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Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble:
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The field theoretic renormalization group and the operator product expansion are applied to two models
of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field.
The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force
with the covariance ∝δ(t − t ′)k4−d−y , where d is the dimension of space and y is an arbitrary exponent. The
original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the
corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various
correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in
the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified
with scaling (critical) dimensions of certain composite fields (“operators” in the quantum-field terminology),
can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop
approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to
Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are
manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models
are briefly discussed.
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I. INTRODUCTION

In the past few decades, intermittent interest has been
attracted to the problem of intermittency and anomalous
scaling in fluid turbulence; see, e.g., Refs. [1–11] and the
literature cited therein. The phenomenon manifests itself in
singular (arguably powerlike) behavior of various statistical
quantities as functions of the integral turbulence scales, with
infinite sets of independent anomalous exponents [1]. In spite
of considerable success, the problem remains essentially open:
No regular calculational scheme, based on an underlying
dynamical model and reliable perturbation expansion (like
the famous ε expansion for critical exponents), was ever
constructed for the anomalous exponents of the turbulent
velocity field.

Both the natural experiments and the numerical simulations
suggest that deviations from the classical Kolmogorov theory
are even more strongly pronounced for passively advected
scalar fields (like the temperature or the density of a pollutant)
than for the velocity field itself [2–7]. For the most recent
research of turbulent transport, see, e.g., Refs. [8] and
references therein.

At the same time, various simplified models, describing
passive advection by “synthetic” velocity fields with given
statistics, appear easier tractable theoretically and allow
analytical results to be derived [9]. Therefore, the problem
of passive advection, being of practical importance in itself,
may also be viewed as a starting point in studying intermittency
and anomalous scaling in fluid turbulence on the whole.

The most remarkable progress was achieved for the Kraich-
nan’s rapid-change model [10], where the advecting velocity
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field is taken Gaussian, not correlated in time, and having
a powerlike correlation function of the form ∼δ(t − t ′)/kd+ξ ,
where d is the dimension of space, k is the wave number, and ξ

is an arbitrary exponent. There, for the first time, the existence
of anomalous scaling was firmly established on the basis
of a microscopic model [10]; the corresponding anomalous
exponents were calculated in controlled approximations [11]
and, eventually, within a systematic perturbation expansion
in a formal small parameter ξ [12]. A detailed review of the
theoretical research on the passive scalar problem and the
bibliography can be found in Ref. [9].

In the original Kraichnan’s model, the velocity ensemble
was taken to be Gaussian, decorrelated in time, and isotropic,
and the fluid was implied to be incompressible. More realistic
models should take into account finite correlation time and
non-Gaussianity of the velocity ensemble, anisotropy of the
experimental setup, compressibility of the fluid, etc.; see the
discussion in [2,3]. Here two key issues arise: formulation of
more realistic models and the possibility to treat them (more
or less) analytically.

A most efficient way to study anomalous scaling is provided
by the field theoretic renormalization group (RG) combined
with the operator product expansion (OPE); see [13,14] for
detailed exposition of these techniques and the references.
In the RG + OPE scenario for the anomalous scaling in
turbulence, proposed in [15], the singular dependence on the
integral scales emerges as a consequence of the existence in
the corresponding models of composite fields (“composite
operators” in the quantum-field terminology) with negative
scaling dimensions, termed as “dangerous operators”; for
more detailed explanations and the references, see [14–17].
For Kraichnan’s model, the anomalous exponents can be
identified with the scaling dimensions (“critical dimensions”
in the terminology of the theory of critical state) of certain
individual Galilean-invariant composite operators [12]. This
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allows one to give a self-consistent derivation of the anomalous
scaling, to construct a systematic perturbation expansion for
the anomalous exponents in ξ , and to calculate the exponents
in the second [12] and third [18] orders. The RG approach can
be generalized to the case of finite correlation time [19] and
to the non-Gaussian advecting velocity field, governed by the
stochastic Navier-Stokes equation [20]. A general overview of
the RG approach to Kraichnan’s model and its descendants
and more references can be found in [21].

Numerous studies were devoted to the effects of compress-
ibility on the intermittency and anomalous scaling [22–32].
Analysis of simplified models suggests that compressibility
strongly affects the passively advected fields. In particular,
in contrast to the incompressible case, the diffusion can be
depleted by the advection of a purely potential flow [24]
and the phase transition from a turbulent to a certain purely
chaotic state takes place when the degree of compressibil-
ity increases [27]. It was also shown that the anomalous
exponents become nonuniversal due to dependence on the
compressibility parameter, such that the anomalous scaling
is enhanced, while the hierarchy of anisotropic contributions
is suppressed [28–32]. For passive vector (e.g., magnetic)
fields, the issues of anomalous scaling, hierarchy of anisotropic
contributions, and the dependence on compressibility were
discussed, e.g., in [33–40].

An important advantage of Kraichnan’s model is the possi-
bility to easily model compressibility [22–28]. Generalization
to the case of a Gaussian ensemble with finite correlation
time is also possible [31,32,38]. However, synthetic models
with nonvanishing correlation time suffer from the lack of
Galilean symmetry, which may lead to “interesting patholo-
gies” (quoting Ref. [3]). In the RG approach, one of such a
pathology manifests itself as an ultraviolet (UV) divergence
in the vertex [31], which in more realistic models is forbidden
by Galilean invariance and for the incompressible Gaussian
model is absent because of rather technical reasons [19]. Thus,
it is desirable to describe the advecting velocity field by the
corresponding Navier-Stokes equations [41] with a random
stirring force. However, this appeared to be a difficult task.

In Refs. [42,43], the leading-order correction in the Mach
number Ma to the incompressible scaling regime was studied;
generalization to all orders of the expansion in Ma was
derived in [44]. The corrections are small for very small
Ma and not very small momenta k, but become arbitrarily
large (IR relevant in the sense of Wilson) and destroy the
incompressible scaling regime if Ma is fixed and the momenta
become small enough. Thus, the original incompressible
regime becomes unstable, and a crossover to another unknown
regime occurs. The case of strong compressibility was studied
in Refs. [45–47]. The results are rather controversial, but
all of those studies support the existence of a stationary
resulting “compressible” regime, different from the original
incompressible one.

In the present paper, we adopt the approach of Ref. [47],
where the standard field theoretic RG was applied to the
problem of stirred hydrodynamics of a compressible fluid, and
the resulting stationary scaling regime was associated with the
IR attractive fixed point of the corresponding multiplicatively
renormalizable field theoretic model. That approach was
later applied to the problem of mass distribution in the

self-gravitating matter within the framework of a continuous
stochastic formulation of the Vlasov-Poisson model [48]. The
problem of anomalous scaling of the velocity field in that
model remains open, as for its incompressible predecessors,
but the passive scalar advection by such an ensemble can be
treated analytically. This is the aim of the present work.

The plan of the paper is as follows.
In Sec. II we revisit the RG approach to the stochastic

Navier-Stokes equation for a compressible fluid, following
mostly Ref. [47], and introduce the basic notions (field the-
oretic formulation, canonical dimensions, renormalizability,
and RG equations) needed for the further analysis of the
passive advection. The RG equations possess an IR attractive
fixed point, which implies the existence of a scaling regime
in the inertial and energy-containing ranges. The one-loop
explicit expressions for the renormalization constants and
the RG functions (anomalous dimensions and β functions),
calculated in [47], are presented. The corresponding scaling
dimensions of the frequency and the velocity are known
exactly and coincide with their analogs for the incompressible
case. Another nontrivial fixed point is unstable (it is a saddle
point) and corresponds to the incompressible fluid.

In Sec. III we introduce the diffusion-advection stochastic
equations for the two types of passive scalar field: the tracer
(temperature, entropy, or concentration of a pollutant) and the
density of a conserved quantity (e.g., density of a pollutant).
We present the field theoretic formulation of these models
and show that they are multiplicatively renormalizable. Then
the RG equations can be derived in a standard fashion. The
renormalization constants and the RG functions are calculated
in the leading (one-loop) approximation, which is consistent
with the accuracy of the results derived in [47]. The full-scale
models, involving the velocity field and the scalar field, possess
an IR attractive fixed point. Thus, the existence of a scaling
regime in the IR range is established. Exact expressions for
the scaling dimensions of the scalar fields are obtained.

In Sec. IV we calculate, in the leading order of the
expansion in y (one-loop approximation), critical dimensions
of the composite operators built of the scalar field and its
spatial derivatives, including some tensor operators. In the
next section, those dimensions are identified with various
anomalous exponents.

In Sec. V we apply the OPE to the analysis of the
inertial-range behavior of various correlation functions: the
correlation functions of the scalar fields and their powers for
the density case and of the structure functions for the tracer
case. We show that, for the density case, leading terms of the
inertial-range behavior are determined by the contributions of
the operators built solely of the scalar fields. Their critical
dimensions are negative, which leads to strong dependence
on the integral scale and to the anomalous scaling, with the
anomalous exponents identified with those dimensions.

For the tracer case, more interesting quantities are the
structure functions that involve differences of the values of
the scalar field at different points. Their anomalous behavior
is determined by the scalar operators built of the gradients of
the scalar field, whose negative dimensions are identified with
the corresponding anomalous exponents.

In the presence of anisotropy introduced into the system
at large scales, contributions of the tensor operators in the
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OPEs come into play: lth rank tensor operators determine
the contribution in the correlation functions with nontrivial
angular dependence described by the lth-order spherical
harmonics. Like for the Kraichnan model, those anisotropic
contributions organize a kind of hierarchy related to the degree
of anisotropy: They become less important as l grows, so that
the leading term of the inertial-range asymptotic behavior is
given by the isotropic contribution (l = 0), in agreement with
Kolmogorov’s hypothesis of the local isotropy restoration.
This issue is discussed for the pair correlation function in
the both models and for the structure functions of arbitrary
order for the tracer.

Section VI is reserved for the discussion, comparison with
the Gaussian models, and the conclusion.

II. RG ANALYSIS OF THE STOCHASTIC NS EQUATION
WITH STRONG COMPRESSIBILITY

A. Description of the model

The Navier-Stokes equation for a viscid compressible fluid
has the form [41]

ρ∇t vi = ν0[δik∂
2 − ∂i∂k]vk + μ0∂i∂kvk − ∂ip + ηi, (2.1)

where

∇t = ∂t + vk∂k (2.2)

is the Lagrangian (Galilean covariant) derivative, ∂t = ∂/∂t ,
∂i = ∂/∂xi , and ∂2 = ∂i∂i is the Laplace operator.

Equation (2.1) is obtained by combining the momentum
balance equation

∂t (ρvi) + ∂k
ik = ηi, (2.3)

where


ik = ρvivk + δikp − ν0(∂ivk + ∂kvi) − δik(μ0 − 2ν0) ∂lvl

(2.4)

is the stress tensor, with the continuity equation

∂tρ + ∂i(ρvi) = 0. (2.5)

In those equations, vi is the velocity, ρ is the mass density,
p is the pressure, and ηi is the density of the external force (per
unit volume). All these quantities depend on x = {t,x} with
x = {xi}, i = 1, . . . ,d, where d is an arbitrary (for generality)
dimensionality of space. The constants ν0 and μ0 are two
independent molecular viscosity coefficients; in the viscous
terms in (2.1) we explicitly separated the transverse and the
longitudinal parts. Summations over repeated vector indices
are always implied.

The problem (2.1) and (2.5) should be augmented by the
equation of state, p = p(ρ). It will be taken in the simplest
form of the linear relation,

(p − p̄) = c2
0(ρ − ρ̄), (2.6)

between the deviations of the pressure and the density from
their mean values. The constant c0 has the meaning of the
(adiabatic) speed of sound.

Following [47], we divide Eq. (2.1) with ρ and in the viscous
terms replace ρ with its mean value. This approximation
(which is needed to obtain a renormalizable local field theoretic

model) is implicitly justified by the analysis of Ref. [44];
we also note that the viscosity plays a little role in the
inertial range. We retain the same notation ν0 and μ0 for the
resulting constant kinematic viscosity coefficients. Then the
equations (2.1) and (2.5) can be rewritten in the form

∇t vi = ν0[δik∂
2 − ∂i∂k]vk + μ0∂i∂kvk − ∂iφ + fi, (2.7)

∇tφ = −c2
0∂ivi, (2.8)

where we have introduced the new scalar field

φ = c2
0 ln(ρ/ρ̄) (2.9)

and fi = fi(x) is the density of the external force (per unit
mass).

In the stochastic formulation of the problem, the external
force becomes a random field that models the energy input
into the system from the large-scale stirring. The details of
its statistics are believed to be unessential, so it is taken to
be Gaussian with zero mean, white in time (this is required
by the Galilean symmetry), and involving some typical IR
scale L (the integral scale). On the other hand, for the use of
the standard RG technique it is important that its correlation
function have a power-law tail at large wave numbers. More
detailed discussion can be found in [16,17,49]. In the present
case one chooses the correlation function in the form [47]

〈fi(x)fj (x ′)〉 = δ(t − t ′)
∫

k>m

dk
(2π )d

D
f

ij (k) exp{ik · x},
(2.10)

where

D
f

ij (k) = D0 k4−d−y {P ⊥
ij (k) + αP

‖
ij (k)}. (2.11)

Here P ⊥
ij (k) = δij − kikj /k2 and P

‖
ij (k) = kikj /k2 are the

transverse and longitudinal projectors, respectively, k = |k|
is the wave number, and D0 and α are positive amplitudes.
It is convenient to write D0 = g0ν

3
0 : The parameter g0 plays

the role of the coupling constant (formal expansion parameter
in the ordinary perturbation theory). The relation g0 ∼ �y

sets in the typical UV momentum scale (reciprocal of the
dissipation length scale). The parameter m = L−1 provides IR
regularization; its precise form is unessential and the sharp
cutoff is the simplest choice for calculational reasons. The
exponent 0 < y � 4 plays the role analogous to that played
by ε = 4 − d in the RG theory of critical behavior [13,14]: It
provides UV regularization (so that the UV divergences have
the form of the poles in y) and the coordinates of fixed points
and various scaling dimensions are calculated as series in y.
The most realistic (physical) value is given by the limit y → 4,
when the functions in (2.11) can be viewed (with the proper
choice of the amplitude) as powerlike models of the function
δ(k): It corresponds to the idealized picture of the energy input
from infinitely large scales.

B. Field theoretic formulation and Feynman rules

According to the general theorem [13,14], the stochastic
problem (2.7), (2.8), (2.10), and (2.11), is equivalent to the field
theoretic model of the doubled set of fields � = {v′

i ,φ
′,vi,φ}
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and the action functional,

S(�) = 1
2v′

iD
f

ikv
′
k + v′

i{−∇t vi + ν0[δik∂
2 − ∂i∂k]vk

+ u0ν0∂i∂kvk − ∂iφ}
+ φ′[−∇tφ + v0ν0∂

2φ − c2
0(∂ivi)

]
, (2.12)

where Df is the correlation function (2.10) and (2.11), and all
the needed summations over the vector indices and integrations
over x = {t,x} are implied, for example,

v′
i∇t vi =

∫
dt

∫
dx v′

i(x)[∂t + vk(x)∂k]vi(x). (2.13)

In (2.12) we passed to the new dimensionless parameter u0 =
μ0/ν0 > 0 and introduced a new term v0ν0φ

′∂2φ with another
positive dimensionless parameter v0. This term is not forbidden
by the symmetry or dimensionality considerations, so it will
necessarily appear in the renormalization procedure. From
the physics viewpoints, it corresponds to some redefinition
of the relation between the velocity and the momentum [41].
From a more technical point of view, it is needed to ensure
multiplicative renormalizability of the model (2.12), which
allows one to easily derive the RG equations. One can insist
on studying the original model (2.7) and (2.8) without such a
term. Then the RG equations must be solved with the initial
condition v0 = 0. In renormalized variables, this corresponds
to a general situation with a nonzero value of the corresponding
renormalized parameter v. Since the IR attractive fixed point is
unique (see below), the specific initial condition is unessential.

The field theoretic formulation means that various correla-
tion functions and response (Green’s) functions of the original
stochastic problem are represented by functional averages over
the full set of fields with weight expS(�), and in this sense they
can be viewed as the Green’s functions of the field theoretic
model with action (2.12). The model corresponds to standard
Feynman diagrammatic techniques with two vertices −v′(v∂)v
and −φ′(v∂)φ and the free (bare) propagators, determined by
the quadratic part of the action functional; in the frequency-
momentum (ω-k) representation, they have the forms

〈vv′〉0 = 〈v′v〉∗0 = P ⊥ε−1
1 + P ‖ε3R

−1,

〈vv〉0 = P ⊥ df

|ε1|2 + P ‖αdf
∣∣∣ε3

R

∣∣∣2
,

〈φv′〉0 = 〈v′φ〉∗0 = − ic2
0k
R

, 〈vφ′〉0 = 〈φ′v〉∗0 = ik
R

,

(2.14)

〈φφ′〉0 = 〈φ′φ〉∗0 = ε2

R
, 〈φφ〉0 = αc4

0k
2df

|R|2 ,

〈vφ〉0 = 〈φv〉∗0 = iαc2
0d

f ε3k
|R|2 ,

〈φ′φ′〉0 = 〈v′φ′〉0 = 〈v′v′〉0 = 0,

where we have denoted

ε1 = −iω + ν0k
2, ε2 = −iω + u0ν0k

2,

ε3 = −iω + v0ν0k
2, R = ε2ε3 + c2

0k
2,

df = g0ν
3
0 k4−d−y, (2.15)

and omitted the vector indices of the fields and the projectors.
In the limit c0 → ∞, the propagators 〈vv′〉0 and 〈vv〉0

become purely transverse, while the mixed propagator 〈vφ〉0

vanishes. Then the scalar field φ decouples from v,v′ [it does
not enter the vertex in (2.7)], and we arrive at the well-known
Feynman rules for the incompressible fluid [14,16,17].

C. UV divergences, renormalization, and
multiplicative renormalizability

It is well known that the analysis of UV divergences is based
on the analysis of canonical dimensions; see, e.g., [13,14].
Dynamical models like (2.12) have two independent scales:
the time scale T and the length scale L. Thus, the canonical
dimension of any quantity F (a field or a parameter) is
described by two numbers, the frequency dimension dω

F

and the momentum dimension dk
F , defined such that [F ] ∼

[T ]−dω
F [L]−dk

F . The obvious consequences of the definition are
the relations

dk
k = −dk

x = 1, dω
k = dω

x = 0,
(2.16)

dk
ω = dk

t = 0, dω
ω = −dω

t = 1.

The other dimensions are found from the requirement that each
term of the action functional be dimensionless (with respect
to the momentum and the frequency dimensions separately).
Then one introduces the total canonical dimension

dF = dk
F + 2dω

F , (2.17)

which plays in the theory of renormalization of dynamical
models the same part as the conventional canonical dimension
does in static problems. The canonical dimensions for the
model (2.12) are given in Table I, including renormalized
parameters (without the subscript “o”), which appear a bit
later.

The choice (2.17) for the total canonical dimension deserves
a more careful explanation. It means that all the viscosity or dif-
fusion coefficients in the model are pronounced dimensionless
(with respect to the new total dimension), and the time and the
space variables are measured in the same units; cf., [13,14].
The experienced reader recalls the c = 1 system of units in
relativistic physics, where all the distances are measured in
the time units (light years). Here we relate the dimensions
by Eq. (2.17) because the dispersion law for diffusion modes
is ω ∼ k2. However, our model involves another dispersion
law, ω ∼ k, related to the sound modes. If we decided to set

TABLE I. Canonical dimensions of the fields and parameters in the models (2.12), (3.4), (3.5), and (3.8).

F v′ v φ′ φ θ ′ θ m, μ, � ν0, ν c0, c g0 u0, v0 w0, u, v, w, g, α

dk
F d + 1 −1 d + 2 −2 d 0 1 −2 −1 y 0

dω
F −1 1 −2 2 1/2 −1/2 0 1 1 0 0

dF d − 1 1 d − 2 2 d + 1 −1 1 0 1 y 0
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the speed of sound c0 dimensionless, we would have to set
dF = dk

F + dω
F .

A similar alternative exists in the so-called model H of
equilibrium dynamical critical behavior, where the motion of
the fluid is taken into account and several dispersion laws are
simultaneously present; see, e.g., p. 552 in the monograph [14].
The choice (2.17) means that we are interested in the asymp-
totic behavior of the Green’s functions where ω ∼ k2 → 0;
the RG treatment will modify it to the Kolmogorov law
ω ∼ k2/3 → 0 (see below). The same choice is made in the
models of incompressible fluid (where it is the only possible
one because the speed of sound is infinite). The alternative
choice dF = dk

F + dω
F would mean that we were interested in

the asymptotic behavior of the (same) Green’s functions for
ω ∼ k → 0 (sound modes in turbulent medium); this problem
is, of course, extremely interesting, but so far it is not accessible
by the RG treatment and is not discussed in the present paper.

From Table I it follows that the model becomes logarithmic
(the coupling constant g0 ∼ �y becomes dimensionless) at
y = 0, so that the UV divergences have the form of poles in
y in the Green’s functions. The total canonical dimension of
any 1-irreducible Green’s function � (the formal index of UV
divergence) is

δ� = d + 2 −
∑
�

N�d�, (2.18)

where N� denotes the numbers of the fields entering into the
function �, d� denotes their total canonical dimensions, and
the summation over all types of the fields � is implied. Super-
ficial UV divergences, whose removal requires counterterms,
can be present only in the functions � with a non-negative
integer δ� . The counterterm is a polynomial in frequencies
and momenta of degree δ� , with the convention that ω ∼ k2.

For the model (2.12), dimensional analysis should be
augmented by the following additional considerations [47].

(i) All the 1-irreducible Green’s functions without the
response fields (Nv′ = Nφ′ = 0) involve closed circuits of
retarded propagators, vanish identically, and therefore require
no counterterms [14].

(ii) If for some reason a number of external momenta
occurs as an overall factor in all the diagrams of a given
Green’s function, the real index of divergence δ′

� is smaller
than δ� by the corresponding number of unities [14,17]. In
the model (2.12) the field φ enters the vertex φ′(v∂)φ only in
the form of spatial derivative, which reduces the real index of
divergence:

δ′
� = δ� − Nφ. (2.19)

The field φ enters the counterterms only in the form of the
derivative ∂φ. In particular, for the 1-irreducible function
〈φ′φ〉1−ir one obtains δ� = 2, δ′

� = 0. Thus, the counterterm
φ′∂tφ, allowed by dimensional analysis, is, in fact, forbidden,
and the only possible structure is φ′∂2φ.

(iii) Galilean invariance of the model (2.12) requires
that the contributions of the counterterms be also invariant.
In particular, this means that the covariant derivative (2.2)
enters the counterterms as a whole. As a consequence, the
counterterm required for the 1-irreducible function 〈φ′vφ〉1−ir

with δ� = 1, δ′
� = 0, necessarily has the form φ′(v∂)φ and

appears in the combination φ′∇tφ with the counterterm φ′∂tφ

discussed above. Hence, it is also forbidden.
Similarly, the divergences in the functions 〈v′v〉1−ir with

δ� = 2 and 〈v′vv〉1−ir with δ� = 1 can be eliminated by the
two counterterms: v′∂2v and the combination v′∇t v. In fact, the
latter is also forbidden by the generalized Galilean invariance
with the time-dependent transformation velocity parameter
w(t) [50,51]:

vw(x) = v(xw) − w(t), �w(x) = �(xw),

x = {t,x}, xw = {t,x + u(t)},

u(t) =
∫ t

w(t ′)dt ′. (2.20)

Here � denotes the three fields v′,φ′,φ. The action functional is
not invariant with respect to such a transformation: S(�w) =
S(�) + v′∂tw. One can show, however, that the generating
functional of the 1-irreducible Green’s functions transforms in
the identical way, �(�w) = �(�) + v′∂tw. Since, in general,
�(�) = S(�) plus the diagrams with loops (which contain
all the UV divergences), the counterterms appear invariant
under (2.20). This excludes the counterterm v′∇t v, invariant
with respect to conventional Galilean transformation with a
constant w, but not invariant with respect to (2.20). More
detailed discussion of the uses of the generalized Galilean
transformation, especially for composite fields, can be found
in [14,17,51].

(iv) Expressions (2.14) show that the propagators 〈v′φ〉0

and 〈vφ〉0 contain the factor c2
0, while 〈v′φ〉0 contains c4

0.
These factors appear as external numerical factors in any
diagram involving these propagators, and its real index of
divergence reduces by the corresponding number of unities.
In particular, any diagram of the 1-irreducible function with

Nφ′ > Nφ contains the factor c
2(Nφ′ −Nφ )
0 . It then follows that the

counterterm to the 1-irreducible function 〈φ′v〉1−ir with δ� = 3
necessarily reduces to c2

0φ
′(∂v), while the structures φ′∂2(∂v),

etc., are forbidden. Another consequence is finiteness of
the function 〈φ′vv〉1−ir with δ� = 2. Each diagram of this
function contains the factor c2

0, which forbids the counterterms
like φ′(∂v)(∂v), etc., while the remaining structure c2

0φ
′v2 is

forbidden by the Galilean symmetry.
Using all these considerations one can check that all the

UV divergences in the model (2.12) are removed by the
counterterms of the form

v′
i∂

2vi, v′
i∂i∂kvk, v′

i∂iφ, c2
0φ

′∂ivi, φ′∂2φ. (2.21)

All these structures are present in the extended action func-
tional (2.12) with v0 > 0, so the model is multiplicatively
renormalizable.

Like for the incompressible case [52], for d = 2 a new
UV divergence arises in the function 〈v′v′〉1−ir, and a new
counterterm v′∂2v′ should be included. This case requires
special treatment, and in the following we assume d > 2. Then
the renormalized action functional has the form

SR(�) = 1
2v′

iD
f

ikv
′
k + v′

i{−∇t vi + Z1ν[δik∂
2 − ∂i∂k]vk

+ Z2uν∂i∂kvk − Z4∂iφ}
+ φ′[−∇tφ + Z3vν∂2φ − Z5c

2(∂ivi)]. (2.22)
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Here g, ν, u, v, and c are renormalized counterparts of the
original (bare) parameters (with the subscript “o”), the function
Df is expressed in renormalized parameters using the relation
g0ν

3
0 = gμyν3, the reference scale (or the “normalization

mass”) μ is an additional free parameter of the renormalized
theory; the renormalization constants Zi depend only on the
completely dimensionless parameters g, u, v, α, d, and y.
The renormalized action (2.22) is obtained from the original
one (2.12) by the renormalization of the fields φ → Zφφ,
φ′ → Zφ′φ′ and the parameters

g0 = gμyZg, ν0 = νZν, u0 = uZu,

v0 = vZv, c0 = cZc. (2.23)

The renormalization constants in (2.22) and (2.23) are related
as

Zν = Z1, Zu = Z2Z
−1
1 ,

Zv = Z3Z
−1
1 , Zφ = Z−1

φ′ = Z4,

Zc = (Z4Z5)1/2, Zg = Z−3
ν . (2.24)

The last relation follows from the absence of renormalization
of the nonlocal term of the random force in (2.22); for the same
reason the parameters m,α from the correlation function (2.10)
are not renormalized: Zm = Zα = 1. No renormalization of
the fields v,v′ is needed: Zv = Zv′ = 1 due to the absence of
renormalization of the term v′∇t v.

The renormalization constants are found from the re-
quirement that the Green’s functions of the renormalized
model (2.22), when expressed in renormalized variables, be
UV finite (in our case, be finite at y → 0). In the minimal
subtraction (MS) scheme, which is always used in what
follows, they have the form “Z = 1+ only poles in y.” The
calculation in the first order in g (one-loop approximation)
gives [47]

Z1 = 1 + ĝ

y
A, Z2 = 1 + ĝ

uy
B,

Z3 = 1 + ĝ

y

(d − 1)

2dv(v + 1)
− αĝ

y

(u − v)

2duv(u + v)2
, (2.25)

Z4 = 1 + ĝ

y

(d − 1)

2d(u + 1)(v + 1)
, Z5 = 1,

with corrections of order ĝ2 and higher. Here we passed to the
new coupling constant

ĝ = gSd/(2π )d , (2.26)

where

Sd = 2πd/2/�(d/2) (2.27)

is the surface area of the unit sphere in d-dimensional space
and �(· · · ) is Euler’s � function and denoted

A = d(d−1)u2−2(d2+d−4)u − d(d + 3)

4d(d + 2)(1 + u)2
+ α(1 − u)

2du(1 + u)2
,

B = (1 − d)
(d − 1)u2 + (d + 4)u + 1

2d(d + 2)(1 + u)2
. (2.28)

One important technical remark follows. The renormal-
ization constants in the MS scheme do not depend on
the dimensional parameter c0. On the other hand, all the
propagators (2.14), and hence all the Feynman diagrams, have
a well-defined limit for c0 → 0. Thus, in the calculation of the
constants Z1–Z4 one can simply set c0 = 0 in (2.14) and (2.15).
Then the propagators 〈φv′〉0, 〈vφ〉0, 〈φφ〉0 vanish, while the
form of the others drastically simplifies. In the calculation of
the constant Z5 in front of the term c2

0φ
′(∂v) it is sufficient

to take into account the diagrams with one and only one
propagator 〈φv′〉0 or 〈vφ〉0. Then the needed c2

0 appears as
an external factor, and in the remaining expression one can
set c0 = 0.

To avoid possible misunderstanding, we stress that we
are interested in the model with finite and arbitrary c0 and
that more involved calculation with the full-scale propaga-
tors (2.14) would give the same results (2.25) and (2.28) for
the renormalization constants. In this respect, the parameter
c0 is similar to τ ∝ T − Tc, deviation of the temperature from
its critical value, in models of critical behavior: In the MS
scheme, the renormalization constants do not depend on it and
can be calculated directly at the critical point τ = 0.

The simple expression Z5 = 1 results from the cancellation
of nontrivial contributions from three Feynman diagrams; we
see no reason to expect that it is valid to all orders in g.

D. RG equations and RG functions

Let us recall a simple derivation of the RG equations;
detailed discussion can be found in [13,14]. The RG equations
are written for the renormalized correlation functions GR =
〈� · · · �〉R , which differ from the original (unrenormalized)
ones G = 〈� · · · �〉 only by normalization and choice of the
parameters and thus can be equally used for the analysis of
the critical behavior. The relation SR(�,e,μ) = S(Z��,e0)
between the functionals (2.12) and (2.22) results in the
relations

G(e0, . . . ) = Z
Nφ

φ Z
Nφ′
φ′ GR(e,μ, . . . ) (2.29)

between the correlation functions. Here, as usual, Nφ and Nφ′

are the numbers of corresponding fields entering into G (we
recall that in our model Zv = Zv′ = 1); e0 = {ν0,g0,u0,v0} is
the full set of bare parameters and e = {ν,g,u,v} are their
renormalized counterparts; the ellipsis stands for the other
arguments (times, coordinates, momenta, etc.).

We use D̃μ to denote the differential operation μ∂μ for fixed
e0 and operate on both sides of Eq. (2.29) with it. This gives
the basic RG differential equation,

{DRG + Nφγφ + Nφ′γφ′ } GR(e,μ, . . . ) = 0, (2.30)

where DRG is the operation D̃μ expressed in the renormalized
variables:

DRG = Dμ + βg∂g + βu∂u + βv∂v − γνDν − γcDc. (2.31)

Here we have written Dx ≡ x∂x for any variable x. The
anomalous dimension γF of a certain quantity F (a field or
a parameter) is defined as

γF = Z−1
F D̃μZF = D̃μ ln ZF , (2.32)
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and the β functions for the three dimensionless coupling
constants g, u, and v are

βg = D̃μg = g [−y − γg],

βu = D̃μu = −uγu, (2.33)

βv = D̃μv = −vγv,

where the second equalities result from the definitions and the
relations (2.29).

From the relations (2.24) we obtain

βg = g [−y + 3γ1],

βu = u [γ1 − γ2], (2.34)

βv = v [γ2 − γ3],

and for the anomalous dimensions we have

γφ = −γφ′ = γ4, γc = (γ4 + γ5)/2,
(2.35)

γν = γ1, γv = γv′ = γα = γm = 0.

The relations in the second line follow from the absence of
renormalization of the corresponding fields and parameters;
see the remarks below Eq. (2.24).

In the MS scheme all the renormalization constants have
the form

ZF = 1 +
∞∑

n=1

z(n)y−n, (2.36)

where the coefficients z(n) do not depend on y. Then from
the definition and the expressions (2.33) it follows that the
corresponding anomalous dimension is determined solely by
the first-order coefficient,

γF = −Dgz
(1), (2.37)

see, e.g., the discussion [13,14]. Then in the one-loop approx-
imation from the explicit expressions (2.25) one finds

γ1 = −Aĝ, γ2 = −Bĝ/u,

γ3 = ĝ
(d − 1)

2dv(v + 1)
+ αĝ

(u − v)

2duv(u + v)2
, (2.38)

γ4 = ĝ
(1 − d)

2d(u + 1)(v + 1)
, γ5 = 0,

with A and B from (2.28) and the corrections of order ĝ2 and
higher.

E. The IR attractive fixed point

It is well known that possible IR asymptotic regimes of a
renormalizable field theoretic model are associated with IR
attractive fixed points of the corresponding RG equations. The
coordinates g∗ of the fixed points are found from the equations

βi(g∗) = 0, (2.39)

where g = {gi} is the full set of coupling constants and βi are
the corresponding β functions. The type of a fixed point is
determined by the matrix

�ij = ∂βi/∂gj |g=g∗ . (2.40)

For the IR stable fixed points the matrix � is positive; i.e., the
real parts of all its eigenvalues are positive.

In our model, g = {ĝ,u,w}, and the β functions are
given be the relations (2.33) and the explicit one-loop
expressions (2.38). We do not include the dimensionless
parameter α into the list of coupling constants, because it is
not renormalized (α0 = α and Zα = 1) and the corresponding
function βα = −αγα vanishes identically. Thus, the equation
βα = 0 imposes no restriction on the value of α, and it remains
a free parameter.

Analysis of the expressions (2.33), (2.38), and (2.28) shows
that in the physical range of parameters (ĝ,u,v,α > 0) there is
only one IR attractive fixed point with the coordinates

ĝ∗ = 4dy

3(d − 1)
, u∗ = v∗ = 1, (2.41)

with possible higher-order corrections in y.
Let us briefly explain the derivation of (2.41). Any fixed

point with ĝ∗ = 0 cannot be IR attractive, because one of
the eigenvalues of the matrix � coincides with the diagonal
element ∂gβg = −y < 0. For ĝ∗ �= 0 from the equation βg = 0
we immediately find the relation γ ∗

1 = γ ∗
ν = y/3, valid to

all orders in y [here and below γ ∗
F = γF (g∗) for any F is

the value of the anomalous dimension at the fixed point in
question]. Substituting this relation into the equation βu = 0
gives the equation for u∗ with the only positive solution
u∗ = 1. Substituting it into the equation βg = 0 gives the
value of ĝ∗ (it is important here that the functions βg and βu

in the one-loop approximation do not depend on v). Finally,
substituting the known values of ĝ∗ and u∗ into the relation
βv = 0 gives the equation for v∗ with the only positive solution
v∗ = 1. Now it is easy to see that the matrix (2.40) at the
fixed point (2.41) is triangular, so that its eigenvalues coincide
with the diagonal elements and are easily calculated from the
explicit expressions (2.38). They are positive for all y > 0,
α > 0, and d > 2.

It is also worth noting that the so-called “RG flows”
(solutions to the RG equations for the RG-invariant or
“running” coupling constants) cannot leave the physical range
ĝ,u,v > 0 (for the physical initial data). This follows from
the fact that all the β functions vanish for g = 0 and that
the functions βu and βv are negative for u = 0 and v = 0,
respectively:

βu|u=0 = −ĝ
(d − 1)

2d(d + 2)
, βv|v=0 = −ĝ

{
(d − 1)

2d
+ 1

du2

}
.

It then follows that the IR asymptotic behavior of the Green’s
functions in our model can be governed only by the fixed
point (2.41): Even if some other fixed points exist in the
unphysical range, they cannot be reached by the RG flow.

Changing to the new variable f = 1/u one can find another
fixed point with f∗ = 0 and ĝ∗ = 4(d + 2)y/3(d − 1). From
the explicit form of the propagators (2.14) it follows that the
limit u → ∞ corresponds to the purely transverse velocity
field, while the scalar field decouples. The point is unstable
(it is a saddle point) in agreement with the analysis of
Refs. [42–44], which shows that the leading-order correction
in the Mach number to the incompressible scaling regime
destroys its stability (in the RG terminology, it is relevant
in the sense of Wilson).
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F. IR behavior and the critical dimensions

It follows from the solution of the RG equation (2.30) that
when an IR fixed point is present, the leading term of the
IR asymptotic behavior of the Green’s function GR satisfies
Eq. (2.30) with the replacement g → g∗ for the full set of the
couplings; see, e.g., [14]. In our case this gives{

Dμ − γ ∗
ν Dν − γ ∗

c Dc +
∑
�

N�γ ∗
�

}
GR = 0. (2.42)

We recall that Dx ≡ x∂x for any variable x, γ ∗
F is the fixed-

point value of the anomalous dimension γF , and the summation
over all types of the fields � is implied. In the one-loop
approximation, from (2.38) and (2.41) we obtain

γ ∗
ν = y/3 (exact), γ ∗

φ = −γ ∗
φ′ = −y/6 + O(y2),

γ ∗
c = −y/12 + O(y2). (2.43)

Canonical scale invariance is expressed by the two equa-
tions {∑

F

dk
FDF − dk

G

}
GR = 0,

(2.44){∑
F

dω
FDF − dω

G

}
GR = 0,

with the summations over all the arguments of the function
GR . From Table I we obtain{

−Dx + Dμ + Dm − 2Dν − Dc −
∑
�

N�dk
�

}
GR = 0,

{
−Dt + Dν + Dc −

∑
�

N�dω
�

}
GR = 0,

(2.45)

where the dimensions d
k,ω
� of the fields are also given in the

table. Each of the equations (2.42) and (2.45) describes the
scaling with dilatation of the variables whose derivatives enter
the differential operator. One is interested in the scaling with
fixed “IR irrelevant” parameters μ and ν; see [14,16,17]. In
order to derive the corresponding scaling equation, one has
to combine (2.42) and (2.45) such that the derivatives with
respect to these parameters be eliminated; this gives{

−Dx + �tDt + �cDc + �mDm −
∑
�

N���

}
GR = 0,

(2.46)

with

�F = dk
F + �ωdω

F + γ ∗
F , �ω = −�t = 2 − γ ∗

ν . (2.47)

Here �F is the critical dimension of the quantity F (follow-
ing [14,16,17] we use this term to distinguish it from canonical
dimensions), while �t and �ω are the critical dimensions of
the time and the frequency.

From Table I and expressions (2.43) we obtain

�v = 1−y/3, �v′ = d−�v, �ω = 2 − y/3, �m = 1

(2.48)

(these results are exact due to γ ∗
ν = y/3 and γ ∗

v,v′,m = 0) and

�φ = d − �φ′ = 2 − 5y/6 + O(y2),

�c = 1 − 5y/12 + O(y2). (2.49)

We note that the analogs of the expressions (2.48) and (2.49)
in Ref. [47] contain a few misprints.

Surprisingly enough, all the results (2.41), (2.43), (2.48),
and (2.49) are independent on α (and some of them do not
depend on d). They are valid for all α > 0, but the case α → ∞
(purely potential random force) requires special attention. To
study this limit, one should pass to the new couplings g′ = gα,
b = 1/α and then set b = 0 at finite g′. This gives

βg′ = −yg′, βu = g′ (u − 1)

2du(1 + u)2
, βv = g′ (v − u)

du(u + v)2
.

(2.50)

The system (2.50) has no IR attractive fixed point, because
from βg′ = 0 it necessarily follows that g′ = 0, and such
a point cannot be IR attractive due to ∂g′βg′ = −y < 0. In
principle, the needed fixed point with g′

∗ ∼ y1/2 can appear on
the two-loop level, if the term of order (g′)3 appears in βg′ .
Then the results (2.48) remain valid, while (2.49) should be
revised.

III. PASSIVE SCALAR FIELDS: RENORMALIZATION,
RG FUNCTIONS, AND FIXED POINT

A. The models and their field theoretic formulation

There are two main types of diffusion-advection problems
for the compressible velocity field [41]. Passive advection of
a density field θ (x) ≡ θ (t,x) (say, the density of a pollutant) is
described by the equation

∂tθ + ∂i(viθ ) = κ0∂
2θ + f, (3.1)

while the advection of a “tracer” (temperature, specific
entropy, or concentration of the impurity particles) is described
by

∂tθ + (vi∂i)θ = κ0∂
2θ + f. (3.2)

Here ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , κ0 is the molecular diffusivity
coefficient, ∂2 = ∂i∂i is the Laplace operator, v(x) is the
velocity field, and f ≡ f (x) is a Gaussian noise with zero
mean and given covariance,

〈f (x)f (x ′)〉 = δ(t − t ′) C(r/L), r = x − x′. (3.3)

Here C(r/L) is some function finite at (r/L) → 0 and
rapidly decaying for (r/L) → ∞. In the following, we do
not distinguish the integral scale L, related to the noise,
and its analog L = m−1 in the correlation function of the
stirring force (2.11). Without loss of generality, one can set
C(0) = 1 (the coefficient can be absorbed by rescaling of θ

and f ). The noise mimics the effects of initial and/or boundary
conditions: It maintains the steady state of the system and
serves as the source of the large-scale anisotropy. (The latter
term means that the anisotropy is introduced at scales of order
L, while the statistics of the velocity field remains isotropic.
The case of anisotropic velocity statistics is discussed, within
the RG + OPE approach, in Refs. [53].) In more realistic
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formulations, the noise can arise from an imposed linear
gradient of the (temperature) field. It turns out, however, that
the specific form of the random stirring is unimportant, and in
the following we use the artificial noise with the correlation
function (3.3).

In the absence of the noise, Eq. (3.1) has the form of a
continuity equation (conservation law); θ being the density of
a corresponding conserved quantity. For (3.2), the conserved
quantity is the auxiliary (response) field θ ′, which appears in
the field theoretic formulation of the problem; see below. If the
function in (3.3) is chosen such that its Fourier transform C(k)
vanishes at k = 0, the fields θ or θ ′ remain to be conserved in
the statistical sense in the presence of the external stirring.

The models (3.1) and (3.2) were thoroughly studied for the
case of Kraichnan’s rapid-change model [23–30]; the case of
Gaussian velocity statistics with finite correlation time was
studied in [31,32].

The stochastic problem (3.1) and (3.3) is equivalent to
the field theoretic model of the full set of fields � ≡
{θ ′,θ,v′,v,φ′,φ} with the action functional

S�(�) = Sθ (θ ′,θ,v) + S(v′,v,φ′,φ), (3.4)

where

Sθ (θ ′,θ,v) = 1
2θ ′Df θ ′ + θ ′{−∂tθ − ∂i(viθ ) + κ0∂

2θ}
(3.5)

is the De Dominicis-Janssen action for the stochastic prob-
lem (3.1) and (3.3) at fixed v, while the second term is
given by (2.12) and represents the velocity statistics; Df is
the correlation function (3.3), and, as usual, all the required
integrations and summations over the vector indices are
implied.

In addition to (2.14), the diagrammatic technique in the full
problem involves two propagators,

〈θθ ′〉0 = 〈θ ′θ〉∗0 = 1

−iω + κ0k2
,

(3.6)
〈θθ〉0 = C(k)

ω2 + κ2
0 k4

,

and the new vertex −θ ′∂i(viθ ) = Viθ
′viθ . In the momentum

representation, the vertex factor Vi in the diagrams has the
form

Vi(k) = iki, (3.7)

where k is the momentum argument of the field θ ′ (using
integration by parts, the derivative at the vertex can be moved
onto the field θ ′).

The problem (3.2) and (3.3) corresponds to the action (3.4),
where the part Sθ is given by

Sθ (θ ′,θ,v) = 1
2θ ′Df θ ′ + θ ′{−∂tθ − (vi∂i)θ + κ0∂

2θ}.
(3.8)

The propagators are given by the same expressions (3.6), while
the vertex factor (3.7) is replaced with

Vi(k) = −iki, (3.9)

where k is the momentum argument of the field θ .

B. UV renormalization and related subjects

Canonical dimensions of the new fields and parameters
that appear in the models (3.4), (3.5), and (3.8) are given in
Table I, where we introduced a new dimensionless parameter
w0 = κ0/ν0 with ν0 from (2.1).

Now in the expression (2.18) for the formal index of UV
divergence the summation runs over the full set of fields
� ≡ {θ ′,θ,v′,v,φ′,φ}. Rules (i)–(iv) from Sec. II C should be
extended and augmented as follows.

(i) All the 1-irreducible Green’s functions without the
response fields v′,φ′,θ ′ vanish identically and require no
counterterms.

(ii) In the model (3.8), the field θ enters the vertex
−θ ′(vi∂i)θ only in the form of derivative. Then the expres-
sion (2.19) for the real index of divergence should be modified
as

δ′
� = δ� − Nφ − Nθ. (3.10)

In the model (3.5), the derivative at the vertex −θ ′∂i(viθ ) can
be moved onto the field θ ′ using integration by parts, and the
real index becomes

δ′
� = δ� − Nφ − Nθ ′ . (3.11)

Since the field θ in model (3.8) and θ ′ in model (3.8) can
enter the counterterms only in the form of spatial derivatives,
the counterterm θ ′∂tθ to the 1-irreducible Green’s function
〈θ ′θ〉1−ir with δ� = 2, δ′

� = 1 is forbidden for the both models.
(iii) Another consequence of (ii) is that the counterterms

to the 1-irreducible function 〈θ ′vθ〉1−ir with δ� = 1, δ′
� = 0

necessarily reduce to the form θ ′∂i(viθ ) for the model (3.5)
and θ ′(vi∂i)θ for the model (3.8). Galilean symmetry requires,
however, that these monomials enter the counterterms in the
form of invariant combinations θ ′[∂tθ + ∂i(viθ )] and θ ′∇t θ .
Hence, they are also forbidden.

(iv) From the straightforward analysis of the Feynman
diagrams it follows that, for any 1-irreducible function, Nθ ′ −
Nθ = 2N0, where N0 is the total number of bare propagators
〈θθ〉0 entering the diagram. Clearly, no diagram with N0 < 0
can be constructed, so that the difference Nθ ′ − Nθ is an even
non-negative integer for any nontrivial Green’s function. This
fact, a consequence of the linearity of the original stochastic
equations (3.1) and (3.2) in the field θ , appears crucial for the
renormalizability of the models (3.5) and (3.8). Indeed, the
total canonical dimension dθ = −1 is negative (in contrast
to most conventional field theoretic models), so that the
index (3.11) increases with Nθ , while (3.10) does not depend
on Nθ . Without the restriction Nθ � Nθ ′ , we would face the
infinity of superficially divergent functions 〈θ ′θ · · · θ〉1−ir and
hence the lack of renormalizability.

Finally, we are left with the only superficially divergent
1-irreducible Green’s function 〈θ ′θ〉1−ir with the only coun-
terterm θ ′∂2θ . It is naturally reproduced as multiplicative
renormalization of the diffusion coefficient, κ0 = κZκ . No
renormalization of the fields θ ′, θ is needed: Zθ ′ = Zθ = 1.
The renormalized analog of the action functional (3.5) has the
form

SR
�(�) = SR

θ (θ ′,θ,v) + SR(v′,v,φ′,φ), (3.12)
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with SR from (2.22) and

SR
θ (θ ′,θ,v) = 1

2θ ′Df θ ′ + θ ′{−∂tθ − ∂i(viθ ) + κZκ∂
2θ},
(3.13)

and similarly for (3.8):

SR
θ (θ ′,θ,v) = 1

2θ ′Df θ ′ + θ ′{−∂tθ − (vi∂i)θ + κZκ∂
2θ}.
(3.14)

It remains to note that, if the term with Df is omitted,
the models (3.5) and (3.8) can be mapped onto each other by
means of the interchange θ (t,x) ↔ θ ′(t,x) and the reflection
t → −t . In particular, this means that the renormalization
constants Zκ in (3.13) and (3.14) coincide in all orders of
the perturbation theory, because the correlator Df does not
appear in the relevant diagrams; see the next section.

C. Explicit leading-order results: Fixed points
and scaling dimensions

Let us turn to the explicit calculation of the renormalization
constant Zκ in the leading one-loop order; for definiteness,
consider the case of the density field (3.13). The constant
is found from the requirement that the 1-irreducible Green’s
function 〈θ ′θ〉1−ir be UV finite (that is, finite at y → 0) when
expressed in renormalized parameters. The corresponding
Dyson equation in the frequency-momentum representation
reads

〈θ ′θ〉1−ir(ω,p) = +iω − κ0p
2 + �θ ′θ (ω,p), (3.15)

where the “self-energy operator” �θ ′θ is given by the infinite
sum of 1-irreducible graphs. In the one-loop approximation it
has the form

�θ ′θ = , (3.16)

where the wavy line denotes the bare propagator 〈vv〉0

from (2.14) and the solid line with a slash denotes the bare
propagator 〈θθ ′〉0 from (3.6), the slashed end corresponding to
the field θ ′. The dots with three attached fields θ ′, θ , v denote
the vertex (3.7).

In the leading-order approximation, the renormalization
constant in the bare term of (3.15) is taken only in the first
order in g, that is, κ0 = κZκ � κ(1 + z(1)g/y), while in the
diagram (3.16) all Z’s are replaced with unities. Furthermore,
we only need to know the divergent part of (3.16), which is
proportional to p2 (see the preceding section). Thus, we can
set ω = 0 in (3.15) and keep in the expansion in p of the
resulting integrand only the p2 term. Like for the original NS
model, its divergent part is independent on c0 ∼ c and can be
calculated directly at c = 0; see the discussion in Sec. II C.
Then the expression for (3.16) becomes

�θ ′θ = ips

∫
dω′

2π

∫
k>m

dk
(2π )d

i(p + k)l
Dsl(ω′,k)

−iω′ + wν|p + k|2 ,

(3.17)

where

Dsl(ω
′,k) = gμyν3

{
P ⊥

sl (k)

(ω′)2 + ν2k4
+ αP

‖
sl(k)

(ω′)2 + u2ν2k4

}
(3.18)

is the velocity correlation function from (2.14) with the proper
substitutions, including c = 0.

Integrations over the frequency are easily performed, for
example, ∫

dω′

2π

1

−iω′ + wν|p + k|2
1

(ω′)2 + u2ν2k4

= 1

2uν2k2(uk2 + w|p + k|2)
. (3.19)

In the terms containing the factor pspl one can immediately
set p = 0 in (3.19), while in the exceptional term with
psklP

‖
sl(k) = psks one should expand (3.19) up to the linear

term in p:

1

uk2 + w|p + k|2 = 1

(u + w)k2

{
1 − 2w

(u + w)

(p · k)

k2

}
.

With the aid of the formulas∫
dkkif (k) = 0,

∫
dk

kiks

k2
f (k)

= δis

d

∫
dk f (k),

∫
dk

kiksklkp

k4
f (k)

= δisδlp + δilδsp + δipδsl

d(d + 2)

∫
dkf (k), (3.20)

where f (k) is any function depending only on k = |k|, all the
resulting integrals are reduced to the scalar integral

J (m) =
∫

k>m

dk
1

kd+y
= Sd

m−y

y
, (3.21)

with Sd from (2.27).
Collecting all the terms gives

�θ ′θ = − ĝ

2dy

( μ

m

)y
{

(d − 1)

(1 + w)
+ α

u(u + w)
− 2αw

u(u + w)2

}
,

(3.22)

with ĝ defined in (2.26). Then the renormalization constant,
needed to cancel the pole in y in (3.15), in the MS scheme
should be chosen as

Zκ = 1 − ĝ

2dwy

{
(d − 1)

(1 + w)
+ α(u − w)

u(u + w)2

}
, (3.23)

while the corresponding anomalous dimension is

γκ = ĝ

2dw

{
(d − 1)

(1 + w)
+ α(u − w)

u(u + w)2

}
, (3.24)

with the corrections of the order ĝ2 and higher.
The function βw = D̃μw for the new dimensionless param-

eter w has the form

βw = −wγw = w[γν − γκ ], (3.25)

cf. Eq. (2.33). Substituting the one-loop expressions (2.41)
and (3.24) and the exact relation (2.43) into the equation βw =
0 gives, after some simple algebra, the equation

(w − 1)[(d − 1)(w + 1)(w + 2) + 2α] = 0, (3.26)

with the only positive solution w∗ = 1.
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The corresponding new eigenvalue of the matrix (2.40)
coincides with the diagonal element

∂βw/∂w|g=g∗ = y[3(d − 1) + α]/6(d − 1) > 0,

because the functions (2.33) do not depend on w. We conclude
that the fixed point with the coordinates (2.41) and w∗ = 1
is IR attractive in the full space of couplings g, u, v, and w

and governs the IR asymptotic behavior of the full-scale
models (3.5) and (3.8).

The critical dimensions of the fields θ , θ ′ are obtained from
the data in Table I and the expression (2.47) for �ω:

�θ = −1 + y/6, �θ ′ = d + 1 − y/6. (3.27)

These expressions are exact due to the absence of renormal-
ization of the fields θ and θ ′.

IV. COMPOSITE FIELDS AND THEIR DIMENSIONS

The key role in the following is played by certain composite
fields (“composite operators” in the quantum-field terminol-
ogy). A local composite operator is a monomial or polynomial
constructed from the primary fields �(x) and their finite-order
derivatives at a single space-time point x = {t,x}. In the
Green’s functions with such objects, new UV divergences
arise due to coincidence of the field arguments. They are
removed by additional renormalization procedure. As a rule,
operators mix in renormalization: Renormalized operators are
given by certain finite linear combinations of the original
monomials. However, in the following only a simpler situation
will be encountered, when the original operator F (x) and
the renormalized one FR(x) are related by multiplicative
renormalization F (x) = ZF FR(x) with the renormalization
constant of the form (2.36). Then the critical dimension of the
operator is given by the same expression (2.47) and, in general,
differs from the simple sum of the dimensions of the fields and
derivatives that enter the operator.

The total canonical dimension of any 1-irreducible Green’s
function � with one operator F (x) and arbitrary number of
primary fields (the formal index of UV divergence) is given by

δ� = dF −
∑
�

N�d�, (4.1)

where N� are the numbers of the fields entering into �, d� are
their total canonical dimensions, dF is the canonical dimension
of the operator, and the summation over all types of the fields
is implied. Superficial UV divergences can be present only in
the functions � with a non-negative integer δ� .

A. Renormalization of the composite fields θ n:
Explicit leading-order results

Let us begin with the simplest case of the operators F (x) =
θn(x) in the density model. Then dF = −n in (4.1). Due to the
linearity of the stochastic equation (3.1) in θ , the number of
fields θ in any 1-irreducible function with the operator F (x)
cannot exceed their number in the operator itself. This is easily
seen from the fact that the chains of the propagators 〈θ ′θ〉0,
〈θθ〉0 in any diagram cannot branch; cf. item (iv) in Sec. II C.
Then the analysis of expression (4.1) shows that the superficial
divergence can only be present in the 1-irreducible function

with Nθ = n and N� = 0 for the fields � other than θ . For
this function δ� = 0, the divergence is logarithmic, and the
corresponding counterterm has the form θn(x). Hence, our op-
erators are multiplicatively renormalizable: F (x) = ZnF

R(x)
with certain renormalization constants of the form (2.36).

Now we turn to the calculation of the constants Zn in
the leading (one-loop) approximation. Let �(x; θ ) be the
generating functional of the 1-irreducible Green’s functions
with one composite operator F (x) and any number of fields
θ . Here x = {t,x} is the argument of the operator and θ is the
functional argument, the “classical analog” of the random field
θ . We are interested in the θn term of the expansion of �(x; θ )
in θ (x), which we denote �n(x; θ ). It can be written as

�n(x; θ ) =
∫

dx1 · · ·
∫

dxn θ (x1) · · · θ (xn)

×〈F (x)θ (x1) · · · θ (xn)〉1−ir. (4.2)

In the one-loop approximation the function (4.2) is represented
diagramatically as follows:

�n(x; θ ) = F (x) + 1

2
. (4.3)

The first term is the tree (loopless) approximation, and the
thick dot with the two attached lines in the diagram denotes
the operator vertex, that is, the variational derivative

V (x; x1,x2) = δ2F (x)/δθ (x1)δθ (x2). (4.4)

In the present case, the vertex

V (x; x1,x2) = n(n − 1) θn−2(x) δ(x − x1)δ(x − x2) (4.5)

contains (n − 2) fields θ . [We recall that δθ (x)/δθ (x ′) = δ(x −
x ′) ≡ δ(t − t ′)δ(x − x′).] Two more fields are attached to the
plain vertices θ ′∂(vθ ) at the bottom of the diagram.

Since the divergence is logarithmic, one can set all the
external frequencies and momenta equal to zero. Then all θ ’s
acquire the common argument x and the diagram becomes
proportional to the operator θn(x) with the coefficient, given
by the “core” of the diagram,∫

dω

2π

∫
dk

(2π )d
kskl

1

ω2 + w2ν2k4
Dsl(ω,k), (4.6)

where the first factor in the integrand comes from the
vertices (3.7), the second one comes from the propagators
〈θ ′θ〉0 in (3.6) with the replacement κ0 → wν, and the last
factor is the velocity propagator from (3.18). Note that only the
second term from Dsl gives nonvanishing contribution to (4.6).
Integration over the frequency is easily performed using the
formula∫

dω

2π

1

(ω2 + a2)(ω2 + b2)
= 1

2ab(a + b)
, (4.7)

and after the contraction of the tensor indices the integral over
the momentum reduces to (3.21). Collecting all the factors
gives

�n(x; θ ) = θn(x)

{
1 + n(n − 1)

2

αĝ

2wu(u + w)

( μ

m

)y 1

y

}
,

(4.8)
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with ĝ defined in (2.26) and up to a finite part and higher-order
corrections.

The renormalization constant Zn is found from the re-
quirement that the renormalized analog �R

n = Z−1
n �n of the

function (4.2) be UV finite in terms of renormalized parameters
(mind the minus sign in the exponent). In our approximation,
it is sufficient to replace θn → Z−1

n θn only in the first term of
the expression (4.8) and then to choose Zn to cancel the pole
in the second term. In the MS scheme this gives

Zn = 1 + n(n − 1)

2

αĝ

2wu(u + w)

1

y
. (4.9)

Then for the corresponding anomalous dimension Eq. (2.37)
gives

γn = −n(n − 1)

2

αĝ

2wu(u + w)
, (4.10)

with the higher-order corrections in ĝ.
For the critical dimensions of the operators θn from the

expression (2.47) one obtains

�[θn] = n�θ + γ ∗
n , (4.11)

and substituting the fixed-point values (2.41) and w∗ = 1
into (4.10) finally gives

�[θn] = −n + ny

6
− n(n − 1) α dy

6(d − 1)
, (4.12)

with the higher-order corrections in y. These dimensions are
negative (“dangerous” in the terminology of [14–17]) and
decrease as n grows. One can argue that dangerous operators
can always appear in a field theoretic only as infinite families
with the spectrum of dimensions not bounded from below.

Now let us turn to the same operators θn in the tracer
model. From the expression (4.1) and the linearity of the
stochastic equation (3.2) it follows that, like for the density
case, the superficial UV divergences can only be present in
the 1-irreducible function 〈θn(x)θ (x1) · · · θ (xn)〉1−ir. Clearly,
at least one of the external tails of the field θ is attached
to a vertex θ ′(v∂)θ : It is impossible to construct a nontrivial
diagram of the desired type with all the external tails attached
only to the vertex (4.5) of the operator F (x). Therefore, at least
one derivative ∂ , acting on a tail θ , appears as an external factor
in the diagram. Consequently, its real index of divergence
δ′
� is necessarily negative, and the diagram is, in fact, UV

convergent; cf. item (iii) in Sec. II C.
This means that the operators θn are, in fact, UV finite, Zn =

1, and their scaling dimensions are given by the expression

�[θn] = n�θ = −n + ny/6 (4.13)

exactly, that is, with no higher-order corrections in y.

B. Renormalization of the composite fields (∂θ )n in the
tracer model: Explicit leading-order results

In the tracer model, of special importance are tensor oper-
ators, constructed solely of the gradients of the passive scalar
field. Such operators with the lowest canonical dimension
contain the minimal number of derivatives (one derivative per
each field) and have the form

F
(n,l)
i1...il

= ∂i1θ · · · ∂il θ (∂iθ∂iθ )s + · · · . (4.14)

Here l is the number of the free vector indices (the rank
of the tensor) and n = l + 2s is the total number of the
fields θ entering into the operator. The ellipsis stands for
the subtractions with Kronecker’s δ symbols that make the
operator irreducible (so that contraction with respect to any
pair of the free tensor indices vanish); for example,

F
(2,2)
ij = ∂iθ∂j θ − δij

d
(∂kθ∂kθ ). (4.15)

For all these operators dF = 0, and the real index of
divergence is δ′

� = δ� − Nθ with δ� from (4.1). Indeed, now
one derivative ∂ appears as an external factor in a diagram for
any external tail θ , no matter if it is attached to the ordinary
vertex θ ′(v∂)θ or to the vertex (4.5) for the operator (4.14).
Like for the operators θn, the number of the fields θ in
any 1-irreducible function cannot exceed their number in the
operator itself: Nθ � n; cf. the discussion in Sec. IV A. It then
follows that superficial UV divergences can only be present in
the 1-irreducible functions 〈F (n,l)(x)θ (x1) · · · θ (xk)〉1−ir with
k � n. For such functions δ′

� = 0 and δ� = k, so that the corre-
sponding counterterm can only involve the monomials F (k,p)

from (4.14) with certain values of the rank p. We conclude
that the family of the operators (4.14) is closed with respect
to renormalization in the sense that F (n,l) = Z(n,l)(k,p)F

(k,p)
R

with a certain matrix of renormalization constants. Since
Z(n,l)(k,p) = 0 for k > n, this matrix is block triangular with
the diagonal subblocks corresponding to n = k, and so is the
corresponding matrix �F in (2.47).

We are interested presumably in the scaling dimensions,
associated with the operators (4.14). They are given by the
eigenvalues of the matrix �F , which are completely defined
by its diagonal subblocks. A simple analysis shows that the
corresponding diagrams do not involve the propagator 〈θθ〉0

from (3.6); this is again a consequence of the linearity of
the original stochastic equation (3.2). Hence, the diagonal
blocks can be calculated directly in the model without the
random noise in (3.2), because the correlation function of
the noise (3.3) enters the diagrams only via the propagator
〈θθ〉0. The function (3.3) is the only source of the anisotropy
in the problem. Without the noise, the model becomes SO(d)
covariant, and the irreducible tensor operators with different
ranks cannot mix in renormalization. This means that the
diagonal subblocks of the matrix �F are, in fact, diagonal,
and their diagonal elements coincide with the eigenvalues of
the full matrix �F .

We finally conclude that, as long as the scaling dimensions
are concerned, the operators (4.14) can be treated as mul-
tiplicatively renormalizable, F (n,l) = Z(n,l)F

(n,l)
R , with certain

renormalization constants Z(n,l), the diagonal elements of the
full matrix Z(n,l)(k,p).

For practical calculations, it is convenient to contract the
tensors (4.14) with an arbitrary constant vector λ= {λi}. The
resulting scalar operator has the form

F (n,l) = (λiwi)
l(wiwi)

s + · · · , wi ≡ ∂iθ, (4.16)

where the subtractions, denoted by the ellipsis, necessarily
involve the factors of λ2 = λiλi . The counterterm to F (n,l)

is proportional to the same operator, and in order to find
the constant Z(n,l), it is sufficient to retain only the principal
monomial, explicitly shown in (4.16), and to discard in the
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result all the terms with factors of λ2. Then, using the chain
rule, the vertex (4.4) for the operator F (n,l) can be written in
the form

V (x; x1,x2) = ∂2F (n,l)

∂wi∂wj

∂iδ(x − x1) ∂j δ(x − x2) (4.17)

up to irrelevant terms. The differentiation gives

∂2F (n,l)/∂wi∂wj = 2s(w2)s−2(λw)l[δijw
2 + 2(s − 1)wiwj ]

+ l(l − 1)(w2)s(λw)l−2λiλj

+ 2ls(w2)s−1(λw)l−1(wiλj + wjλi),

(4.18)

where w2 = wkwk and (λw) = λkwk . Two more factors wpwr

are attached to the bottom of the diagram, the derivatives
coming from the vertices θ ′(v∂)θ . The UV divergence is
logarithmic, and one can set all the external frequency and
momentum equal to zero; then the core of the diagram takes
on the form∫

dω

2π

∫
k>m

dk
(2π )d

kikj Dpr (ω,k)
1

ω2 + w2ν2k4
. (4.19)

Here the first factor comes from the derivatives in (4.17), Dpr

from (3.18) is the velocity correlation function (2.14), and
the last factor comes from the two propagators 〈θ ′θ〉0. The
substitutions Z → 1, c → 0 are made; cf. the discussion in
Sec. III C.

Integrations over the frequency are easily performed us-
ing (4.7); then all the resulting integrals over k are reduced to
the scalar integral (3.21) using the relations (3.20). Combining
all the factors, contracting the tensor indices and expressing
the result in n = l + 2s and l gives

�n(x; θ ) = F (n,l)(x)

{
1 − ĝ

2yd(d + 2)

(
μ

m

)y

×
[

Q1

2w(1 + w)
+ α

Q2

2wu(u + w)

]}
, (4.20)

where

Q1 = −n(n + d)(d − 1) + (d + 1)l(l + d − 2),
(4.21)

Q2 = −n(3n + d − 4) + l(l + d − 2),

and ĝ is defined in (2.26). Then the renormalization constant
Z(n,l) in the MS scheme reads

Z(n,l) = 1 − ĝ

2yd(d + 2)

{
Q1

2w(1 + w)
+ α

Q1

2wu(u + w)

}
;

(4.22)

see the explanation in Sec. IV A below Eq. (4.8). Then for the
corresponding anomalous dimension Eq. (2.37) gives

γ(n,l) = ĝ

2d(d + 2)

{
Q1

2w(1 + w)
+ α

Q1

2wu(u + w)

}
, (4.23)

with the higher-order corrections in ĝ.

Finally, for the scaling dimension, associated with the
operators (4.14), the general expression (2.47) gives

�(n,l) = n + n�θ + γ ∗
(n,l) = ny/6 + γ ∗

(n,l). (4.24)

Substituting the fixed-point values (2.41) and w∗ = 1
into (4.23), one finally obtains

�(n,l) = ny/6 + y {Q1 + αQ1}
6(d − 1)(d + 2)

, (4.25)

with the higher-order corrections in y.
In particular, for the scalar operator with l = 0 one obtains

�(n,0) = −yn{(n − 2)(d − 1) + α(3n + d − 4)}
6(d − 1)(d + 2)

. (4.26)

Again, we meet an infinite family of dangerous operators with
the spectrum of dimensions not bounded from below. For a
fixed n, the dimension (4.25) increases with the rank l, so that
for the maximum possible rank l = n one always has �(n,n) >

0. This hierarchy, which is conveniently expressed by the
inequality ∂l�(n,l) > 0, becomes more strongly pronounced
when α grows: ∂l∂α�(n,l) > 0. All these properties will be
important in the OPE analysis of Sec. V.

C. More tensor operators

We also need to know the critical dimensions of the lth rank
irreducible tensor operators, built only of two fields θ and l

spatial derivatives. An example is provided by the operator

Fi1,...,il (x) = θ (x)∂i1 · · · ∂il θ (x) + · · · . (4.27)

As earlier in (4.14), the ellipsis stands for the subtractions with
Kronecker’s δ symbols that make the operator irreducible. Of
course, for any given l > 1, there are several such operators
with different placement of the derivatives: In the special
case (4.27), all the derivatives act on the same field. However,
all the other such operators differ from (4.27) by a total
derivative, which is easily seen from the relation

F (x)∂G(x) = −G(x)∂F (x) + ∂(F (x)G(x)). (4.28)

Thus, the set of independent lth rank operators can be chosen
as (4.27) and the operators having the forms of derivatives,
for example, for l = 2, as θ∂i∂j θ + · · · and ∂i∂j (θθ ) + · · · .
In the calculation of their critical dimensions, it is sufficient to
consider the SO(d) covariant model without the noise (3.3); see
the discussion in the preceding section. Then the operators with
different ranks do not mix in renormalization. The analysis of
renormalization also shows that the operator (4.27) can mix
only with its own “family” of derivatives: The operators with
additional derivatives (like ∂t or ∂2) or with the fields θ ′, φ, φ′,
v′ have too high canonical dimensions dF , the appearance of v

is forbidden by Galilean symmetry, and extra θ ’s are forbidden
by the linearity of the model.

The same relation (4.28) also shows that for odd l, the
operator (4.27) itself reduces to a derivative (more precisely,
to a linear combination of derivatives). In the following,
we are interested only in the operators not reducible to
derivatives, and thus, from now on, we consider only even
values of l. Then (4.27) is nontrivial and it cannot admix to the
derivatives from its family, although they can admix to (4.27).
Thus, the corresponding renormalization matrix ZF appears
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block triangular, and so is the matrix �F . The eigenvalue,
associated with the nontrivial operator (4.27), coincides with
the corresponding diagonal element of �F . We conclude that
in the calculation of the critical dimension, associated with
the operator (4.27), the latter can be treated as if it were
multiplicatively renormalizable.

Like in the preceding section, it is convenient to contract
the operator (4.27) with an arbitrary constant vector λ= {λi}.
The resulting scalar operator has the form

Fl = θ (λi∂i)
lθ + · · · , (4.29)

where the terms, denoted by the ellipsis, necessarily involve
the factors of λ2. In order to find the corresponding renormal-
ization constant Zl , it is sufficient to keep only the principal
monomial, explicitly shown in (4.16), and to retain in the
result for the counterterm only terms of the same form. Then
the relevant part of the vertex factor (4.4) is

V (x; x1,x2) = δ(x − x1)(λi∂i)
lδ(x − x2) + {x1 ↔ x2}.

(4.30)

The one-loop approximation for the functional (4.2) for the
operator (4.29) has the same form (4.3). Let us choose the
external momentum p to flow into the diagram through the left
lower vertex and to flow out through the right lower one. The
external momentum flowing through operator’s vertex and all
the external frequencies are set equal to zero: This is sufficient
to find the needed counterterm. Furthermore, we put w = u =
1 in the propagators from the very beginning, because we are
eventually interested in the value of the anomalous dimension
at the fixed point w∗ = u∗ = 1.

Let us begin with the tracer case. Then the core of the
diagram in (4.3) takes on the form

pipj

∫
dω

2π

∫
k>m

dk
(2π )d

2il(λ · q)l
gμyν3k4−d−y

ω2 + ν2k4

×{P ⊥
ij (k) + αP

‖
ij (k)} 1

ω2 + ν2q4
. (4.31)

Here the factor pipj comes from the vertices (3.9), the factor
2il(λ · q)l comes from the vertex (4.30) for even l [for the odd l

the two terms in (4.30) would cancel each other and instead of
factor 2 one would get 0], the factors depending on k represent
the velocity correlation function from (2.14) with the proper
substitutions, including c = 0 and w = u = 1. The last factor
comes from the propagators 〈θ ′θ〉0. The momentum k flows
through the velocity propagator, so that q = k + p.

In the resulting expression we retain only terms of the form
(λ · p)l and drop all the other terms, containing λ2 or p2. Thus,
we can replace

pipj {P ⊥
ij + αP

‖
ij } → (α − 1)(p · k)2/k2.

The integration over ω in (4.31) is easily performed using (4.7)
and gives

gμy(α − 1)il
∫

k>m

dk
(2π )d

(p · k)2(λ · q)l
k−d−y

q2(k2 + q2)
.

(4.32)

Now we expand all the denominators in the integrand
of (4.31) in p (dropping all the terms with p2),

1

q2
� 1

k2 + 2(p · k)
= 1

k2

∞∑
s=0

(−2)s(p · k)s

k2s
,

1

k2 + q2
� 1

2(k2 + p · k)
= 1

2k2

∞∑
m=0

(−1)m(p · k)m

k2m
,

(4.33)

and expand the numerator using Newton’s binomial formula:

(λ · q)l =
l∑

n=0

Cn
l (λ · k)n(λ · p)l−n. (4.34)

In the resulting threefold series over n,m,s,

l∑
n=0

Cn
l (λ · p)l−n

∞∑
m,s=0

(−1)m(−2)s(p · k)m+s+2(λ · k)n

k2(s+m)
,

we only need to collect the terms proportional to (λ · p)l, which
leads to the restriction n = s + m + 2 and hence to the finite
double sum

s+m+2�l∑
s,m=0

(−1)m(−2)sCs+m+2
l

× (λ · p)l−m−s−2(p · k)m+s+2(λ · k)s+m+2

k2(s+m)
. (4.35)

Substituting it to the (4.32) gives rise to the integrals

Ji1,...,i2n
(m) =

∫
k>m

dk
(2π )d

k−d−y ki1 , . . . ,ki2n

k2n
, (4.36)

with n = s + m + 2 � 2. They are easily found using the
isotropy considerations, cf. (3.20),

Ji1,...,i2n
(m) = δi1i2 , . . . ,δi2n−1i2n

+ all permutations

d(d + 2) · · · (d + 2n − 2)
J (m),

(4.37)

with J (m) from (3.21). The sum over all possible permutations
of 2n tensor indices in the numerator of (4.37) involves (2n −
1)!! = (2n)!/2nn! terms, but we have to keep only the terms
that give rise to the structure (λ · p)n after the contraction with
the vectors λ and p in (4.35). It is easy to grasp that there are
only n! such permutations.

Collecting all the factors gives for the core (4.31) of the
diagram in (4.3) the expression

il(λ · p)l(α − 1)ĝ

(
μ

m

)y 1

2y
Sl(d), (4.38)

where ĝ is defined in (2.26) and

Sl(d) =
s+m+2�l∑

s,m=0

(−1)s+m2sCs+m+2
l (s + m + 2)!

d(d + 2) · · · [d + 2(s + m) + 2]
. (4.39)

For l = 0, the sums (4.35) and (4.39) contain no terms, so that
S0(d) = 0.
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For the functional (4.2) we then obtain (ipi → ∂i)

�2(x) = Fl(x)

{
1 + (α − 1)

ĝ

4y

(
μ

m

)y

Sl(d)

}
, (4.40)

with the operator Fl from (4.29); note the additional factor
1/2 from the symmetry coefficient in (4.2). Then for the
renormalization constant from the relation Fl = ZlF

R
l in the

MS scheme we obtain

Zl = 1 + (α − 1)
ĝ

4y
Sl(d), (4.41)

and the corresponding anomalous dimension is

γl(g) = −(α − 1)
ĝ

4
Sl(d). (4.42)

The sum Sl(d) in (4.39) can be reduced to a simpler
onefold sum for general l. Let us pass from s and m to the
new summation variables k = s + m and m and substitute
the explicit expression for the binomial coefficient Ck+2

l =
l!/(k + 2)!(l − k − 2)!. This gives

Sl(d) = l!
k+2�l∑
k=0

{
k∑

m=0

1

2m

}

× (−2)k

(l − k − 2)! d(d + 2) · · · (d + 2k + 2)
. (4.43)

Now the internal summation over m is readily performed to
give 2 − 2−k , so that, after changing the summation variable
k → k + 2, we obtain

Sl(d) = 2Nl(d) − Ml(d), (4.44)

where

Nl(d) = l!
l∑

k=2

(−2)k−2

(l − k)! d(d + 2) · · · (d + 2k − 2)
,

(4.45)

Ml(d) = l!
l∑

k=2

(−1)k−2

(l − k)! d(d + 2) · · · (d + 2k − 2)
.

The first sum can be calculated explicitly for any l (cf. [30]),

Nl(d) = 4l(l − 1)

d(d + 2l − 2)
, (4.46)

while the second can be easily calculated for any given l.
For the critical dimension, associated with the opera-

tor (4.27), from the relation (2.47) we finally obtain

�l = l + 2�θ + γ ∗
l = l − 2 + y/3 + γ ∗

l , (4.47)

where from (4.42) and (2.41) we find

γ ∗
l = γl(g

∗) = −yd(α − 1)

3(d − 1)
Sl(d), (4.48)

with the higher-order corrections in y.
For l = 0, expressions (4.42) and (4.47) agree with the exact

result (4.13) for the operator θ2 [we recall that S0(d) = 0],
while for l = 2 they agree with the results (4.23)–(4.25) with
n = l = 2.

Now let us turn to the density case. Then the factor pipj

in (4.31) should be replaced with qiqj (and, of course, moved

into the integrand). It is convenient to write

qiqj {P ⊥
ij (k) + αP

‖
ij (k)}

= pipj {P ⊥
ij (k) + αP

‖
ij (k)} + α(q2 − p2). (4.49)

The first term gives the old expression (4.31), and the last one
is proportional to p2 and can be dropped. Thus, we only need
to calculate the contribution of the term αq2 to the analog of
expression (4.31). Then the analog of (4.32) takes on the form

gμyα il
∫

k>m

dk
(2π )d

(λ · q)l
k2−d−y

(k2 + q2)
. (4.50)

Applying the expansions (4.33) and (4.34) leads to the double
sum

l∑
n=0

Cn
l (λ · p)l−n

∞∑
m=0

(−1)m(p · k)m(λ · k)n

k2m
.

We have to retain only the terms proportional to (λp)l , which
leads to the restriction n = m and hence to the finite sum:

l∑
m=0

(−1)mCm
l

(λ · p)l−m(p · k)m(λ · k)m

k2m
. (4.51)

Substituting it into (4.50) gives rise to the integrals (4.36) with
all n � 0. In the sum (4.37) over all possible permutations we
have to keep only n! = m! terms that give rise to the structure
(λp)n after the contraction with the vectors λ and p in (4.51).
To avoid possible confusion, we write the terms with m = 0
and m = 1 separately and for m � 2 apply the formula (4.37).
Then collecting all terms gives the result for (4.50)

il(λ · p)m
gμyα

2

{
1 − l

d
+ Ml(d)

}
J (m), (4.52)

with J (m) from (3.21) and the sum Ml(d) from (4.45).
Proceeding as before for the tracer case, we arrive at the

following expression for the renormalization constant Zl in
the MS scheme:

Zl = 1 + (α − 1)
ĝ

4y
Sl(d) + α

ĝ

4y

{
1 − l

d
+ Ml(d)

}
.

(4.53)

Here the contribution with Sl(d) comes from the first term
in (4.49) and the last term with curly brackets comes
from (4.53). Then for the anomalous dimension, using the
expressions (4.44)–(4.46), we obtain

γl(g) = −α
ĝ

4

(
1 − l

d

)
+ (1 − α)

ĝ

4
Nl(d) − ĝ

4
Ml(d),

(4.54)

with higher-order corrections in g.
In the expression (4.47) for the critical dimension one has

γ ∗
l = −α

y(l − d)

3(d − 1)
+ (1 − α)

8l(l − 1)y

3(d − 1)(d + 2l − 2)

− dy

3(d − 1)
Ml(d), (4.55)
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with higher-order corrections in y. For l = 0 this result is in
agreement with the expression (4.12) for the operator θ2 in the
density case.

V. OPERATOR PRODUCT EXPANSION AND THE
ANOMALOUS SCALING

A. The case of a density field

Consider the equal-time pair correlation function of two
UV finite quantities F1,2(x) with definite critical dimensions,
for example, those of the primary fields or renormalized local
composite operators. We restrict ourselves with equal-time
correlators, because they are usually Galilean invariant and do
not bear strong dependence on the IR scale, caused by the so-
called sweeping effects. From the (canonical) dimensionality
considerations it follows that

〈F1(t,x1)F2(t,x2)〉 = νdω
F μdF η(μr,mr,c/(μν)), (5.1)

where dω
F and dF are the canonical dimensions of the corre-

lation function, given by simple sums of the corresponding
dimensions of the operators, r = |x2 − x1|, and η(· · · ) is a
function of completely dimensionless variables. We have writ-
ten the right-hand side in terms of renormalized parameters,
when the reference mass substitutes the typical UV momentum
scale �. The behavior of the function η in the IR range, that is,
for μr � 1, is determined by the IR attractive fixed point of
the RG equation. Solving the RG equation in a standard way,
one derives the following asymptotic expression:

〈F1(t,x1)F2(t,x2)〉 � νdω
F μdF (μr)−�F ζ (mr,c(r)). (5.2)

Here �F is the critical dimension of the correlation function,
given by simple sum of the dimensions of the operators.
The RG equation does not determine the form of the scaling
function ζ ; it only determines the form of its arguments. They
are canonically and critically dimensionless: In particular,

c(r) = c(μr)�c/(μν), (5.3)

with �c from (2.49) can be interpreted as the effective speed
of sound; more detailed discussion of this point can be found
in [47].

For the correlation functions of two operators of the type
θn(x) the general expression (5.2) gives

〈θp(t,x1)θk(t,x2)〉 � μ−(p+k)(μr)−�p−�kζpk(mr,c(r)), (5.4)

with the dimensions �n from (4.12). In the following, we do
not display the dependence on the UV parameters μ and ν and
omit the indices of the scaling functions.

The inertial-convective range corresponds to the additional
condition that mr � 1. The behavior of the functions ζ at
mr → 0 can be studied by means of the OPE [13,14]. In the
case at hand, it has the form

F1(t,x1)F2(t,x2) �
∑
F

CF (mr,c(r)) F (t,x), (5.5)

where x2 − x1 → 0 and x = (x1 + x1)/2 is fixed. The summa-
tion in (5.5) is taken, in general, over all possible renormalized
local composite operators allowed by the symmetries of the
model and of the left-hand side, CF being numerical coefficient
functions analytical in mr and c(r). In our model, due to
the linearity in the field θ , the number of such fields in the

operators F cannot exceed their number on the left-hand side.
This restriction, which our model shares with the Kraichnan’s
model and its relatives [12] will be very important in the
following.

The correlation function (5.2) is obtained by averaging (5.5)
with the weight expSR with the renormalized action functional
from (3.4). The mean values 〈F (x)〉 appear on the right-hand
side. Without loss of generality, it can be assumed that the
expansion in (5.5) is made in irreducible tensor operators.
Then, if the model is SO(d) covariant [the correlation function
of the scalar noise (3.3) depends only on r = |r|], only scalar
operators survive the averaging. It can also be assumed that
the expansion is made in the operators with definite critical
dimensions. Then their mean values, in the asymptotic region
of small m, take on the forms

〈F (x)〉 � m�F ξ (c(1/m)), (5.6)

with another set of scaling functions ξ and the argument c(· · · )
from (5.3). Since the diagrams of the perturbation theory have
finite limits both for c → ∞ and c → 0, we may assume that
the functions ξ are restricted for all values of c and can be
estimated by some constants. What is more, for y large enough,
including the most realistic case y → 4, the dimension �c

becomes negative; see expression (2.49). Thus, the argument
c(1/m) ∼ cm−�c becomes small for fixed c and m → 0, and
the function ξ can be replaced by its (finite) limit value ξ (0).
We finally conclude that, in the IR range,

〈F (x)〉 ∼ m�F . (5.7)

Then combining expressions (5.2), (5.5), and (5.7) gives the
desired asymptotic expression for the scaling functions,

ζ (mr,c(r)) �
∑
F

AF (mr,c(r)) (mr)�F , (5.8)

where the summation runs over Galilean-invariant scalar
operators, with the coefficient functions AF analytical in their
arguments.

Divergences for mr → 0 (and hence the anomalous scaling)
result from the contributions of the operators with negative
critical dimensions, termed “dangerous” in [15]. Clearly,
the leading contribution is determined by the operator with
the lowest (minimal) dimension; the others determine the
corrections. All the operators θn are dangerous, and the
spectrum of their dimensions is not restricted from below
(there is no “most dangerous” operator); see expression (4.12).
Fortunately, for a given correlation function, only a finite
number of those operators can contribute to the OPE. For (5.4),
these are the operators with n � p + k. Thus,

ζ (mr,c(r)) �
p+k∑
n=0

An(mr,c(r)) (mr)�n + · · · , (5.9)

with �n from (4.12); the ellipsis stands for the “more distant”
corrections, related to the operators with derivatives and other
types of fields. The leading term of the small-mr behavior
in (5.9) is given by the operator with the maximum possible
n = p + k, so that the final expression has the form

〈θp(t,x1)θk(t,x2)〉 � μ−(p+k)(μr)−�p−�k (mr)�p+k . (5.10)
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It is worth noting that the set of operators θn is “closed with
respect to the fusion” in the sense that the leading term in the
OPE for the pair correlator of two such operators is given by
the operator from the same family with the summed exponent.
This fact along with the inequality �p + �k > �p+k , which
follows from the explicit expression (4.12), can be interpreted
as the statement that the correlations of the scalar field in the
density model reveal multifractal behavior; see [54].

B. The case of the tracer field

For the tracer model, the critical dimensions of the operators
θn are linear in n: �[θn] = n�θ ; see Eq. (4.13). Then the
dependence on the separation r in the asymptotic expres-
sions (5.10) disappears: The leading terms of the inertial-range
behavior are constants. More “vivid” quantities are the equal-
time structure functions defined as

Sn(r) = 〈[θ (t,x) − θ (t,x′]2n〉 = (νμ2)−nη(μr,mr,c/(μν)),

r = |x′ = x|; (5.11)

the second equality with dimensionless functions η follows
from dimensionality considerations. Solving the RG equations
gives the asymptotic expressions for μr � 1,

Sn(r) = (νμ2)−n(μr)−2n�θ ζ (mr,c(r)), (5.12)

with c(r) from (5.3) and some scaling functions ζ . It is
important here that the pair correlation functions 〈θpθk〉 with
k + p = 2n, appearing in the binomial decomposition of Sn,
have similar asymptotic representations (5.4) with the same
critical dimension �k + �p = 2n�θ , and together they form
the single asymptotic expression (5.12). The constant leading
terms for those correlators, related to the contributions of
the operator θn in the corresponding OPE, cancel each other
in the structure function, and the latter acquires nontrivial
dependence on r in the inertial range.

Indeed, both the functions (5.11) and the action (3.8) for
the tracer (not for the density) are invariant with respect to
the constant shift θ (x) → θ (x) + const. Then the operators
entering the corresponding OPE,

[θ (t,x) − θ (t,x′]2n �
∑
F

CF (mr,c(r)) F (t,x), r → 0,

x = (x + x′)/2, (5.13)

must also be all invariant, so that they can involve the field θ

only in the form of derivatives. Clearly, the leading term of the
small-m behavior will be determined by the scalar operator
with maximum possible number of the fields θ (namely,
2n for the given Sn) and the minimum possible number of
spatial derivatives (namely, 2n: one derivative for each θ ).
This is nothing other than the operator F (2n,0) = (∂iθ∂iθ )n

from (4.14). Thus, the desired leading-order expression for Sn

in the inertial range is

Sn(r) ∼ (νμ2)−n(μr)−2n�θ (mr)�(2n,0), (5.14)

with the dimension �(2n,0) given in (4.25). The operators
F (2p,0) with p < n determine the main corrections to (5.14),
the operators with extra derivatives and/or other types of fields
correspond to more “distant” corrections (they all must be

invariant with respect to the Galilean transformation and the
shift of θ ).

For the tracer, the “multifractal” behavior is demonstrated
by the family of the operators F (n,0) rather than by the simple
powers θn; see the end of the preceding section. Indeed, it
is easy to grasp that the inertial-range behavior of the pair
correlation function 〈F (p,0)F (k,0)〉 of two such operators is
determined by the contribution to the OPE from their “elder
brother” F (n,0) with n = p + k and has the form (omitting the
dependence on the UV parameters μ and ν)

〈F (p,0)(t,x)F (k,0)(t,x′)〉 ∼ r−�(p,0)−�(k,0)+�(n,0) . (5.15)

The required inequality �(n,0) < �(p,0) + �(k,0) [54] follows
from the explicit one-loop expression (4.25). It remains to
note that the operator F (2,0) can be interpreted as the local
dissipation rate of fluctuations of our scalar field.

C. Effects of the large-scale anisotropy

Now consider the effects of the anisotropy, introduced into
the system at large scales ∼L through the correlation function
of the random noise (3.3). As an illustration, consider first the
case of uniaxial anisotropy: Assume that the function C(r/L)
in (3.3) depends also on a constant unit vector n = {ni} that
determines a certain distinguished direction.

Then the irreducible tensor composite operators acquire
nonzero mean values, with the tensor factors built of the
vector n. For example, the mean value of the operator (4.15)
is proportional to the irreducible tensor ninj − δij /d. In
general, the mean value of any lth rank irreducible operator is
proportional to the tensor ni1 , . . . ,nil + · · · , where the ellipsis
stands for the contributions with the Kronecker δ symbols that
make it irreducible. Upon substitution into the OPE (5.13),
their tensor indices are contracted with the corresponding
indices of the coefficient functions CF (r). This gives rise to the
(d-dimensional generalizations of the) Legendre polynomials
Pl(cos ϑ), where ϑ is the angle between the vectors r
and n.

Thus, the OPE expansion in irreducible composite operators
provides the expansion in the irreducible representations of
the SO(d) group. The main contribution to the “shell” with
a given l is determined by the lth rank operator with the
lowest critical dimension (of course, it should respect the
symmetries of the model and of the left-hand side). Clearly,
for the structure function Sn and l � 2n the needed operator
is F

(2n,l)
i1,...,il

from (4.14). For l > 2n we need the operators that
contain more derivatives than fields.

The expansion that takes into account only the leading term
in each shell has the form (again, we omit ν and μ)

Sn = r−2n�θ

2n∑
l=0

Al(r) Pl(cos ϑ) (mr)�(2n,l) + · · · , (5.16)

with the dimension �(2n,l) from (4.24); the ellipsis stands
for the contributions with l > 2n. For the general large-scale
anisotropy, all the spherical harmonics Yls will appear in the
expansion, with the exponents depending only on l.

From the explicit leading-order expressions (4.25) it fol-
lows that the dimensions (4.24), for a fixed n, monotonically
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increase with l,

�n,l > �n,p if l > p, (5.17)

or, in the differential form, ∂�n,l/∂l > 0. Similar inequalities
were derived earlier in various models of passively advected
vector [35] and scalar [19] fields. This fact has a clear
physical interpretation: In the presence of the large-scale
anisotropy, anisotropic contributions in the inertial range
exhibit a hierarchy, related to the “degree of anisotropy” l. The
leading contribution is given by the isotropic shell (l = 0);
the corresponding anomalous exponent is the same as for the
purely isotropic case. The contributions with l > 1 give only
corrections which become relatively weaker as mr → 0, the
faster the higher the degree of anisotropy l is. This effect gives
quantitative support for Kolmogorov’s hypothesis of the local
isotropy restoration and appears rather robust, being observed
for the real fluid turbulence [55].

The hierarchy (5.17) becomes more strongly pronounced
as the degree of compressibility α increases, which can
be expressed by the inequality ∂2�n,l/∂l∂α > 0. Thus, the
anisotropic corrections become further from one another and
from the isotropic term, in contrast to the situation observed
earlier for passive scalar [31,32] and vector [36] fields,
advected by Kraichnan’s ensemble. The same inequality holds
for the “frozen” regime in the Gaussian model with finite
correlation time, the fact overlooked in [31].

For l > 2n, the leading contributions to the lth shell are
determined by the operators that involve more derivatives than
fields. The calculation of their dimensions is a difficult task be-
cause of the mixing of such operators in renormalization. The
hierarchy relations remain valid due to the contributions of the
canonical dimensions to the general expression (2.47): Clearly,
their critical dimensions have the forms l − 2n + O(y).

Fortunately, for the pair correlation functions, the full
analog of the expression (5.16) can be presented, with all the
shells included. Indeed, it is clear that the leading term of the
lth shell now is determined by the single operator (4.27) with
two fields and l tensor indices: It is unique up to derivatives,
which have vanishing mean values and do not contribute to the
quantities of interest. Thus, the desired asymptotic expression
has the form

〈θ (t,x)θ (t,x′)〉 = r−2�θ

∞∑
l=0

Al(r) Pl(cos ϑ) (mr)�l , (5.18)

with the dimensions �l from (4.47) and (4.48) for the tracer
and (4.47) and (4.55) for the density case. The hierarchy of
anisotropic contributions, similar to (5.17), holds, at least for
small y, due to the contribution of the canonical dimensions
to (4.47): �l = l − 2 + O(y). Thus, the leading term in (5.18)
is given by the scalar operator θ2. When one passes to the
structure function S2 for the tracer that term is subtracted,
and the leading role is inherited by the scalar operator
F (2,0) from (4.14) in agreement with (5.16). The hierarchy
is getting weaker as the compressibility parameter α grows:
∂2�n,l/∂l∂α < 0, as follows from the analysis of the explicit
one-loop expressions (4.47), (4.48), and (4.55). Here our
results agree with those for the Kraichnan model: Anisotropic
corrections become closer to each other and to the isotropic
term; cf. [30].

VI. DISCUSSION AND CONCLUSION

We have studied two models of passive scalar advection:
the case of the density of a conserved quantity and the case of
a tracer, described by the advection-diffusion equations (3.1)
and (3.2), respectively, and subject to a random large-scale
forcing (3.3). The advecting velocity field is described by
the Navier-Stokes equations for a compressible fluid (2.7)
and (2.8) with an external stirring force with the correlation
function ∝k4−d−y ; see (2.10) and (2.11).

The full stochastic problems can be formulated as
field theoretic models with the action functionals specified
in (2.12), (3.5), and (3.8). Those models appear multiplica-
tively renormalizable, so that the corresponding RG equations
can be derived in a standard fashion. They have the only IR
attractive fixed point in the physical range of the model pa-
rameters, and the correlation functions reveal scaling behavior
in the IR region (inertial and energy-containing ranges).

Their inertial-range behavior was studied by means of
the OPE; existence of anomalous scaling (singular power-
like dependence on the integral scale L) was established.
The corresponding anomalous exponents were identified with
the scaling (critical) dimensions of certain composite fields
(composite operators): powers of the scalar field for the density
and powers of its spatial gradients for the tracer, so that they
can be systematically calculated as series in the exponent
y. The practical calculations were performed in the leading
order (one-loop approximation) and are presented in (4.12)
and (4.25). The results (2.48) and (3.27) for primary fields
and (4.13) for the operators θn for the tracer are given by this
approximation exactly.

Thus, we removed two important restrictions of the previous
treatments of the passive compressible problem: absence of
time correlations and Gaussianity of the advecting velocity
field. We stress that in contrast to previous studies that
combined compressibility with finite correlation time [31,32],
the present model is manifestly Galilean covariant, and this
fact holds in all orders of the perturbation theory.

In a few respects, however, the results obtained here are very
similar to those obtained earlier for the compressible version
of Kraichnan’s rapid-change model [28–30] and the Gaussian
model with finite correlation time [31,32]. First of all, the
mechanism of the origin of anomalous scaling is essentially
the same: The anomalous exponents are identified with the
dimensions of individual composite operators.

Second, those dimensions are insensitive to the specific
choice of the random force (3.3), because the propagator
〈θθ〉0 does not enter into the relevant Green’s functions. In
particular, this means that the anomalous exponents remain
intact if the artificial noise is replaced by an imposed linear
gradient, a more realistic formulation of the problem. The force
maintains the steady state and thus provides nonvanishing
mean values for the composite operators, but it does not affect
their dimensions.

For the rapid-change case, this fact is naturally interpreted
within the zero-mode approach, where the equal-time cor-
relation functions satisfy certain differential equations, and
the anomalous exponents are related to the solutions of their
homogeneous analogs, where the forcing terms are discarded;
see [9,11]. On the contrary, the amplitudes are found by
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matching of these inertial-range zero-mode solutions with
the large-scale solutions of the full inhomogeneous equations,
which are nontrivial only in the presence of the forcing terms.

From the field theoretic viewpoint, the zero-mode approach
is a realization of a more general idea of self-consistent
(“bootstrap”) equations, which involve skeleton diagrams
with exact (“dressed”) propagators and discarded bare terms;
see e.g., Sec. 4.35 in [14]. Owing to special features of
rapid-change models (linearity in the passive field and time
decorrelation of the velocity), such equations there are exactly
given by one-loop approximations and in the coordinate space
take form of rather simple differential equations, written in an
explicit closed form. Furthermore, in contrast to the case of
finite correlation time, closed equations can be obtained for the
equal-time correlation functions, which are Galilean invariant
and, therefore, not affected by the so-called “sweeping effects”
that obscure relevant physical interactions and lead to strong
IR divergences. Thus, the problem of IR divergences in
self-consistency equations, known for the NS equation since
the seminal paper [56], in the rapid-change models is absent.

From a more physical point of view, zero modes can be
interpreted as statistical conservation laws in the dynamics of
particle clusters [57]. The close resemblance in the RG + OPE
pictures of the origin of anomalous scaling for the present
model and its rapid-change predecessors suggests that for
the former, the concept of zero modes (and thus that of
statistical conservation laws) is also applicable here. This
observation is rather encouraging because in our model no
simple differential equations can be derived for the equal-
time correlation functions due to the fact that the advecting
velocity has a finite correlation time. Owing to the linearity
in the advected field, closed equations can be derived for its
correlation functions, but only for different-time ones, and they
would involve infinite diagrammatic series.

In this connection it remains to note that in the RG + OPE
approach the IR divergences, caused by the sweeping effects,
are related to the composite operators vn (powers of the
velocity field), which become dangerous for y > 3 [15].
However, they give no contribution to the OPEs for Galilean-
invariant quantities like the equal-time correlation functions of
the scalar field. For the incompressible case, these issues are
discussed in Refs. [15–17,20,49] in detail; nothing essential
changes for the compressible case. The relation between the
RG approach and statistical conservation laws is also discussed
in [58].

Although the anomalous exponents are independent of the
specific choice of the noise, they do depend on the exponent y,
the dimension of space d, and the parameter α that measures
the degree of compressibility. In this respect, our results
are also similar to those obtained for simpler models. An
important difference with Gaussian models appears when
possible dependence on the time scales is studied. It was
argued that the exponents can depend on more details of the
velocity ensemble than only the exponents, namely, on the
dimensionless ratio of the correlation times of the scalar and
velocity fields; see, e.g., the discussion in [7]. Indeed, analytic
results obtained for Gaussian models with a finite correlation
time within the zero-mode technique [59] and the RG + OPE
approach [19,31,32] show that such a dependence indeed takes
place, at least for some of the possible scaling regimes.

In the present case, the exponents could depend, in
principle, on the dimensionless parameters u0, v0, w0, the
ratios of various viscosity and diffusion coefficients. After
the RG treatment, these parameters are replaced with the
corresponding invariant variables, which exactly have the
meaning of the ratios of the correlation times of the transverse
and longitudinal components of the velocity field, the pressure,
and the scalar field; for a detailed discussion of this issue,
see [19]. The existence of the unique IR attractive fixed point
shows that in the IR range these ratios tend to their fixed-point
values u∗, v∗, w∗ irrespective of the initial values u0, etc. We
conclude that the anomalous exponents are independent on the
time scale; the dependence observed in previous treatments is
an artifact of simplified Gaussian statistics.

Another essential difference between our results and those
obtained for Kraichnan’s rapid-change model is that in the
latter the anomalous exponents have a finite limit when the
parameter that measures degree of compressibility [analog of
α from (2.11) in our model] goes to infinity, that is, for the
purely potential velocity field. In our case all the nontrivial
anomalous dimensions grow with α without bound. Formally,
the difference is due to the fact that the coordinate of the
fixed point (2.41) in our model is independent on α and
the dependence on it appears only in the numerators of the
expressions like (4.12) and (4.25). This fact also means that
the one-loop contributions in the critical dimensions become
large as α grows, and the one-loop approximation can hardly
be trusted even for small y. One may think that the real RG
expansion parameter then becomes yα rather than y. In this
connection we also recall that the IR attractive fixed point in
the one-loop approximation exists for all α but ceases to exist
for α = ∞ (purely potential forcing). These facts suggest that,
beyond the one-loop approximation, the fixed point (2.41), in
fact, disappears or loses its stability, and the corresponding
scaling regime undergoes some qualitative changeover, the
possibility supported by the phase transition to a purely chaotic
state observed in [27] for a simplified model.

To investigate this issue, it is necessary to go beyond the
leading one-loop approximation (of course, starting with the
compressible Navier-Stokes equation itself) and to discuss the
existence, stability, and the dependence on α of the fixed
point at least at the two-loop level, which seems to be a
difficult technical task. Another interesting generalization of
our present investigation is to derive a more realistic expression
for the random force correlator (2.11) in order to determine
realistic values of α and to express it in terms of measurable
quantities. Here the combination of the RG techniques and
the energy balance equation seems promising; see [60] for the
incompressible case. This work remains for the future and is
partly in progress.

ACKNOWLEDGMENTS

The authors are indebted to L. Ts. Adzhemyan, Michal
Hnatich, Juha Honkonen, and M. Yu. Nalimov for discussion.
The authors acknowledge Saint Petersburg State University
for Research Grant No. 11.38.185.2014. The work was also
supported by the Russian Foundation for Basic Research
within Project No. 12-02-00874-a.

063016-19



N. V. ANTONOV AND M. M. KOSTENKO PHYSICAL REVIEW E 90, 063016 (2014)

[1] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge University Press, Cambridge, UK, 1995).

[2] M. Holzer and A. Pumir, Phys. Rev E 47, 202 (1993).
[3] M. Holzer and E. D. Siggia, Phys. Fluids 6, 1820 (1994).
[4] A. Pumir, Phys. Fluids 6, 2118 (1994).
[5] C. Tong and Z. Warhaft, Phys. Fluids 6, 2165 (1994).
[6] L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani, Phys.

Fluids 7, 2725 (1995).
[7] B. I. Shraiman and E. D. Siggia, C. R. Acad. Sci., Ser. IIa: Sci.

Terre Planetes 321, 279 (1995).
[8] M. Martins Afonso, A. Mazzino, and P. Muratore-Ginanneschi,

J. Fluid Mech. 694, 426 (2012); L. Biferale, A. S. Lanotte,
R. Scatamacchia, and F. Toschi, ibid. 757, 550 (2014); A. S.
Lanotte, L. Biferale, G. Boffetta, and F. Toschi, J. Turbulence
14:7, 34 (2013); P. Olla, Phys. Rev. E 89, 032136 (2014); M.
Martins Afonso, ibid. 89, 063021 (2014).
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[40] E. Jurčišinova, M. Jurčišin, J. Phys. A: Math. Theor. 45, 485501
(2012); ,Phys. Rev. E 88, 011004 (2013).

[41] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.
(Pergamon Press, Oxford, UK, 1987).

[42] V. S. L’vov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz 74, 1445
(1978) [,Sov. Phys. JETP 47, 756 (1978)].

[43] L. Ts. Adzhemyan, M. Yu. Nalimov, and M. M. Stepanova,
Theor. Math. Phys. 104, 971 (1995); N. V. Antonov, M. Hnatich,
and M. Yu. Nalimov, Phys. Rev. E 60, 4043 (1999).

[44] D. Yu. Volchenkov and M. Yu. Nalimov, Theor. Math. Phys.
106, 307 (1996).

[45] S. S. Moiseev, A. V. Tur, and V. V. Yanovskii, Zh. Eksp. Teor.
Fiz 71, 1062 (1976) [,Sov. Phys. JETP 44, 556 (1976)].

[46] I. Staroselsky, V. Yakhot, S. Kida, and S. A. Orszag, Phys. Rev.
Lett. 65, 171 (1990).

[47] N. V. Antonov, M. Yu. Nalimov, and A. A. Udalov, Theor. Math.
Phys. 110, 305 (1997).

[48] N. V. Antonov, Phys. Rev. Lett. 92, 161101 (2004).
[49] L. Ts. Adzhemyan, N. V. Antonov, M. V. Kompaniets, and

A. N. Vasil’ev, Int. J. Mod. Phys. B 17, 2137
(2003).

[50] C. De Dominicis and P. C. Martin, Phys. Rev. A 19, 419 (1979);
P. L. Sulem, J. D. Fournier, and A. Pouquet, Lect. Notes Phys.
104, 320 (1979); J. D. Fournier and U. Frisch, Phys. Rev. A 28,
1000 (1983); L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M.
Pis’mak, Theor. Math. Phys. 57, 1131 (1983).

[51] L. Ts. Adzhemyan, A. N. Vasil’ev, and M. Gnatich, Theor. Math.
Phys. 74, 115 (1988); N. V. Antonov, Vestn. St. Petersburg Univ.,

063016-20

http://dx.doi.org/10.1103/PhysRevE.47.202
http://dx.doi.org/10.1103/PhysRevE.47.202
http://dx.doi.org/10.1103/PhysRevE.47.202
http://dx.doi.org/10.1103/PhysRevE.47.202
http://dx.doi.org/10.1063/1.868243
http://dx.doi.org/10.1063/1.868243
http://dx.doi.org/10.1063/1.868243
http://dx.doi.org/10.1063/1.868243
http://dx.doi.org/10.1063/1.868216
http://dx.doi.org/10.1063/1.868216
http://dx.doi.org/10.1063/1.868216
http://dx.doi.org/10.1063/1.868216
http://dx.doi.org/10.1063/1.868219
http://dx.doi.org/10.1063/1.868219
http://dx.doi.org/10.1063/1.868219
http://dx.doi.org/10.1063/1.868219
http://dx.doi.org/10.1063/1.868651
http://dx.doi.org/10.1063/1.868651
http://dx.doi.org/10.1063/1.868651
http://dx.doi.org/10.1063/1.868651
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2014.515
http://dx.doi.org/10.1017/jfm.2014.515
http://dx.doi.org/10.1017/jfm.2014.515
http://dx.doi.org/10.1017/jfm.2014.515
http://dx.doi.org/10.1080/14685248.2013.839882
http://dx.doi.org/10.1080/14685248.2013.839882
http://dx.doi.org/10.1080/14685248.2013.839882
http://dx.doi.org/10.1080/14685248.2013.839882
http://dx.doi.org/10.1103/PhysRevE.89.032136
http://dx.doi.org/10.1103/PhysRevE.89.032136
http://dx.doi.org/10.1103/PhysRevE.89.032136
http://dx.doi.org/10.1103/PhysRevE.89.032136
http://dx.doi.org/10.1103/PhysRevE.89.063021
http://dx.doi.org/10.1103/PhysRevE.89.063021
http://dx.doi.org/10.1103/PhysRevE.89.063021
http://dx.doi.org/10.1103/PhysRevE.89.063021
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.75.3834
http://dx.doi.org/10.1103/PhysRevLett.75.3834
http://dx.doi.org/10.1103/PhysRevLett.75.3834
http://dx.doi.org/10.1103/PhysRevLett.75.3834
http://dx.doi.org/10.1103/PhysRevE.54.2564
http://dx.doi.org/10.1103/PhysRevE.54.2564
http://dx.doi.org/10.1103/PhysRevE.54.2564
http://dx.doi.org/10.1103/PhysRevE.54.2564
http://dx.doi.org/10.1103/PhysRevE.52.4924
http://dx.doi.org/10.1103/PhysRevE.52.4924
http://dx.doi.org/10.1103/PhysRevE.52.4924
http://dx.doi.org/10.1103/PhysRevE.52.4924
http://dx.doi.org/10.1103/PhysRevLett.76.2706
http://dx.doi.org/10.1103/PhysRevLett.76.2706
http://dx.doi.org/10.1103/PhysRevLett.76.2706
http://dx.doi.org/10.1103/PhysRevLett.76.2706
http://dx.doi.org/10.1209/epl/i1996-00410-4
http://dx.doi.org/10.1209/epl/i1996-00410-4
http://dx.doi.org/10.1209/epl/i1996-00410-4
http://dx.doi.org/10.1209/epl/i1996-00410-4
http://dx.doi.org/10.1209/epl/i1997-00186-5
http://dx.doi.org/10.1209/epl/i1997-00186-5
http://dx.doi.org/10.1209/epl/i1997-00186-5
http://dx.doi.org/10.1103/PhysRevE.57.2914
http://dx.doi.org/10.1103/PhysRevE.57.2914
http://dx.doi.org/10.1103/PhysRevE.57.2914
http://dx.doi.org/10.1103/PhysRevE.57.2914
http://dx.doi.org/10.1103/PhysRevE.58.1823
http://dx.doi.org/10.1103/PhysRevE.58.1823
http://dx.doi.org/10.1103/PhysRevE.58.1823
http://dx.doi.org/10.1103/PhysRevE.58.1823
http://dx.doi.org/10.1007/BF02557413
http://dx.doi.org/10.1007/BF02557413
http://dx.doi.org/10.1007/BF02557413
http://dx.doi.org/10.1007/BF02557413
http://dx.doi.org/10.1007/BF01101114
http://dx.doi.org/10.1007/BF01101114
http://dx.doi.org/10.1007/BF01101114
http://dx.doi.org/10.1007/BF01101114
http://dx.doi.org/10.1007/BF01097494
http://dx.doi.org/10.1007/BF01097494
http://dx.doi.org/10.1007/BF01097494
http://dx.doi.org/10.1007/BF01097494
http://dx.doi.org/10.3367/UFNr.0166.199612a.1257
http://dx.doi.org/10.3367/UFNr.0166.199612a.1257
http://dx.doi.org/10.3367/UFNr.0166.199612a.1257
http://dx.doi.org/10.3367/UFNr.0166.199612a.1257
http://dx.doi.org/10.1070/PU1996v039n12ABEH000183
http://dx.doi.org/10.1070/PU1996v039n12ABEH000183
http://dx.doi.org/10.1070/PU1996v039n12ABEH000183
http://dx.doi.org/10.1070/PU1996v039n12ABEH000183
http://dx.doi.org/10.1103/PhysRevE.63.025303
http://dx.doi.org/10.1103/PhysRevE.63.025303
http://dx.doi.org/10.1103/PhysRevE.63.025303
http://dx.doi.org/10.1103/PhysRevE.63.025303
http://dx.doi.org/10.1103/PhysRevE.64.019901
http://dx.doi.org/10.1103/PhysRevE.64.019901
http://dx.doi.org/10.1103/PhysRevE.64.019901
http://dx.doi.org/10.1103/PhysRevE.64.056306
http://dx.doi.org/10.1103/PhysRevE.64.056306
http://dx.doi.org/10.1103/PhysRevE.64.056306
http://dx.doi.org/10.1103/PhysRevE.60.6691
http://dx.doi.org/10.1103/PhysRevE.60.6691
http://dx.doi.org/10.1103/PhysRevE.60.6691
http://dx.doi.org/10.1103/PhysRevE.60.6691
http://dx.doi.org/10.1103/PhysRevE.66.036313
http://dx.doi.org/10.1103/PhysRevE.66.036313
http://dx.doi.org/10.1103/PhysRevE.66.036313
http://dx.doi.org/10.1103/PhysRevE.66.036313
http://dx.doi.org/10.1103/PhysRevE.71.016303
http://dx.doi.org/10.1103/PhysRevE.71.016303
http://dx.doi.org/10.1103/PhysRevE.71.016303
http://dx.doi.org/10.1103/PhysRevE.71.016303
http://dx.doi.org/10.1088/0305-4470/39/25/S04
http://dx.doi.org/10.1088/0305-4470/39/25/S04
http://dx.doi.org/10.1088/0305-4470/39/25/S04
http://dx.doi.org/10.1088/0305-4470/39/25/S04
http://dx.doi.org/10.1103/PhysRevE.52.2617
http://dx.doi.org/10.1103/PhysRevE.52.2617
http://dx.doi.org/10.1103/PhysRevE.52.2617
http://dx.doi.org/10.1103/PhysRevE.52.2617
http://dx.doi.org/10.1103/PhysRevE.55.2713
http://dx.doi.org/10.1103/PhysRevE.55.2713
http://dx.doi.org/10.1103/PhysRevE.55.2713
http://dx.doi.org/10.1103/PhysRevLett.76.224
http://dx.doi.org/10.1103/PhysRevLett.76.224
http://dx.doi.org/10.1103/PhysRevLett.76.224
http://dx.doi.org/10.1103/PhysRevLett.76.224
http://dx.doi.org/10.1103/PhysRevLett.79.1849
http://dx.doi.org/10.1103/PhysRevLett.79.1849
http://dx.doi.org/10.1103/PhysRevLett.79.1849
http://dx.doi.org/10.1103/PhysRevLett.79.1849
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1103/PhysRevE.60.R1138
http://dx.doi.org/10.1103/PhysRevE.60.R1138
http://dx.doi.org/10.1103/PhysRevE.60.R1138
http://dx.doi.org/10.1103/PhysRevE.60.R1138
http://dx.doi.org/10.1103/PhysRevE.56.5483
http://dx.doi.org/10.1103/PhysRevE.56.5483
http://dx.doi.org/10.1103/PhysRevE.56.5483
http://dx.doi.org/10.1103/PhysRevE.56.5483
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1016/S0167-2789(99)00171-2
http://dx.doi.org/10.1016/S0167-2789(99)00171-2
http://dx.doi.org/10.1016/S0167-2789(99)00171-2
http://dx.doi.org/10.1016/S0167-2789(99)00171-2
http://dx.doi.org/10.1103/PhysRevE.58.7381
http://dx.doi.org/10.1103/PhysRevE.58.7381
http://dx.doi.org/10.1103/PhysRevE.58.7381
http://dx.doi.org/10.1103/PhysRevE.58.7381
http://dx.doi.org/10.1103/PhysRevE.63.036302
http://dx.doi.org/10.1103/PhysRevE.63.036302
http://dx.doi.org/10.1103/PhysRevE.63.036302
http://dx.doi.org/10.1103/PhysRevE.63.036302
http://dx.doi.org/10.1023/B:TAMP.0000049764.37693.6d
http://dx.doi.org/10.1023/B:TAMP.0000049764.37693.6d
http://dx.doi.org/10.1023/B:TAMP.0000049764.37693.6d
http://dx.doi.org/10.1023/B:TAMP.0000049764.37693.6d
http://dx.doi.org/10.1016/S0167-2789(00)00089-0
http://dx.doi.org/10.1016/S0167-2789(00)00089-0
http://dx.doi.org/10.1016/S0167-2789(00)00089-0
http://dx.doi.org/10.1016/S0167-2789(00)00089-0
http://dx.doi.org/10.1088/0305-4470/39/25/S14
http://dx.doi.org/10.1088/0305-4470/39/25/S14
http://dx.doi.org/10.1088/0305-4470/39/25/S14
http://dx.doi.org/10.1088/0305-4470/39/25/S14
http://dx.doi.org/10.1103/PhysRevE.53.R3021
http://dx.doi.org/10.1103/PhysRevE.53.R3021
http://dx.doi.org/10.1103/PhysRevE.53.R3021
http://dx.doi.org/10.1103/PhysRevE.53.R3021
http://dx.doi.org/10.1103/PhysRevE.56.417
http://dx.doi.org/10.1103/PhysRevE.56.417
http://dx.doi.org/10.1103/PhysRevE.56.417
http://dx.doi.org/10.1103/PhysRevE.56.417
http://dx.doi.org/10.1103/PhysRevE.60.R3483
http://dx.doi.org/10.1103/PhysRevE.60.R3483
http://dx.doi.org/10.1103/PhysRevE.60.R3483
http://dx.doi.org/10.1103/PhysRevE.60.R3483
http://dx.doi.org/10.1103/PhysRevE.61.6586
http://dx.doi.org/10.1103/PhysRevE.61.6586
http://dx.doi.org/10.1103/PhysRevE.61.6586
http://dx.doi.org/10.1103/PhysRevE.61.6586
http://dx.doi.org/10.1103/PhysRevE.62.R5891
http://dx.doi.org/10.1103/PhysRevE.62.R5891
http://dx.doi.org/10.1103/PhysRevE.62.R5891
http://dx.doi.org/10.1103/PhysRevE.62.R5891
http://dx.doi.org/10.1209/epl/i2001-00351-x
http://dx.doi.org/10.1209/epl/i2001-00351-x
http://dx.doi.org/10.1209/epl/i2001-00351-x
http://dx.doi.org/10.1209/epl/i2001-00351-x
http://dx.doi.org/10.1103/PhysRevE.79.056303
http://dx.doi.org/10.1103/PhysRevE.79.056303
http://dx.doi.org/10.1103/PhysRevE.79.056303
http://dx.doi.org/10.1103/PhysRevE.79.056303
http://dx.doi.org/10.1103/PhysRevE.68.046306
http://dx.doi.org/10.1103/PhysRevE.68.046306
http://dx.doi.org/10.1103/PhysRevE.68.046306
http://dx.doi.org/10.1103/PhysRevE.68.046306
http://dx.doi.org/10.1007/978-3-642-28212-6_11
http://dx.doi.org/10.1007/978-3-642-28212-6_11
http://dx.doi.org/10.1007/978-3-642-28212-6_11
http://dx.doi.org/10.1007/978-3-642-28212-6_11
http://dx.doi.org/10.1103/PhysRevE.85.065301
http://dx.doi.org/10.1103/PhysRevE.85.065301
http://dx.doi.org/10.1103/PhysRevE.85.065301
http://dx.doi.org/10.1103/PhysRevE.85.065301
http://dx.doi.org/10.1007/s11232-013-0072-7
http://dx.doi.org/10.1007/s11232-013-0072-7
http://dx.doi.org/10.1007/s11232-013-0072-7
http://dx.doi.org/10.1007/s11232-013-0072-7
http://dx.doi.org/10.1088/1751-8113/45/48/485501
http://dx.doi.org/10.1088/1751-8113/45/48/485501
http://dx.doi.org/10.1088/1751-8113/45/48/485501
http://dx.doi.org/10.1088/1751-8113/45/48/485501
http://dx.doi.org/10.1103/PhysRevE.88.011004
http://dx.doi.org/10.1103/PhysRevE.88.011004
http://dx.doi.org/10.1103/PhysRevE.88.011004
http://dx.doi.org/10.1103/PhysRevE.88.011004
http://dx.doi.org/10.1007/BF02065977
http://dx.doi.org/10.1007/BF02065977
http://dx.doi.org/10.1007/BF02065977
http://dx.doi.org/10.1007/BF02065977
http://dx.doi.org/10.1103/PhysRevE.60.4043
http://dx.doi.org/10.1103/PhysRevE.60.4043
http://dx.doi.org/10.1103/PhysRevE.60.4043
http://dx.doi.org/10.1103/PhysRevE.60.4043
http://dx.doi.org/10.1007/BF02071475
http://dx.doi.org/10.1007/BF02071475
http://dx.doi.org/10.1007/BF02071475
http://dx.doi.org/10.1007/BF02071475
http://dx.doi.org/10.1103/PhysRevLett.65.171
http://dx.doi.org/10.1103/PhysRevLett.65.171
http://dx.doi.org/10.1103/PhysRevLett.65.171
http://dx.doi.org/10.1103/PhysRevLett.65.171
http://dx.doi.org/10.1007/BF02630456
http://dx.doi.org/10.1007/BF02630456
http://dx.doi.org/10.1007/BF02630456
http://dx.doi.org/10.1007/BF02630456
http://dx.doi.org/10.1103/PhysRevLett.92.161101
http://dx.doi.org/10.1103/PhysRevLett.92.161101
http://dx.doi.org/10.1103/PhysRevLett.92.161101
http://dx.doi.org/10.1103/PhysRevLett.92.161101
http://dx.doi.org/10.1142/S0217979203018193
http://dx.doi.org/10.1142/S0217979203018193
http://dx.doi.org/10.1142/S0217979203018193
http://dx.doi.org/10.1142/S0217979203018193
http://dx.doi.org/10.1103/PhysRevA.19.419
http://dx.doi.org/10.1103/PhysRevA.19.419
http://dx.doi.org/10.1103/PhysRevA.19.419
http://dx.doi.org/10.1103/PhysRevA.19.419
http://dx.doi.org/10.1007/3-540-09523-3_15
http://dx.doi.org/10.1007/3-540-09523-3_15
http://dx.doi.org/10.1007/3-540-09523-3_15
http://dx.doi.org/10.1007/3-540-09523-3_15
http://dx.doi.org/10.1103/PhysRevA.28.1000
http://dx.doi.org/10.1103/PhysRevA.28.1000
http://dx.doi.org/10.1103/PhysRevA.28.1000
http://dx.doi.org/10.1103/PhysRevA.28.1000
http://dx.doi.org/10.1007/BF01018658
http://dx.doi.org/10.1007/BF01018658
http://dx.doi.org/10.1007/BF01018658
http://dx.doi.org/10.1007/BF01018658
http://dx.doi.org/10.1007/BF01886480
http://dx.doi.org/10.1007/BF01886480
http://dx.doi.org/10.1007/BF01886480
http://dx.doi.org/10.1007/BF01886480


ANOMALOUS SCALING OF PASSIVE SCALAR FIELDS . . . PHYSICAL REVIEW E 90, 063016 (2014)

Ser. 4 (Phys. Chem.) 4, 6 (1992) [in Russian]; ,3, 3 (1992) [in
Russian]; L. Ts. Adzhemyan, N. V. Antonov, and T. L. Kim,
Theor. Math. Phys. 100, 1086 (1994); N. V. Antonov, S. V.
Borisenok, and V. I. Girina, ibid. 106, 75 (1996); N. V. Antonov
and A. N. Vasil’ev, ibid. 110, 97 (1997).

[52] D. Ronis, Phys. Rev. A 36, 3322 (1987); J. Honkonen and
M. Yu. Nalimov, Z. Phys. B 99, 297 (1996); L. Ts. Adzhemyan,
J. Honkonen, M. V. Kompaniets, and A. N. Vasil’ev, Phys. Rev.
E 71, 036305 (2005).

[53] L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, and S. V.
Novikov, Phys. Rev. E 63, 016309 (2000); M. Hnatič, M.
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