written as pr ∝ ∂rIL(r)/γ and pz ∝ IL(r)/γ
(where γ is the electron relativistic factor). Then the mean
propagation angle can be expressed as tan θ (r) = px/pz ∝
∂rIL(r)/IL(r), and those θ (r) = tan−1 (r/w)2n. The formation
and the intensity of the resistive Bθ field depends strongly on
the parameters n and b. This can be demonstrated by solving
the Faraday equation for the magnetic field in the “rigid model”
approximation [11] |Bθ | ∝ n(r/we)(2n) (see the Appendix for
the detailed explanation).

Figure 2 shows an example of the magnetic-field distribu-
tion for a given case at different values of b and at a fixed
time. It contains two lobes. The negative magnetic field near
the axis focuses the central part of the beam. In contrast, the
outer part of the beam is defocused by the positive lobe of the

FIG. 2. (Color online) Spatial distribution of the magnetic field
Bθ for the values of the parameter b increasing from the left (b = 1.2)
to the right (b = 2.0) at the time of the magnetic-field maximum.

magnetic field. The beam parameter b controls the position
where the magnetic field changes its sign. Decreasing the b

parameter (in Fig. 2 from the right to the left) the negative
(focusing) component of Bθ is reduced, while the positive one
(defocusing) grows around the center of the beam (r � 0).

To account for the laser-electrons conversion efficiency we
represent the laser intensity as

IL(r,t,n,wL,wt ) = ILGn
wL

(r)G1
wt

(t). (9)

The total delivered laser energy is given by

EL =
∫ ∞

0

∫ ∞

−∞
IL(r,t,n,wL,wt )2πr dr dt (10)

= IL

∫ ∞

0
Gn

w(r)2πr dr

∫ ∞

−∞
G1

wt
(t)dt (11)

= IL
nFwL

Fwt
, (12)

where nFw = 2π
∫
R

Gn
w(r)r dr = π�(1/n)/ln(2)1/nw2,

�(z) = ∫ ∞
0 t z−1e−zdt is the Euler gamma function, and

Fw = ∫
R

G1
w(t)dt = √

π/ln(2)w.
The intensity of the laser-generated electron beam

Ie(r,t,n,we,wt ) = IeG
n
we

(r)G1
wt

(t) (13)

is calculated introducing an arbitrary parameter Icut which
represents the minimum intensity required to produce fast
electrons. With this assumption the spatial HWHM we and
the peak intensity Ie of the laser-generated electron beam are
given by

we = δwL, δ = ln(IL/Icut)
1/2n, (14)

Ie = αlαsI
5/4
L

/
δ2, αl =

∫ wL

0
ILr dr

/ ∫ ∞

0
ILr dr, (15)

where αl represents the fraction of the total laser energy within
the HWHM. As an example, the intensities of 1019−20 W/cm2

correspond to δ = 3–4 with n = 0.7. Finally, the total electron-
beam energy is given by

Ee = αI I
5/4
L , αI = αsαw

nFwe
Fwt

, (16)

Ee = αeE
5/4
L , αe = αsαw

nFwe

nF
5/4
wL

F
1/4
wt

. (17)
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The electron-beam intensity and the mean temperature are
estimated, as functions of the laser parameters, by injecting
Eqs. (16) and (17) into Eqs. (2), (3), and (15).

B. Parametric analysis of the beam guiding

In this section we present the results of numerical simu-
lations performed to study the double pulse scheme [6], its
stability, and possible modifications. In particular, it is shown
that equally sharing the amount of energy of the second (main)
pulse in two consecutive pulses, one can improve the efficiency
of beam guiding. Collecting all the energy in a single pulse
(the second one in the double pulse scheme) is convenient
in terms of the laser-electron conversion efficiency, which
increases with the intensity [18]. However, it is not so from
the point of view of guiding. By increasing the laser intensity
one reduces the collimating magnetic field [10] and increases
the total electron-beam divergence [8]. The triple pulse scheme
overcomes these problems and opens the way for a more
efficient beam guiding.

1. Double pulses scheme

Here we present several examples which are important for
understanding the physics of beam guiding. The first example
concerns the time dependence of the maximum magnetic field
Bθ . The simulations have shown that for laser intensities in the
range of 1019−20 W/cm2 the time of maximum magnetic field
depends only on the laser-pulse duration and the electron-beam
size we:

tbest = s(we)wt + 0.7, (18)

where wt is the pulse time HWHM in picosecond and s(we) =
0.157we + 0.9 is a dimensionless parameter related to the
electron-beam size in μm. Assuming we = 17 μm, and wt =
1 ps (these are the conditions in Ref. [7]) we obtain s = 3.6 and
then tbest = 4.3 ps. The same calculation by assuming we = 10
μm, and wt = 0.4 ps gives s = 2.5 and a shorter tbest = 1.7 ps.
Finally, tbest can be reduced both by reducing the pulse duration
(i.e., wt ) and the electron-beam size (i.e., s). The beam size
dependence of tbest can be understood also by solving the
equation ∂Bθ (t)/∂t = 0 in the “rigid model” approximation
(see the Appendix). In conclusion, both numerical simulations
and experimental results suggest that the best time delay
between the consecutive pulses is defined as �t � tbest with an
uncertainly of about 1 ps. Delays shorter (the magnetic field
is still not at its maximum) or longer (the magnetic field is
decreasing due to the diffusion) than tbest reduce the efficiency
of the double pulses scheme. Figure 3 (left panel) shows the
maximum Bθ as a function of time in the double pulses scheme
at various time delays between the first and the second pulses.
The continuous and the dotted blue lines represent respectively
the maximum magnetic field and the main laser beam temporal
profile alone (i.e., without the first pulse). The azure line
represents (up to 10 ps) the maximum magnetic field of the
first pulse which is amplified by the injection of the second
pulse at different time delays, the green line �t = 3 ps, red
line �t = 4 ps, and azure line �t = 8 ps. At the best condition
the magnetic field propagates along the beam axis “driving”
the electrons inside the target.
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FIG. 3. (Color online) (a) Temporal evolution of the maximum
magnetic field at various time delays between the first and the second
laser pulse. The blue line (first from left) �t = 0 ps represents the
second pulse alone. The azure line (the line arriving till 18 ps)
represents (up to 10 ps) the maximum magnetic field of the first pulse
which is amplified by the injection of the second pulse at different
time delays, green line (second from left) �t = 3 ps, red line (third
from left) �t = 4 ps, and azure line (fourth from left) �t = 8 ps. The
diffusion time of the magnetic field depends only on the beam radius
and on the target resistivity τBθ

∼ w2
e /η. (b) Temporal evolution of

the maximum magnetic field (continuous line) and of the laser-pulse
intensity (dotted line) for the time delay �t = 4 ps for the triple
pulses scheme.

The main problem of the electron guiding is that the
electron-beam divergence increases with the laser intensity.
Consequently, the “natural collimation” becomes less and
less efficient, as it traps in the guiding channel only a small
paraxial part of the beam. Double pulses scheme overcomes
this problem but still it is limited to laser intensities smaller
than 1020 W/cm2. Reference [6] shows that this limitation
is due to the interplay between the strength of the resistive
magnetic field generated by the first electron beam and the
momentum of the incoming electrons of the second beam.
According to [6], the guiding imposes a condition on the radial
extension R and on the absolute value of the negative magnetic
field Bθ generated by the return current of the first electron
beam. This condition writes

R � rL, where rL = γ veme

e|Bθ | (1 − cosθ1/2) (19)

is the Larmor radius and e, me, ve, γ respectively the charge,
mass, velocity, relativistic factor of the electrons generated
by the second laser pulses and θ1/2 is given by Eq. (1). This
condition can also be written (by assuming λ = 1 μm) in terms
of laser and target parameters only:

I 18
1 > 1.6×10−3

(
1 − cosθ1/2

η[μ� m]ξw1
t [ps]

)3/2(
I 18

2

)3/4
, (20)

where η is the target resistivity and w1
t represent the HWHM

of the first laser pulse. Assuming [6] η = 0.8, w1
t = 0.25, and

ξ = 0.2 [see Eq. (4)] we get

I 18
1 > 0.2

(
I 18

2

)3/4
. (21)

According to this condition one may increase the intensity of
the first laser beam and consequently reduce the intensity of
the second one by keeping the total energy constant. Since a
part of electrons produced by the first laser pulse will be lost
(all the electrons produced before the magnetic field attains
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TABLE I. Comparison between double (case A) and triple (case B) pulses scheme.

(A) Two pulses configuration
EL wt wL nL IL Ee Te ξ θ1/2

(J) (ps) (μm) (/) (W/cm2) (J) (MeV) (/) (deg)

I beam 15 1 3.5 0.6 5×1018 1 0.4 0.15 12°
II beam 175 1 3.5 0.6 1020 40 2.5 0.34 21°

(B) Three pulses configuration
EL wt wL nL IL Ee Te ξ θ1/2

(J) (ps) (μm) (/) (W/cm2) (J) (MeV) (/) (deg)

I beam 15 1 3.5 0.6 8×1018 1 0.4 0.15 12°
II beam 87 1 3.5 0.6 5×1019 18 1.7 0.29 17°
III beam 87 1 3.5 0.6 5×1019 18 1.7 0.29 17°

its maximum value), this solution is not favorable. The second
possibility is to reduce the intensity of the second beam by
stretching it in time. As the laser beam intensity is defined by
the required electron energy, this stretching can be achieved
by splitting the second laser pulse in a sequence of pulses
separated by the appropriate time delays.

According to Eq. (21) and assuming I2 = 1020 W/cm2 we
get I1 > 3×1018 W/cm2. Let us now split the second pulse
into two equal pulses having a twice lower intensity. This will
relax the condition (20) by a factor of 23/4; in addition the
intensity reduction induces a reduction of the electron-beam
divergence (from θ1/2 � 20◦ to θ1/2 � 15◦) again by a factor
23/4 [according to Eq. (1)]. Thus by reducing the intensity by
a factor of 2 one can achieve a significant relaxation of the
condition (20) by a factor larger than 2 (see in the following).
This simple example is confirmed by numerical simulations.

2. Triple pulses scheme

We limit ourselves here by splitting the second pulse into
two pulses of equal intensities. As shown in Fig. 3 (right panel)
in the triple pulses scheme the third laser pulse is injected
when the magnetic field due to the first two pulses achieves its
maximum. In this case simulations show that the delay times
shorter than tbest are preferable. This is explained by the fact
that the magnetic field of the second beam starts to follow
the electron beam along the propagation direction moving
away from the front target surface. In the following, three
configurations are compared

(A) Double pulses configuration: the first pulse (wt = 1 ps)
with a moderate energy (10%) followed by the second pulses
(wt = 1 ps) carrying out the rest (90%) of the energy. The total
duration of the process is ∼12 ps.

(B) Triple pulses configuration: the first pulse (wt = 1 ps)
with a moderate energy (10%) followed by two pulses
(wt = 1 ps) each of them carrying out half of the remaining
(45% + 45%) energy. The total duration of the process
is ∼16 ps.

(C) Single pulse configuration: the single pulse (wt = 1 ps)
with the same energy as the second pulse in case A (total
duration of the process is ∼6 ps).

We choose configuration A such that the collimation condi-
tion (20) is not satisfied (I2 ∼ 1020 W/cm2). Consequently, the
configuration B is obtained by equally sharing the energy in the
second and third pulses I2 ∼ I3 ∼ 5×1019 W/cm2. The laser

parameters for configurations A and B are chosen according
to the typical values of the Vulcan laser at the Rutherford
Appleton Laboratory which has been used to test the double
pulses scheme [7]. The total available energy is EL = 190 J;
the pulse duration wt = 1 ps HWHM the laser pulses are
focused on a 96-μm-thick aluminium target within a focal
spot of wL = 3.5 μm radius. Starting from EL, wt , wL and
assuming n = 0.6 one may calculate all the parameters by
using Eqs. (3)–(17). The laser and electron-beam parameters
for the configurations A and B are listed in Table I.

Figure 4 shows the distribution of the electron-beam density
for the single pulse (case C) at t = 6 ps, for the double pulse
scheme (case A) at t = 10 ps and for the triple pulses scheme
(case B) at t = 13 ps. As the double pulses parameters do not
fulfill the collimation condition the beam strongly diverges in
the case A. It would be possible assuming a lower intensity for
the second pulse to obtain a good electron-beam collimation
but the electron energy will be lower. The triple pulses scheme
allows one to guide the electrons with the required energy.

Since the experimental results are often presented with
2D images obtained by collecting the Kα emission coming
from the interaction of the fast-electron beam with a control
layer we have calculated the time integrated Kα emission
from the fast-electron beam by assuming that the Copper
tracer is distributed homogeneously in the aluminium target.
Such an “equivalent Cu Kα” distribution better represents the
electron-beam distribution and can be compared with the real
experimental observation.

Figure 5 shows the distribution of the resistive magnetic
field and of the Cu Kα emission at two time instants (t = 6,
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FIG. 4. (Color online) Distribution of the electron-beam density
(logne) at the end of the process for the double pulse scheme at
t = 10 ps (case A, center) and for the triple pulses scheme at t = 13 ps
(case B, right). In the left panel is shown the case C with the energy
E = 40 J. Other parameters are shown in Table I.
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FIG. 5. (Color online) Distribution of the resistive magnetic field
(logBθ ; top line from left t = 6,10 ps) and the Kα emission (logKα;
bottom line from left t = 6,10 ps) for the case A.

10 ps for the magnetic field and t = 6,12 ps for the Cu Kα

signal) for the case A (with 96-μm-thick target). These images
must be compared with that obtained for the case B in Fig. 6 at
the time instants (t = 6,14 ps for the magnetic field and t = 6,
16 ps for the Cu Kα signal).

A comparison of these figures shows that the three pulses
scheme is more efficient. Indeed as shown in Fig. 6 the Kα

20 40 60 80

10

20

30

40

50

60

70

80

90

z (μ m)

r 
(μ

 m
 )

−7

−6

−5

−4

−3

−2

−1

0
x 10

20 40 60 80

10

20

30

40

50

60

70

80

90

z (μ m)

r 
(μ

 m
 )

−12

−10

−8

−6

−4

−2

0

x 10

20 40 60 80

10

20

30

40

50

60

70

80

90

z (μ m)

r 
(μ

 m
 )

34

35

36

37

38

20 40 60 80

10

20

30

40

50

60

70

80

90

z (μ m)

r 
(μ

 m
 )

35

36

37

38

39

40

FIG. 6. (Color online) Distribution of the resistive magnetic field
(logBθ ; top line from left t = 6,14 ps) and the Kα emission (logKα;
bottom line from left t = 6,14 ps) for the case B.

FIG. 7. (Color online) (left) Scheme of a “typical” experiment
with the target having two tracer layers at the front and at the rear
side. (Right) Radial line out of the Kα signal coming from the tracer
layers.

signal is better confined along the propagation axis and the
negative part of the resistive magnetic field can collimate the
electrons. In contrast, the positive part (that hollows the beam)
is much less important. This is not the case in the double
pulse scheme (Fig. 5) where the Kα signal is much wider
radially and the competition between the negative and the
positive part of the resistive magnetic field leads to a significant
modification of the beam spatial distribution with a smaller
number of guided electrons. The negative component of the
magnetic field pushes electrons towards higher beam current
density regions despite the positive component which does the
opposite. The combination of these two processes leads to a
macroscopic electron-beam “filamentation.”

In order to better compare the efficiencies of the double
(A) and triple (B) pulses scheme we consider a “conventional”
experimental setup shown in Fig. 7. The target is covered by
two thin tracer copper layers, one at the front (i) and another
at the rear (f) side of the target. Then K

(i,f )
α (r), wi,f , and ki,f

represent respectively the radial profile, the HWHM, and the
normalized integrated copper Kα emission measured at the
front and at the rear side of the target. The incident electron-
beam transverse HWHM is wi = 20 μm (for all the cases).
Following this scheme we define three types of indices: the
first two types for the estimate of the beam collimation and
compression degree and the latter for the estimate of the laser-
electrons conversion efficiency. In particular, as follows.

(1) Collimation degree indices. (i) w
f/i
x = w

f
x /wi

x is the
ratio between the Kα signal size measured at the rear and at
the front side of the target (x = A,B,C). (ii) w

f

x/C = w
f
x /w

f

C

is the ratio between the Kα signal size measured at the rear
side of the target in the case x = A/B vs C.

(2) Compression degree indices. (iii) k
f/i
x = k

f
x /ki

x is the
ratio between the normalized integrated within HWHM Kα

signal measured at the rear and at the front side of the
target (x = A,B,C). (iv) k

f

x/C = k
f
x /ki

C is the ratio between
the normalized integrated within HWHM Kα signal measured
at the rear side of the target in the case x = A/B vs C.

(3) Laser-electrons conversion efficiency. (v) εi/L =
Ei

e/EL is the laser-electron-beam conversion efficiency at the
front side of the target. (vi) εf/i = E

f
e /Ei

e is the electron-
beam transport efficiency from the front to the rear side
of the target. (vii) εf/L = E

f
e /EL is the laser-electron-beam

conversion and transport efficiency at the rear side of the target
(εf/L = εf/i · εi/L).
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TABLE II. Collimation [(i),(ii)], compression [(iii),(iv)], and
conversion efficiency [(v),(vi),(vii)] indices for the cases A and B
compared with the single pulse case C.

(i) (ii) (iii) (iv) (v) (vi) (vii)
wf/i

x w
f

x/C kf/i
x k

f

x/C εi/L
x εf/i εf/L

x

A 3 0.86 0.35 1.5 0.21 0.031 0.006
B 2 0.57 0.65 2.8 0.19 0.063 0.012

The collimation parameter describes the reduction of the
beam size and the compression parameter accounts for the
reduction of the beam size while keeping the total number
of particles constant. A good beam collimation does not
necessarily imply a good beam compression. For that we
consider separately the collimation, that is connected to the
beam size only we, and the compression, which gives also
information of the number of confined electrons (i.e., Kα signal
yield).

The above-mentioned indices are calculated for the cases A
(double pulses), B (triple pulses), and C (single pulses) and the
results are listed in Table II. The indices from (ii) to (iv) confirm
a doubling of the collimation and compression degree for the
case of the triple pulses scheme compared to the double pulses
scheme. The indices from (v) to (vii) confirm this trend in terms
of the conversion efficiency. In particular, the index (v) shows
that the conversion efficiency of the laser to electrons decreases
in the triple pulses scheme according to the fact that lower
laser intensities correspond to a lower conversion efficiency.
The difference between the two schemes appears clearly in
the index (vi) which gives an estimate of the efficiency of the
electron-beam transport from the front to the rear side of the
target; this efficiency is doubled for the triple pulses scheme
as shown in Table II.

IV. CONCLUSIONS AND PROSPECTIVES

In conclusion, we propose an extension of the double
pulses scheme allowing one to increase the efficiency of
fast-electron-beam transport in a dense plasma. Simulations
show that the multiple pulses scheme is more flexible, allowing
one to overcome several limitations already observed in the
experiments. In particular, by increasing the number of pulses
(and then the duration of the process) one can reduce the
single pulse intensity while keeping the total delivered energy
constant and the total duration of the process within the fast
ignition limits. The presented example of three consecutive
pulses shows that the efficiency of the double pulse scheme
can be increased at least by a factor of 2. Moreover, putting
together many laser pulses gives a possibility to increase the
total amount of delivered energy while keeping the average
energy constant. This method is promising to achieving an
efficient energy transport in a dense matter by a collimated
beam of fast electrons, which is relevant for many applications
such as fast ignition inertial fusion and ion beam sources.
Although the magnetic guiding improves the electron transport
there are several points that need a further optimization. First,
the laser-electron coupling efficiency is a relatively low 30%
[see Eq. (4)] and needs to be improved. It can be done

by appropriate shaping of the laser prepulse and forming
a preplasma. This issue is not in the scope of the present
study. Second, the triple pulse scheme allows one to transport
more than 50% of the produced fast electrons in a form of
a collimated beam over a distance about 100 μm. This is a
significant improvement compared to the one or two pulses
but it is still insufficient for the fast ignition. It would be
interesting to find additional processes that may allow one to
guide the remaining 50% of fast electrons.
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APPENDIX: RIGID MODEL

The “rigid model” of the magnetic-field generation by a
high current electron beam assumes that the electron-beam
current J is given and it is completely compensated by the
return current of plasma electrons J + Jt ∼ 0. The electric
field is produced due to the plasma resistivity η according to
Ohm’s law

�E = η �Jt . (A1)

The target resistivity is supposed to depend on the plasma
temperature according to the power law

η = η0
T

T0

α

, (A2)

which evolves in time because of Ohm’s heating

∂T

∂t
= ηJ 2

t

Cv

, (A3)

where Cv is a constant heat capacity. The time evolution of the
magnetic field is defined by Faraday’s law:

∂B

∂t
= η �∇× �J + �∇η× �J . (A4)

Here the first term in the right-hand side is a source of
an azimuthal magnetic field that pushes (B < 0) electrons
towards regions of a higher current density causing collimation
of the electron beam. The second term in the right-hand side
is a source of a magnetic field that pushes (B < 0) electrons
towards regions of higher resistivity leading to the electron
beam hollowing. Assuming a super-Gaussian profile for the
electron-beam current

J = −J 0e
−ln(2)

(
r

we

)2n

, (A5)
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the solution of Eq. (A4) can be written as

Bθ = 2n

(
r

we

)(2n−1)
CT0

J

×
[

1 + 1 + α

1 − α

(
T

T0

)
+ 2

1 − α

(
T

T0

)α]
, (A6)

T = T0[1 + (1 − ατ )]1/(1−α), α < 1, (A7)

where τ = (η0J
2)(CT0)t .

1. Beam hollowing

The above solution for the magnetic field shows that it
depends strongly on the radial shape of the electron beam (n)
and the plasma temperature T . It has been shown [11] that if
the resistivity falls faster than linearly with the temperature
(α < −1) then the magnetic field can change the sign acting
to hollow rather than to focus the electron beam. In particular,
assuming the Spitzer regime (i.e., α = −3/2), the beam
hollowing appears for τ > 17 as shown in Fig. 8.

The positive part of the magnetic field grows up at the center
of the electron beam and then acts to hollow the beam. It was
shown [11] that for the typical conditions (the target made of a
mylar with the electron density ne = 4.4×1029 m−3; the laser
wavelength λ = 1 μm; the Spitzer resistivity with Z ln� ∼ 10
and η0 = 2 � m; the laser to electrons conversion efficiency
∼0.3) the electron-beam hollowing appears for laser intensities
larger than 1018 W/cm2.

0 1 2 3 4
12

10

8

6

4

2

0

2

Τ

B Θ

100

17

FIG. 8. (Color online) Magnetic field (in arbitrary units) radial
profile as obtained from Eq. (A8) for two cases τ = 17 (max B ∼ −4)
(no hollowing) and τ = 100 (max B ∼ −11).

2. Time evolution of the negative magnetic field

It is important to give an estimate of the time th when
the negative part (focusing) of the magnetic field reaches
maximum. This can be done by equating Eq. (A4) to zero
(assuming the Spitzer regime α = −3/2):

∂B

∂t
= 2n

(
r

we

)(2n−1)
CT ′

5J

[
6

(
T

T0

)−5/2

− 1

]
= 0. (A8)

For a given radial position (i.e., r = we) and by using Eq. (A8)
one finds τ = 10 and then

th = 10CT0

η0J 2
. (A9)
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