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Self-focusing and jet instability of a microswimmer suspension
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Three-dimensional (3D) numerical simulations are performed on suspensions composed of puller-like
microswimmers that are sensitive to light (phototaxis) mimicking microalgae in a Poiseuille flow. Simulations
are based on the numerical resolution of the flow equations at low Reynolds numbers discretized on a 3D grid
(finite differences). The model reproduces the formation of a central jet of swimmers by self-focusing [Phys. Rev.
Lett. 110, 138106 (2013)] but also predicts an instability of the jet, which leads to its fractionation in clusters.
We show that this instability is due to hydrodynamic interactions between microswimmers, which attract each
other along the flow direction. This effect was not observed in the experiments conducted on dilute suspensions
(i.e., where hydrodynamic interactions are weak). This phenomenon is peculiar for pullers for which collective
motions are usually not observed on such a time scale. With this modeling, we hope to pave the way toward a
better understanding of concentration techniques of algae (a bottleneck challenge in industrial applications).
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I. INTRODUCTION

Microorganism motions are frequently biased by physical
or chemical externals fields or gradients. Numerous phe-
nomena in ecology find interpretation based on this kind
of property (see, for example, Ref. [1]), and applications in
industry expect a lot from the control of biased motions of
microorganisms or artificial micropropellers [2]. For example,
bacteria suspensions exhibit an instability when the cells’
swimming motion is biased due to a gradient of a chemical
attractant in a confined channel or in a liquid film [3,4].
Swimmers in a Poiseuille flow exhibit a very rich nonlinear
dynamics [5] with swinging and tumbling trajectories, but
this dynamics can be strongly affected by an external field.
For instance, Kessler [6] studied a suspension of algae that
can orient themselves in the gravity field and placed in a
vertical Poiseuille flow. The balance of torques exerted on each
alga by gravity and flow leads to alga’s transverse migration
resulting in a narrow central jet (self-focusing) in the case of
an upstream flow. Another relevant way to bias swimming
is phototaxis. It describes the motion of microswimmers
toward a light source [7] thanks to a patched eye embedded
in their cytoplasmic membrane. In a preceding study [8], it
has been shown that by combining light and a Poiseuille
flow, a controlled and reversible self-focusing of a dilute
suspension of Chlamydomonas rheinhardtii (CR) [7] (a genus
green microalga) can be produced. The advantage of light is
to control the self-focusing and the remixing, whatever the
direction of the flow. If the phenomenon is well understood for
individual alga in dilute suspensions, for more concentrated
regimes understanding the stability of the jet is largely an
open issue. We numerically address this question in the present
work.

A model based on that of Zöttl and Stark [5] with a
single swimmer allowed us [8] to qualitatively reproduce
the self-focusing effect. Here, we reproduce numerically the
self-focusing effect of a whole suspension of interacting mi-
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croswimmers. We also reproduce very well the dynamics of the
band width of the jet [8] and its spatial distribution as a function
of the flow rate. In addition, we show that the central jet of
swimmers produced by the self-focusing effect is unstable
and a clustering is predicted by our numerical simulations.
This clustering is due to attractive hydrodynamic interactions
between oriented algae within the jet. This was not observed
experimentally [8] since experiments were performed on dilute
suspensions. Collective motions are frequently observed for
pushers [9] but not for pullers [10] or marginally and on very
long time scales [11]. Here, the combination of light and flow
creates an alignment of the swimmers that favors collective
behaviors (i.e., due to hydrodynamic interactions) for pullers.

II. MODEL AND NUMERICAL SIMULATIONS

Let us first briefly describe the microswimmer, alga CR [7],
and its way of locomotion in order to develop our model.
CR is a biflagellated unicellular organism. It is spheroidal
in shape with two anterior flagella moving in a back-and-
forth movement, producing a jerky breast stroke with a
mean swimming speed of V0 ∼ 50 ± 20 μm/s in a waterlike
medium [12]. Since the cell radius is R ∼ 5 μm, Brownian
motion is negligible. Therefore, a CR is modeled as a rigid
sphere—the body—of radius R transporting a set of volume
forces (see Fig. 1), which mimic the flagella and body forces
exerted on the fluid [13,14]. This set of forces is an average over
one period of the breast stroke [14]. Since each microswimmer
taken apart is an isolated body, it must be force free and
torque free in the absence of an external field of force (like
gravity, for example). A swimmer moves in the fluid due
to its own velocity and can also be transported and rotated
by the external flow and by the presence of other swimmers
through hydrodynamic interactions. Phenomena that are still
not very well known can occur at higher concentration, such as
flagella synchronization or overlaps of flagella. For the sake of
simplicity, we restrict ourselves to the simple swimmer model
presented on Fig. 1. Note that CR work at constant force [15]
and the model should remain robust at high concentration.
In order to model the phototactic property, in the simulations
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FIG. 1. A chlamydomonas model: a spherical bead (the cell body)
is bonded to two parallel forces −f exerted by the flagella (dashed
lines) on the fluid and to the force 2f exerted by the body on the
fluid. It constitutes a puller [10]. The swimmer must be force free and
torque free.

each microswimmer is reoriented toward a given direction (i.e.,
the direction of the light source) at a given frequency τ−1.
Experimentally, τ is typically of about 1 to 2 s [8]. Indeed,
the observed phenomena (self-focusing and jet instability) are
quite robust, and it appears that time is simply rescaled by
τ . Therefore, in the following, we use the dimensionless time
t/τ . Of course, if τ = 0, self-focusing is no longer observed.
The microswimmers are suspended in a Newtonian fluid of
viscosity η0 in a long channel of length � with a squared
section of lateral size 2w. No-slip conditions are used at the
fluid-wall and fluid-particle interfaces. In order to neglect the
effect of wall confinement, we choose w ∼ 8.5R. Note that we
chose this confinement value as a compromise since we did
not notice quantitative difference with smaller confinements
for which computation is much more time-consuming. A
pressure gradient is used in order to impose a flow within
the channel (i.e., a Poiseuille flow in the absence of particles).
The Reynolds number associated with each swimmer is small:
Re = RV0/ν ∼ 0.2 (here numerical velocity is V0 ∼ 7.10−2δ

per time unit, R = 3δ, and the numerical kinematic viscosity
is ν ∼ 1δ2 per time unit). The real Re number is 10−4 [8],
however we can still neglect inertial effects in our simulations.

The numerical method is the fluid particle dynamics [16],
which we have used before for 3D passive or active suspen-
sions [17–19]; for a detailed review and the reliability of the
method see Ref. [20]. This method is also known as penalty
method in applied mathematics [21]. It consists in replacing
solid particles by fluid particles with an inner viscosity ηp

much higher than the outer fluid viscosity η0 (ηp/η0 = 100).
The flow equation is then solved on the entire domain: inside
and outside the particles, thus avoiding particle tracking. The
translational velocity of the ith particle, 〈v〉i is obtained by
averaging the velocity v on the volume of that particle. The
symbol 〈·〉i represents the average done over the volume of
the ith particle. A time step δt is used and at each iteration,
the out-of-lattice sphere number i is moved by the quantity
δri = 〈v〉iδt . Then, the viscosity field η(r) is recalculated
from the new positions of the sphere centers. Time t is simply
t = nδt , where n is the number of time iterations.

Despite the smallness of the Re number, we solve the
Navier-Stokes equation (and not the Stokes equation) on the
whole domain with a viscosity field η(r):

ρ
Dv
Dt

= −∇P + ∇ · [η(r)(∇v + ∇vt )] + f, (1)

with the incompressibility constraint (∇ · v = 0). Here,
D/Dt = ∂/∂t + v · ∇. Our Navier-Stokes solver works for
0.01 < Re < 100 and is very competitive compared to stan-
dard Stokes solvers. The volume force f is the set of forces
generated by each swimmer. The resolution of Eq. (1) is then
performed using finite differences on a MAC grid [22] with
a cubic mesh of size δ = 1. In order to ensure numerical
stability, we take δt = 10−3 [22]. The radius of a swimmer is
R = 3δ. The volume forces exerted by each swimmer on the
fluid (Fig. 1) are bonded to the spherical particle. Therefore,
for the ith particle, we need to know both its translational
velocity 〈v〉i to determine its position and its angular velocity
〈�〉i = 1/2〈∇ × v〉i since it gives its orientation in order
to reposition the set of forces belonging to particle i at
any time t .

III. RESULTS

A single swimmer, described by the above model, moves
in a fluid at rest with a velocity proportional to the force:
v0 = M f . The swimmer’s mobility M is such that M =
(6ζπηR)−1, where ζ is a dimensionless parameter that de-
pends on the geometry of the set of forces around the swimmer
as well as the confinement due to the walls. For example, with a
single force applied on the spherical body, we would have ζ =
1 in an infinite fluid. Here, with the set of three forces bonded
to the sphere and with a small confinement (w/R ∼ 8.5), we
found ζ ∼ 1.14 in our simulations. This numerical value is
very close to the analytical value ζ = 32/29 = 1.10 derived
with the Green’s function theory [23] in an infinite fluid. The
small error of ∼3.5% is mainly due to discretization and of the
small confinement. Our numerical modeling thus provides a
3D description of a spherical microswimmer suspension taking
into account the full hydrodynamics.

We initially begin the simulation with a suspension of
swimmers modeled as described above and homogeneously
distributed across a channel with a squared section [see
Fig. 2(a)]. The channel length is 100δ and the lateral size
is 2w = 50δ. The swimmers are initially randomly oriented.
A pressure gradient is imposed along the channel and the flow
direction is from left to right on the figure and the position
of the light source is upstream (i.e., on the left side of the
channel). In the absence of particles, we obtain a Poiseuille
flow with a maximum velocity at the center: vmax. Each
swimmer moves with its own velocity and is also transported
and rotated by external flow and hydrodynamic interactions
with other swimmers. We apply periodic boundary conditions
along the flow direction. During that motion each particle is
oriented toward the light source at a frequency τ−1 but not
simultaneously since there is no synchronization among the
swimmers. The snapshots in Fig. 2 represent the distribution
of swimmers at different times. As shown previously [8],
swimmers that reorient themselves regularly upstream are
rotated by the flow vorticity and oriented toward the center of
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FIG. 2. (Color online) A suspension of 50 swimmers in a channel
with a squared cross section of lateral size 2w. The flow is from left to
right (vmax/v0 = 14) and the light source’s position is upstream (left).
(a) Initial state (t/τ = 0) Poiseuille flow is schematically indicated;
(b) self-focusing (t/τ = 28) of band width 2wb; (c) clustering (t/τ =
50); (d) merging (t/τ = 60).

the flow to which they swim. As shown in Fig. 2(b), this results
in a self-focusing effect. In Fig. 3, we plot the lateral half-width
wb of the distribution normalized by w as a function of time.
In addition, we alternate the time slots for which reorientations
upstream are active and inactive (random reorientation). This
simulates a periodic switching of the light with a period
chosen to be 20 times longer than the phototactic time τ .
Following the self-focusing phase, a redispersion is obtained
during the dark phase, showing the reversible character of the
phenomenon. The same saw-tooth profile is obtained as in the
experiments [8]. We choose flow rates for which flow focusing
is obtainable. Note that the dynamics of the band width is
not very much affected within this range of flow rates. This
time-dependent shape of wb/w is due to the dynamics of the
self-focusing and of the redispersion that are both dominated
by the velocity of the cells that migrate across the channel at
their own swimming velocity v0. Therefore, the slope of the
saw-tooth profile is proportional to v0. We also checked the
influence of the flow rate on the self-focusing. By changing
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FIG. 3. (Color online) Half width of the jet normalized by the
channel half-width w as a function of time when the swimmer
suspension is submitted to a light-dark cycle at different flow rates
[green: vmax/v0 = 18 (triangles), purple: vmax/v0 = 16 (squares),
blue: vmax/v0 = 14 (circles)]. Dark periods are indicated by the gray
areas. The self-focusing is observed during the light phases and a
redispersion is observed during the dark phases.

the pressure gradient, the maximum velocity of the external
flow vmax is varied from 0 to 30 times the swimmer velocity
v0. These values are similar to the experimental ones [8]. In
inset of Fig. 4, we plot the normalized half band width of
the jet as a function of the dimensionless quantity γ̇wallτ . A
swimmer that migrates toward the center, crossing the flow
lines is submitted to a continuous shear rate, which varies from
γ̇wall (at walls) to 0 (at the center). At low flow rate, when γ̇wallτ

is too small, the presence of hydrodynamic diffusion (due to
hydrodynamic interactions) screens the swimmer orientation
toward the center and self-focusing is inefficient. At high
flow rate, a swimmer is oriented in several directions during
time τ , it is submitted to successive rotations by the flow
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FIG. 4. (Color online) Probability distribution across the channel
at several flow rates: vmax/v0 = 0.5 (circles), vmax/v0 = 14 (squares),
vmax/v0 = 22 (triangles), vmax/v0 = 28 (diamonds). Inset: Half width
of the jet (wb) normalized by the channel half-width w as a function
of γ̇wallτ at t/τ = 30.
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depending on its distance to the center in the channel and
again self-focusing becomes inefficient. For intermediate flow
rates (i.e., 2 � γ̇wallτ � 5), we observe a plateau where the
minimum value wb/w ∼ 0.3 is close to the experimental
one [8]. This is due to lateral hydrodynamic diffusion [24]
and the phenomenon is rather independent of the flow rate in
this range of values.

Our simulations also predict a new phenomenon that was
not experimentally observed on dilute suspensions: the jet
fragmentation. If this instability is visually similar to the
one observed in jets of falling passive particles [25] driven
by gravity, the physical interpretation is totally different in
our case since algae wear force dipoles while sedimenting
passive particles wear single force (Stokeslet). Because they
are aligned by light, the swimmers strongly interact with each
other (in the simulations presented here, the volume fraction
is ∼2.3%, i.e., corresponding to a semidilute case). By the
mean of the forces created by the flagella and acting on the
fluid (Fig. 1), swimmers create attractive flow field along their
swimming direction and a repulsive flow field along their
sides [26]. The attraction makes the jet unstable at larger times
and a fragmentation in clusters happens [Fig. 2(c)]. Clusters
merge together to form a large single one which then expands
perpendicularly [Fig. 2(d)] to the channel owing to the side
repulsion between pullers. Then, a self-focusing is observed
again since the cluster size is comparable to the lateral size
of the channel. Since clustering is driven by hydrodynamic
interactions, it is only visible when suspension is concentrated
enough (above ∼1%). In order to show the origin of this
instability, we performed a simulation of a train of periodically
arranged swimmers as described in Fig. 1, all oriented in one
direction and suspended in a fluid at rest (Fig. 5).

The periodic structure is destabilized by the longitudinal
attraction between pullers. Due to numerical noise, if two
pullers become closer, they further form a pair and pairs
then merge to form bigger clusters. This pairing does not
depend on the period of the initial arrangement; the train
is unconditionally unstable. Another approach that uses the
Rotne-Prager-Green function for an infinite fluid [27,28] to
calculate hydrodynamic interactions between swimmers gives
the same results (not shown here). Oriented pullers always
tend to cluster even when they are far apart. Therefore, in
principle, the clustering should be experimentally observable
even in dilute suspensions but on much larger timescales for

FIG. 5. (Color online) A train of pullers (as described in Fig. 1).
(a) Initially, swimmers are regularly positioned and oriented in a
fluid at rest in a channel (partial view). (b) A pairing appears due to
hydrodynamic attractions between pullers.

which the phenomenon could be screened by other sources
of noise (flow rate sensitivity, dispersion of size, swimming
behaviors [12], and variability of phototactic properties among
swimmers). Note that if body forces are reversed, pullers
become pushers [10] and no instability is observed because
of the longitudinal repulsion between pushers.

IV. CONCLUSION AND FUTURE PROSPECTS

Our 3D simulations are able to reproduce the behavior
of phototactic microswimmers in a channel flow at low
Reynolds numbers. The self-focusing effect, the dynamics of
the phenomenon, as well as its behavior as a function of the
flow rate were studied for semidilute suspensions. We predict
that the central jet of microswimmers once formed is unstable
and a fragmentation in clusters occurs. The clustering is a
collective behavior since it is due to attractive hydrodynamic
interactions between oriented swimmers in the central jet. This
is peculiar for pullers for which usually no collective motion
is observed on such a time scale. This phenomenon should
be experimentally observable for sufficiently concentrated
suspensions. With this modeling, we hope to open new
perspectives in the understanding of collective motions of
active matter, including microalgae, which represent a rich
domain of applications.
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