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Anomalous transport and chaotic advection in homogeneous porous media
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The topological complexity inherent to all porous media imparts persistent chaotic advection under steady
flow conditions, which, in concert with the no-slip boundary condition, generates anomalous transport. We
explore the impact of this mechanism upon longitudinal dispersion via a model random porous network and
develop a continuous-time random walk that predicts both preasymptotic and asymptotic transport. In the
absence of diffusion, the ergodicity of chaotic fluid orbits acts to suppress longitudinal dispersion from ballistic
to superdiffusive transport, with asymptotic variance scaling as σ 2

L(t) ∼ t2/(ln t)3. These results demonstrate
that anomalous transport is inherent to homogeneous porous media and has significant implications for
macrodispersion.
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Porous media flows host a vast range of natural and
synthetic processes: From the earth’s crust, which contains
most of civilization’s energy and mineral and water reserves, to
biological tissue, such as cartilage and vascular networks, flu-
ids are continually transporting, mixing, and reacting species
through porous structures. As the detailed flow structure
and Lagrangian dynamics significantly impact fluid-borne
processes [1–5], understanding the key physical mechanisms
that control transport and dispersion in porous media is a
problem of widespread concern.

Transport in porous media is a truly multiscale process,
ranging from Stokes flow at the pore scale to macroscopic
Darcy flow, which may be highly heterogeneous. This com-
plexity lies at the root of the long-standing problem of de-
veloping macroscopic closures and scaling laws for transport
in heterogeneous media, which is typically observed to be
anomalous or non-Fickian [4,6,7], such that the mean-square
displacement grows nonlinearly in time [8]. Modeling ap-
proaches typically link pore-scale and Darcy-scale dispersion
by consideration of transport at a locally homogeneous support
scale ω [9], where transport is commonly assumed to be
Fickian.

Hence the question of whether non-Fickian transport can
occur within homogeneous media is of paramount importance
to studies of transport, with important implications for the
prediction of, e.g., transport of groundwater pollutants [10]
and geothermal energy [11]. There exists some controversy
as to the validity of the assumption of Fickian transport
in homogeneous media, and several experimental [12–15]
and numerical [16–18] investigations observe persistent non-
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Fickian transport at the support scale ω. This behavior is
often attributed to so-called hold-up dispersion arising from
dead-end pores and/or recirculation zones. Several theoretical
studies [9,19] argue that in the absence of these features pore-
scale transport is Fickian due to the analogy with Taylor-Aris
dispersion [20,21] for a set of pores connected in series.

Recently it was established [22] that an alternate mech-
anism by which anomalous transport may occur in homo-
geneous porous media is via chaotic advection at the pore
scale. As chaotic advection is well known to impart anomalous
transport for passive tracer particles [23,24] in boundary-
dominated flows, the ubiquitous nature of this mechanism
means that anomalous transport is possible in all homogeneous
porous media. In this paper we show that anomalous transport
is inherent to all three-dimensional (3D) random porous media
due to interactions between fluid stretching at stagnation points
and the no-slip boundary condition.

To quantify this phenomenon we consider transport in
an ideal 3D random network that contains the minimum
topological complexity and disorder common to all homo-
geneous porous media. While real homogeneous media are
more complex, we show such additional complexity still
generates chaotic advection and anomalous transport. We
perform numerical simulations of transport in this ideal
network and develop a continuous-time random walk (CTRW)
framework to describe transport and derive expressions for
preasymptotic and asymptotic longitudinal dispersion. As
these underlying mechanisms are common to all porous media,
whether homogeneous or heterogeneous at large scales, they
have significant implications for upscaling of porous media
transport models and generate significant insights into the
nature of transport in porous media.

The topological complexity inherent to all porous media
generates a large number density of nondegenerate equilibrium

1539-3755/2014/90(6)/063012(5) 063012-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.063012


D. R. LESTER, G. METCALFE, AND M. G. TREFRY PHYSICAL REVIEW E 90, 063012 (2014)

FIG. 1. Schematic of (a) pore branch element � and (b) pore
merger element, with the nondegenerate equilibrium stagnation
(reentrant) point shown and the associated 2D unstable (stable)
manifold, representing the skeleton of flow comprised of surfaces
of a locally minimum flux. Note that for the angle θ �= 0 the minimal
flux surfaces are transversely oriented.

(stagnation) points xp under steady 3D flow [22], as shown in
Fig. 1 for the case of an open porous network. Due to con-
tinuity, these stagnation points impart a series of punctuated
local stretching and folding events (the hallmark of chaotic
dynamics in continuous systems) as the fluid continuum is
advected through the network. These stagnation points are
predominantly of saddle type (due to the Poincaré-Hopf
theorem and strongly negative Euler characteristic typical of
porous media [25,26]) and so the associated unstable WU

2D
(stable WS

2D) manifolds that project into the fluid bulk are
co-dimension 1 (two dimensional) and form the “skeleton
of the flow” [27] that organizes transport and mixing. In
concert with folding of material elements due to downstream
advection, fluid stretching at these stagnation points imparts
ubiquitous and persistent chaotic advection in all topologically
complex media under steady flow conditions [22].

Chaotic Lagrangian dynamics are well known to signifi-
cantly alter transport dynamics in flow systems, exemplified
by the impact of transverse chaotic advection upon boundary-
dominated flows [23,24], where the ergodicity of fluid particle
trajectories acts to suppress longitudinal dispersion. In the
absence of diffusion, transverse chaotic advection acts to
retard the evolution of longitudinal variance σ 2

L(t) [related
to longitudinal dispersion as DL(t) = σ 2

L(t)/2t] from ballistic
scaling [σ 2

L(t) ∼ t2] due to the no-slip boundary condition
to superdiffusive transport [σ 2

L(t) ∼ tα , 1 < α < 2]. While
analogous to Taylor-Aris dispersion under molecular diffusion,
this mechanism is distinctly different in that chaotic advection
is hydrodynamic (geometric) in origin and deterministic and
so cannot be modeled via a simple Fickian diffusion process
[23,24].

Although a formal link is yet to be established [28],
chaotic dynamics and ergodicity are strongly associated with
decaying correlations along Lagrangian trajectories [29]; it
is this mechanism that suppresses longitudinal dispersion in
boundary-dominated flows. Due to such ergodicity and the
punctuated nature of stretching events at stagnation points,
fluid transport and deformation in porous media flows may
be described as a stochastic process (where the validity of
this approximation is quantified by the infinite-time Lyapunov
exponent λ∞).

We formalize this stochastic process in terms of a CTRW,
whereby the displacements �x and transition times �t be-
tween stagnation points arise respectively from the pore-scale
geometry and advection field. If we consider the evolution of a
fluid particle propagating in the mean flow direction z, then in
the absence of diffusion the spatial position x = {x,y,z} and
residence time t of the fluid particle evolve via the CTRW

tn+1 = tn + �tn, (1)

xn+1 = xn + �xn, (2)

where the temporal and spatial increments are distributed
via the probability distribution functions (PDFs) ψ(�t) and
ρ�x(�x), respectively.

To directly study the impact of chaotic advection upon
transport, we consider an ideal 3D open porous network
model (see [30] for details) based upon a series of ran-
domly connected (and oriented) alternating pore branches and
mergers shown in Fig. 1. This idealized network represents
the minimum topological complexity and disorder common
to all random porous media and exhibits chaotic advection
and anomalous transport as a result of these features. While
real homogeneous media contain additional features such as
distributions of pore diameter, surface roughness, pore curva-
ture, and tortuosity, as well as greater topological complexity
that augments transport phenomena, chaotic advection arising
from topological complexity persists in the presence of such
features (indeed, features such as surface roughness [31] and
pore curvature [24] also generate chaotic advection). Hence
the qualitative features of the results herein are universal
to all porous media and we also explore the quantitative
impact of deviations from ideality upon asymptotic transport.
We compare longitudinal dispersion predicted by this ideal
model network to a stochastic stretching CTRW based upon
the network kernels ψ and ρ�x. One criticism of CTRW
models is that it can be difficult to relate the increment
kernels to physical processes; in this case ψ and ρ�x are
directly quantified in terms of fluid deformation and advection,
providing a clear link with the pore-scale microstructure.
Numerical calculations [30] of 3D Stokes flow through the
pore branch (merge) element in Fig. 1(a) [Fig. 1(b)] shows
that advection is remarkably well approximated (within error
ε ∼ 10−3) by the analytic spatial M (M−1) and temporal T
maps

M: {xr,yr} �→ {xr,2yr − |yr |/yr

√
1 − x2

r }, (3)

T : t �→ t + 1

1 − x2
r − y2

r

, (4)

where {xr,yr} are the scaled x and y particle positions
relative to the pore boundary at the inlet and outlet such
that x2

r + y2
r = 0(1) corresponds to the pore center (boundary).

Remarkably, the no-slip boundary condition in � generates
a residence time distribution (4) very similar to that of a
Poiseuille flow such that the residence time in the pore branch
and merger is quantified by the composite operators T ◦ M
and T ◦ M−1, respectively.

Although zero-net-fluid deformation occurs over the cou-
pled pore branch and merger (couplet) shown in Fig. 1 (as
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FIG. 2. (Color online) Evolution of pointwise tracer injection in
the dimensionless 3D network model (center) with dye trace (top
left) and a residence time distribution (RTD) (bottom right), ranging
from maximum residence time [black (red)] to the minimum time
[white (orange)] evolution shown as the number n of pore branches
or mergers. Ergodic mixing of black and gray (red and blue) particles
within a pore (top left) leads to redistribution of the RTD (bottom
right), suppressing longitudinal variance.

M−1 ◦ M = I , where I is the identity operator), random
orientation in the xy plane of these elements (as quantified
by θ ) breaks this symmetry, where the reoriented maps

S(θ ) := R (θ ) ◦ M ◦ R(−θ ), (5)

S−1(θ ) := R (θ ) ◦ M−1 ◦ R(−θ ) (6)

yield S(θ1) ◦ S(θ2) �= I in general. These maps (4)–(6) quan-
tify fluid transport and deformation over a pore branch
or merger and so when appropriately concatenated, they
model transport over a given realization of the 3D random
network (where θ is uniformly distributed; see [30] for details)
and recover the transverse stretching infinite-time Lyapunov
exponent λ∞ ≈ 0.117 80 derived in [22]. This model captures
both macroscopic dispersion [as shown by the evolution of
a point source of 105 fluid particles in a given realization
of the network in Fig. 2 (center)] and pore-scale dispersion,
where chaotic mixing arises (Fig. 2, upper left) that is similar
to that in 3D static mixers [32,33]. Such transverse mixing
generates nontrivial residence time distributions (Fig. 2, lower
right), which suppress longitudinal dispersion arising from the
no-slip boundary condition.

To develop a CTRW formulation of transport in the 3D
pore network model, we consider the residence time increment
kernel ψ(�t) as a stochastic process based upon the temporal
map T (4), which generates a power-law distribution of travel

times

ψ(�t) =
{
�t−2, �t � 1
0, �t < 1,

(7)

where all nonzero moments of ψ(�t) are unbounded due to
the power-law tail arising from the no-slip boundary condition.
Such distributions are known to generate non-Fickian or
anomalous transport [34]. To provide general results, the
spatial increment kernel ρ�x is unspecified, except that it is
bounded with finite variance.

To investigate longitudinal dispersion in the 3D porous
network, we first use the CTRW model to calculate the PDF
P (x,t) of an ensemble of particles moving through the random
network. From a formal ensemble average [35], the generalized
master equation (GME) provides a quantitative solution of
P (x,t) from the CTRW (2) and (1). A second-order moment
expansion of the Laplace transform of the GME yields a
Fokker-Planck equation for the PDF P̄ (x,u) [36] in Laplace
time u as

uP̄ (x,u) + (v · ∇ − ∇ · D · ∇)M̄(u)P̄ (x,u) = 0 (8)

for the initial condition P0(s) = δ(s), where M̄(u) = uψ̄(u)/
[1 − ψ̄(u)], with ψ̄(u) the Laplace transform of ψ(�t) [34].
The velocity v and dispersivity D in (8) are given in terms of
ρ�x as vi = ∫

x xiρ�x(x)dx, Di,j = 1
2

∫
x xixjρ�x(x)dx. In the

case of longitudinal dispersion, the solution of (8) in the z

direction is given in terms of the j th spatial moment of P̄ (z,u)
as

m̄j (u) = (1 + j )!
(a − b) + (−1)j (a + b)−1−j

2m2,zM̄(u)α
, (9)

where a = b
√

1 + u/b2M̄(u), b = m1,z

2m2,z
, and mj,z is the j th

moment of ρ�z.
For the power-law distribution ψ(�t) (7),

ψ̄(u) = 1 − γ �u + u ln u, (10)

with γ � is Euler’s gamma constant. The inverse Laplace
transform of the moments m̄1 and m̄2 in (9) yields asymptotic
expressions for the leading spatial moments of P (z,t) as

m1(t) ≈ m1,zt

ln(t)
, (11)

m2(t) ≈ m2
1,zt

2

ln(t)2
+ m2

1,zt
2

(ln t)3
+ 2m2,zt

ln(t)
. (12)

Hence, given Poiseuille flow at the pore scale (7), any bounded
z increment ρ�z gives longitudinal sublinear mean velocity and
superlinear (anomalous) dispersion.

At shorter times, preasymptotic transport cannot be an-
alytically determined from (9), however the simplicity of
the model 3D porous network [where ρ(�z) = δ(�z − 1)]
allows longitudinal transport to be determined as the sum
tn = ∑n

i=1 �ti . While the variance of ψ(�t) is unbounded,
the generalized central limit theorem (GLCT) [37] states that
the sum of independent and identically distributed random
variables (�t) with unbounded variance converges to a stable
distribution ρS(τ ) when scaled and shifted (by δ and γ ). For
ψ(�t), the sum tn upon scaling and shifting converges to the
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FIG. 3. (Color online) Convergence of the residence time distri-
bution for 105 orbits in a single realization of the random network
upon shifting and scaling to the Landau distribution ρl(t). The inset
shows a comparison between the analytic (dashed) and the numerical
(solid) axial distribution ρL(n).

Landau distribution [38]

ρl(τ ) = 1

π

∫ ∞

0
exp(−ζ ln ζ − τζ ) sin(πζ )dζ (13)

and the shift and scaling variables are δ = nπ
2 and γ ≈

n(ln n + 1 − γ � − ln 2
π

), where n is the number of pore
branches and mergers. Hence the preasymptotic residence time
distribution (RTD) is well approximated by ρl(τ ), as illustrated
by convergence of the rescaled RTD from the 3D random
network model to ρl(τ ) at small n shown in Fig. 3. To quantify
pre-asymptotic dispersion in terms of axial dispersion, the
RTD ρt (tn) is converted into the axial distribution ρL(n) in
terms of the pore element number n as

ρL(n; t) =
∣∣∣∣∂τ

∂n

∣∣∣∣ ρl(τ ) = 2

π

(
1

n
+ t

n2

)
ρl

(
t − γ

δ

)
, (14)

which agrees well with numerical results from the 3D network
model for t � 10 (Fig. 3). Hence the CTRW (2) and (1)
acts as an excellent proxy for ergodic mixing, due to both
convergence of the GLCT and decaying correlations arising
from the infinite-time Lyapunov exponent λ∞. As chaotic
advection is inherent to all porous media flow [22], the CTRW
model is generally applicable to porous media; although the
kernels ψ and ρ�x may differ quantitatively, these results are
qualitatively universal.

From (14), preasymptotic longitudinal variance σ 2
L(t) is

given by the second central moment of ρn,

σ 2
L(t) =

∫ ∞+

0
[n − μn(t)]2ρn(nt )dn, (15)

with μn(t) the first moment of ρn. Although analytic inte-
gration of (15) is not possible, numerical integration of (15)
is indistinguishable from numerical simulations of the 3D
network model (Fig. 4). Asymptotic longitudinal variance is
determined by consideration of the stretching CTRW with (2)
replaced by zn+1 = zn + �z. From the moments (11) and (12)

FIG. 4. Longitudinal dispersion σ 2
L(t) ∼ t2

(ln t)3 as predicted by the
asymptotic estimate in (16) (dashed line), pore network simulations
(solid line), and numerical integration of (15) (solid line). The
prediction of axial dispersion in a chaotic duct flows [24] as
σ 2

L(t) ∼ t ln(t) (dot-dashed line).

the asymptotic longitudinal variance is estimated as

σ 2
L(t) ∼ t2

(ln t)3
, (16)

which agrees well with both the 3D pore network model and
numerical integration of (15) at long times (t � 103) (Fig. 4).
Hence the impact of chaotic advection in the 3D model network
is to retard longitudinal dispersion from ballistic σ 2

L(t) ∼ t2 to
superdiffusive anomalous transport σ 2

L(t) ∼ t2/(ln t)3.
The pore space geometry and topology of real homoge-

neous media is more complex than that of the ideal 3D
network considered herein, leading to different transverse
stretching rates λ∞ and spatial ρ�z and temporal ψ(�t)
increments in the CTRW model. Note that λ∞ does not directly
impact longitudinal dispersion, but only ensures ergodicity of
fluid orbits, which renders the CTRW model valid, and so
only the spatial and temporal increments control longitudinal
dispersion. From (11) and (12), the asymptotic scaling (16)
holds for all ρ�z under the Poiseuille time increment (7).
In general, longitudinal dispersion for any media can be
derived from (9), given ψ(�t) and ρ�z(�z), however the
inverse Laplace transform must typically be performed nu-
merically. As the no-slip boundary condition always generates
unbounded temporal increments ψ(�t), then from (9), for
any spatial increment distribution ρ�z(�z), chaotic advection
generates preasymptotic and asymptotic transport, which are
universally anomalous (superlinear and sub-ballistic).

The topological complexity inherent to all porous media
generates chaotic advection that can significantly augment
transport under steady flow conditions. We explore these
concepts via an ideal 3D random network model that represents
the minimum topological complexity and disordered common
to all homogeneous porous media, such that the qualitative
features of this model are universal to all porous media. The
impact of chaotic Lagrangian dynamics upon nondiffusive
transport is profound, with anomalous transport observed for
both preasymptotic and asymptotic longitudinal dispersion.
These results impact modeling of transport in both hetero-
geneous and homogeneous porous media and question the
validity of the assumption of Fickian transport in homogeneous
porous media.
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K. Mecke, and C. Bechinger, Phys. Rev. Lett. 109, 264504
(2012).

[26] Morphology of Condensed Matter, edited by K. Mecke and D.
Stoyan, Lecture Notes in Physics, Vol. 600 (Springer, Berlin,
2002).

[27] R. S. MacKay, Philos. Trans. R. Soc. London Ser. A 359, 1479
(2001).

[28] J. Slipantschuk, O. F. Bandtlow, and W. Just, J. Phys. A: Math.
Theor. 46, 075101 (2013).

[29] L. A. Bunimovich, Zh. Eksp. Teor. Fiz. 89, 1452 (1985)
[Sov. Phys. JETP 62, 842 (1985)].

[30] D. R. Lester, G. Metcalfe, and M. G. Trefry (unpublished).
[31] J. M. Ottino and S. Wiggins, Philos. Trans. R. Soc. London Ser.

A 362, 923 (2004).
[32] M. K. Singh, P. D. Anderson, and H. E. H. Meijer,

Macromol. Rapid Commun. 30, 362 (2009).
[33] M. K. Singh, T. G. Kang, P. D. Anderson, H. E. H. Meijer, and

A. N. Hrymak, AIChE J. 55, 2208 (2009).
[34] M. Dentz, A. Cortis, H. Scher, and B. Berkowitz, Adv. Water

Resour. 27, 155 (2004).
[35] J. Klafter and R. Silbey, Phys. Rev. Lett. 44, 55 (1980).
[36] N. G. V. Kampen, Stochastic Processes in Physics and Chemistry

(Elsevier, Amsterdam, 1992).
[37] A. N. Kolmogorov and B. V. Gnedenko, Limit Distributions

for Sums of Independent Random Variables (Addison-Wesley,
Reading, 1968).

[38] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian
Random Processes: Stochastic Models with Infinite Variance
(Chapman and Hall/CRC, Boca Raton, 2000).

063012-5

http://dx.doi.org/10.1146/annurev.fluid.32.1.203
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1103/PhysRevLett.93.198103
http://dx.doi.org/10.1103/PhysRevLett.93.198103
http://dx.doi.org/10.1103/PhysRevLett.93.198103
http://dx.doi.org/10.1103/PhysRevLett.93.198103
http://dx.doi.org/10.1016/j.physrep.2011.05.003
http://dx.doi.org/10.1016/j.physrep.2011.05.003
http://dx.doi.org/10.1016/j.physrep.2011.05.003
http://dx.doi.org/10.1016/j.physrep.2011.05.003
http://dx.doi.org/10.1103/PhysRevLett.107.204502
http://dx.doi.org/10.1103/PhysRevLett.107.204502
http://dx.doi.org/10.1103/PhysRevLett.107.204502
http://dx.doi.org/10.1103/PhysRevLett.107.204502
http://dx.doi.org/10.1016/j.advwatres.2008.08.005
http://dx.doi.org/10.1016/j.advwatres.2008.08.005
http://dx.doi.org/10.1016/j.advwatres.2008.08.005
http://dx.doi.org/10.1016/j.advwatres.2008.08.005
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1103/PhysRevLett.71.3975
http://dx.doi.org/10.1017/S0022112085001598
http://dx.doi.org/10.1017/S0022112085001598
http://dx.doi.org/10.1017/S0022112085001598
http://dx.doi.org/10.1017/S0022112085001598
http://dx.doi.org/10.1016/j.jconhyd.2011.04.006
http://dx.doi.org/10.1016/j.jconhyd.2011.04.006
http://dx.doi.org/10.1016/j.jconhyd.2011.04.006
http://dx.doi.org/10.1016/j.jconhyd.2011.04.006
http://dx.doi.org/10.1098/rsta.2009.0198
http://dx.doi.org/10.1098/rsta.2009.0198
http://dx.doi.org/10.1098/rsta.2009.0198
http://dx.doi.org/10.1098/rsta.2009.0198
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/2011WR010857
http://dx.doi.org/10.1029/2011WR010857
http://dx.doi.org/10.1029/2011WR010857
http://dx.doi.org/10.1029/2011WR010857
http://dx.doi.org/10.1029/2003WR002579
http://dx.doi.org/10.1029/2003WR002579
http://dx.doi.org/10.1029/2003WR002579
http://dx.doi.org/10.1029/2003WR002579
http://dx.doi.org/10.1029/2004WR003567
http://dx.doi.org/10.1029/2004WR003567
http://dx.doi.org/10.1029/2004WR003567
http://dx.doi.org/10.1029/2004WR003567
http://dx.doi.org/10.1029/2006WR005557
http://dx.doi.org/10.1029/2006WR005557
http://dx.doi.org/10.1029/2006WR005557
http://dx.doi.org/10.1029/2006WR005557
http://dx.doi.org/10.1103/PhysRevLett.77.4552
http://dx.doi.org/10.1103/PhysRevLett.77.4552
http://dx.doi.org/10.1103/PhysRevLett.77.4552
http://dx.doi.org/10.1103/PhysRevLett.77.4552
http://dx.doi.org/10.1098/rsta.1980.0205
http://dx.doi.org/10.1098/rsta.1980.0205
http://dx.doi.org/10.1098/rsta.1980.0205
http://dx.doi.org/10.1098/rsta.1980.0205
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1103/PhysRevLett.111.174101
http://dx.doi.org/10.1103/PhysRevLett.111.174101
http://dx.doi.org/10.1103/PhysRevLett.111.174101
http://dx.doi.org/10.1103/PhysRevLett.111.174101
http://dx.doi.org/10.1063/1.166388
http://dx.doi.org/10.1063/1.166388
http://dx.doi.org/10.1063/1.166388
http://dx.doi.org/10.1063/1.166388
http://dx.doi.org/10.1017/S0022112094002880
http://dx.doi.org/10.1017/S0022112094002880
http://dx.doi.org/10.1017/S0022112094002880
http://dx.doi.org/10.1017/S0022112094002880
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1098/rsta.2001.0849
http://dx.doi.org/10.1098/rsta.2001.0849
http://dx.doi.org/10.1098/rsta.2001.0849
http://dx.doi.org/10.1098/rsta.2001.0849
http://dx.doi.org/10.1088/1751-8113/46/7/075101
http://dx.doi.org/10.1088/1751-8113/46/7/075101
http://dx.doi.org/10.1088/1751-8113/46/7/075101
http://dx.doi.org/10.1088/1751-8113/46/7/075101
http://dx.doi.org/10.1098/rsta.2003.1355
http://dx.doi.org/10.1098/rsta.2003.1355
http://dx.doi.org/10.1098/rsta.2003.1355
http://dx.doi.org/10.1098/rsta.2003.1355
http://dx.doi.org/10.1002/marc.200800710
http://dx.doi.org/10.1002/marc.200800710
http://dx.doi.org/10.1002/marc.200800710
http://dx.doi.org/10.1002/marc.200800710
http://dx.doi.org/10.1002/aic.11846
http://dx.doi.org/10.1002/aic.11846
http://dx.doi.org/10.1002/aic.11846
http://dx.doi.org/10.1002/aic.11846
http://dx.doi.org/10.1016/j.advwatres.2003.11.002
http://dx.doi.org/10.1016/j.advwatres.2003.11.002
http://dx.doi.org/10.1016/j.advwatres.2003.11.002
http://dx.doi.org/10.1016/j.advwatres.2003.11.002
http://dx.doi.org/10.1103/PhysRevLett.44.55
http://dx.doi.org/10.1103/PhysRevLett.44.55
http://dx.doi.org/10.1103/PhysRevLett.44.55
http://dx.doi.org/10.1103/PhysRevLett.44.55



