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Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids
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We study the influence of bubble-bubble interactions on the propagation of linear acoustic waves in bubbly
liquids. Using the full model proposed by Fuster and Colonius [J. Fluid Mech. 688, 253 (2011)], numerical
simulations reveal that direct bubble-bubble interactions have an appreciable effect for frequencies above the
natural resonance frequency of the average size bubble. Based on the new results, a modification of the classical
wave propagation theory is proposed. The results obtained are in good agreement with previously reported
experimental data where the classical linear theory systematically overpredicts the effective attenuation and
phase velocity.
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I. INTRODUCTION

Acoustic wave propagation in bubbly liquids is relevant to
diverse applications including cavitation reloading of surfaces
exposed to underwater explosions, shockwave lithotripsy, and
high-intensity focused ultrasound. Since Van Wijngaarden [1]
proposed the first equations of motion for a dilute dispersion
of gas bubbles in a liquid, several authors have proposed
extensions to the original equations. Ainslie and Leighton [2]
provide an account of this evolution of the theory of linear wave
propagation in bubbly liquids. Most approaches are devoted
to deriving models that account for the different types of
dissipation present in the system, from the initial works of
Chapman and Prosperetti [3,4] to most recent studies [5]. One
of the strongest assumptions in these models is that mutual
interactions among bubbles are negligible except through their
effect on the mixture-averaged flow. For instance, Sangani [6]
proposes correction terms for large void fractions that show
that these terms tend to decrease the attenuation near the bubble
resonance frequency. Neglecting bubble-bubble interactions
formally restricts the applicability of the classical linear theory
to low concentrations, where bubbles are so far from each
other that the near field pressure around a bubble is not felt by
the surrounding bubbles [7]. The averaged interspace distance

between bubbles, dij , is expected to scale as dij

R0
≈ Cβ−1/3,

where C is a constant of order unit and β is the void fraction.
For void fractions as low as 10−4–10−3 vol/vol the averaged
interspace distance is only around ten times the averaged
bubble radius R0. In the simplest analysis, we would expect the
response of each bubble to be influenced by the instantaneous
response of the surrounding bubbles for higher void fractions.

It is possible to find in the literature various experimental
works measuring the phase velocity and attenuation of bubbly
liquids [8–12]. In most of these works, the comparison of
the classical linear theory and the experimental results is not
satisfactory for frequencies near resonance when comparing
both attenuation and phase velocity. In general, the experi-
mental investigation of direct bubble-bubble interactions is
difficult due to the presence of reverberation [13,14] and the

*Corresponding author: fuster@dalembert.upmc.fr

dearth of diagnostics capable of directly measuring the void
fraction and bubble radius distribution [15]. As an alternative
one can resort to numerical models where the value of all
these variables is given. In this case, the main problem is
that it is not computationally tractable, for large numbers of
bubbles, to directly resolve both phases. Various volume and
phase-averaged continuum approaches have been proposed in
the literature. In the most sophisticated of these models, two-
way coupled (dynamic) effects of cavitation are considered
meaning that the time evolution of spherical bubbles are
determined by solving a Rayleigh-Plesset-type (RP) equation
whose driving pressure is determined from the local pressure of
the continuous phase, and whose result affects the continuous
phase by altering the void fraction [1,7]. Various extensions of
the RP model adequately account for phase change [16], liquid
compressibility, and heat and mass transfer within the bubble
contents [17]. However, existing phase and volume-averaging
approaches require two fundamental assumptions that limit
their applicability: low void fraction, and scale separation
between the typical bubble size and the length scales associated
with the (averaged) flow field. In this paper, we consider
a new bubbly flow methodology based on volume-averaged
equations that relaxes the scale-separation assumption and
directly accounts for bubble-bubble interactions [18]. The
numerical results are used here to gain insight into the effect
of direct bubble-bubble interactions and to propose correction
terms in the classical theory for linear wave propagation
in bubbly liquids in order to improve the accuracy of the
predictions for frequencies near the bubble natural resonance
frequency.

II. MODEL AND NUMERICAL METHOD

The full equations for the model are detailed in Fuster
and Colonius [18]. The model utilizes a volume-averaging
approach [1]. We solve for the averaged continuity, momentum
and energy equations in addition to the advection equation for
every component present in the system. These equations can
be written as [19]

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)
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∂ρu
∂t

+ ∇ · (ρuu + pI ) = 0, (2)

∂ρe

∂t
+ ∇ · [u(ρe + p)] = 0, (3)

where ρ is the averaged density, t is time, u is the averaged
mixture velocity, p is the pressure, and e is the specific energy.
This set of equations is closed by specifying an equation of
state. In this case we assume that this equation obeys the
following form:

p� + �∞ = ρe − 1
2ρ||u||2. (4)

In this work we consider a single bulk component (i.e., water)
and a disperse phase (e.g., air bubbles) with void fraction
β. This model differs from previous models in how the void
fraction, β, is defined in terms of the bubble radius, and how the
average pressure in a computational cell relates to the pressure
felt by the corresponding bubbles in that cell. Bubbles are
treated as point particles that are advected with the flow. If a
polydisperse mixture is desired, then we set the initial radii of
each bubble according to a representative probability density
function. To compute β, we multiply each individual bubble
volume by a discrete delta function that smears its value onto
the computational grid and, at each point in the domain, sum
this over all bubbles. To treat the dynamics of each bubble,
the model introduces a new RP-like equation that accounts for
a cluster of neighboring bubbles (i.e., within a computational
cell). This equation is a generalization of the incompressible
bubble-cluster model of Ilinskii et al. [20] to compressible
liquids, and likewise assumes spherical bubbles and potential
flow in the vicinity of the bubbles.

The key step in the derivation is to represent the pressure at
infinity as seen by the bubbles in the potential flow model
in terms of the average pressure of the liquid within a
computational cell. From the potential flow solution for the
bubble cluster, we may expand the pressure at infinity in
terms of the cell pressure plus a correction term that can be
estimated based on the bubble dynamics. The correction term
thus represents a modification to the local value of pressure
associated with the bubble dynamics. If the void fraction
is sufficiently small, this term also becomes small and the
equations relax to the classical volume-averaged equations.
By taking a cell-based approach rather than a multiple-scales
approach, the model we obtain is grid dependent, much in
the same way a large eddy simulation (LES) of turbulence
depends on the grid spacing. In the limit of the grid spacing
going to zero, the LES model switches off resulting in a
direct numerical simulation of the turbulent flow. In the present
model, as the grid is refined to the size of an individual bubble,
the model exactly represents the dynamics of an isolated
spherical bubble. This is verified in detail by comparing against
theoretical solutions for this case [18]. At the other extreme,
the model is demonstrated to converge to the solution to
ensemble-averaged models for low spatial resolution. The
computational expense is greatly reduced compared to the
corresponding ensemble-averaged approach. Therefore, the
current model seems suitable to numerically investigate com-
plex problems where the computational effort of both direct

interface capturing and current ensemble-averaged models are
prohibitive.

This cavitation model has been incorporated into a multi-
fluid, compressible flow solver that utilizes advanced weighted
essentially nonoscillatory (WENO) shock- and interface-
capturing techniques [19]. Details about the implementation
of the model on the fluid solved can be found in Ref. [21].

III. LINEAR MODELS

A. Classical linear model

The nonlinear model presented above places no restriction
on the amplitude of waves propagating through, and interacting
with, the bubbles. However, for practical purposes it is
interesting to derive linearized solutions for wave propagation
in bubbly liquids that can be compared with the solutions of
the full nonlinear model.

In the classical theory, it is possible to derive a wave
equation for the effective pressure far from any bubble [22]

∇2P∞ + k2
mP∞ = 0, (5)

where P∞ stands for the amplitude of the effective pressure
wave acting far from the bubbles. The value of the effective
wave number in the mixture, km, can be obtained as

k2
m = ω2

c2
+ 4πω2

∫ ∞

0

af (a)da

ω2
0 − ω2 + 2ıδω

, (6)

where ı = √−1, ω is the angular frequency, c is the speed
of sound in the liquid, f (a) is the bubble distribution
function, and ω0 and δ are usually identified with the bubble
resonance frequency and damping constant obtained from the
linearization of the Rayleigh-Plesset equation,

RR̈

(
1 − Ṙ

c

)
+ 3

2
Ṙ2

(
1 − Ṙ

3c

)
= S. (7)

In this equation S stands for the driving term that can be written
as

S =
(

1 + Ṙ

c
+ R

c

∂

∂t

)(
Hi + ∂
∞

∂t

)
+ I, (8)

where Hi is the liquid enthalpy at the bubble interface Hi =∫ pi

p0

dp

ρ
, 
∞ represents the potential induced by the background

flow field, ∂
∞
∂t

= − ∫ p∞
p0

dp

ρ
, and I is the potential from the

N surrounding bubbles impacting at the location of the ith
bubble xi ,

I =
N∑

j �=i

∂
j (xi ,t)

∂t
. (9)

For weak perturbations we can simplify the driving term as

S =
(

Hi + ∂
∞
∂t

)
+

N∑
j �=i

∂
j (xi ,t)

∂t
, (10)

which reduces to the expression for the classical driving term
when direct bubble-bubble interactions are neglected, i.e.,

lim
β→0

S = pi − p0 − P∞ sin(ωt)

ρ
. (11)
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Thus, imposing a bubble radius oscillation of the form

Ri = Ri,0(1 + X0e
ıωt ), (12)

where X0 � 1 and Ri,0 is the equilibrium bubble radius at the
reference pressure p0, the expressions for the bubble resonant
frequency and damping coefficients are [22]

ω2
0 = p0

ρR2
i,0

(
Re(ϒ) − 2σ

Ri,0p0

)
, (13)

δ = 2μ

ρR2
i,0

+ p0

2ωρR2
i,0

Im(ϒ) + ω2Ri,0

2c
, (14)

where σ is the surface tension, ρ and μ are the liquid density
and viscosity, and ϒ is a complex valued function that relates
the pressure and radius changes in the linear regime. This
function is obtained from the solution of the conservation
equations inside the bubble under proper boundary conditions
[23,24]. Using the specific heat ratio γ and the Péclet number
Pe = ωR2

i,0/Dg , Dg being the gas thermal diffusivity, the
function ϒ can be written as

ϒ = 3γ

1 − 3(γ − 1)ıPe−1[
√

ıPe coth(
√

ıPe) − 1]
. (15)

The attenuation and phase velocity of the wave can then be
obtained as a function of the complex and imaginary part of
the effective velocity [22].

B. Extended linear model accounting for direct bubble-bubble
interactions

The linear solutions obtained above only consider the
interaction of bubbles present in the system through the
averaged field. The full solution can be obtained applying
the procedure proposed by Keller and Miksis [25] for a single
bubble to the entire bubble cluster. In this case, we consider
that the background potential 
∞ is known and we need to
solve for the potentials emitted by each bubble in the cloud.
When the incident field is a planar wave propagating along x

with angular frequency ω and pressure amplitude P ∗, then,


∞ = −(P ∗/ρω) cos [ω(t − x/c)] . (16)

In this situation it is readily shown that in the linear regime,
except for frequencies much higher than the natural resonance
frequency, the driving term can be written as

S = pi − p0 − P ∗ sin(ωt)

ρ
+ I, (17)

where P ∗ is constant and I accounts for all the bubbles present
in the cluster. Given the number of bubbles present in the
system N that interact directly with a given bubble, it is
possible to write N Bernoulli equations at the interface of
each bubble present in a given volume,

N∑
j=1

∂
j (xi ,t)

∂t
= −1

2
Ṙ2

i − Hi − ∂
∞
∂t

. (18)

Thus, we obtain a system of N equations that can be solved
for the potentials 
i given the background potential variations
∂
∞
∂t

. The N potentials need to be evaluated at every bubble
location. Assuming that the bubble is a monopolar source

emitting a spherical wave decaying with the inverse of the
distance between the ith and j th bubble, dij , the potential can
be written as a function of the retarded time τ = dij

c
as


j (xi ,t) = 1

dij

f (t − τ ) = 
j (t − τ,xj )
Rj (t − τ )

dij

. (19)

This concept has been used by Zeravcic [26] to investigate
the collective response of bubble clusters. In this work this
solution will be obtained using three-dimensional simulations
obtained with the nonlinear model presented above in the limit
of small perturbations.

The reasoning above allows one to obtain numerical solu-
tions for the full problem but it is computationally intensive
when N is large. Thus, we derive here correction terms for the
classical linear theory that capture the influence of the scattered
waves emitted by each individual bubble. To this end, it is
interesting to compare the equation used by the classical linear
theory [Eqs. (5) and (11)] with that obtained from the solution
of the individual potentials [Eqs. (16) and (17)]. As one can
clearly see, part of the potential that is emitted by the bubbles is
already accounted for by considering a coherent planar wave
propagating across the bubbly media that is dissipated with
a phase velocity influenced by the effective medium. Thus,
if one desires to introduce a correction to account for direct
bubble-bubble interactions in the classical linear theory we
have to look for a correction term of the type

S = pi − p0 − P∞ sin(ωt)

ρ
+ I ∗, (20)

where now I ∗ represents the part of the potentials emitted by
the surrounding bubbles not captured by the averaged field
equations. The procedure to obtain the exact value of I ∗ is as
computationally demanding as it is to solve the full problem
[Eq. (17)] and therefore it is not interesting for practical
purposes. As an alternative, we can obtain an estimation of
I ∗ modeling the potential emitted from the j th bubble using
the total potential 
 at a given location,


 ≡ 
∞ + 
j +
N∑

k �=j


k. (21)

The difference between the total potential and the background
potential at the interface of the j th bubble has to satisfy the
Bernoulli equation at the interface of the j th bubble:

∂

∂t
[
(Rj ) − 
∞(Rj )] = −1

2
Ṙj

2 − pj − p∞
ρ

. (22)

As previously stated, only part of this potential can be directly
attributed to the j th bubble,


(Rj ) − 
∞(Rj ) = 
j (Rj ) +
N∑

k �=j


k(Rj ). (23)

In fact, using the equation above it is possible to rewrite
Eq. (22) as an equation for the potential of the j th bubble
as

∂
j (Rj )

∂t
= g

[
−1

2
Ṙj

2 − pj − p∞
ρ

]
, (24)
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where g is defined as

g ≡
∂
∂t


j (Rj )
∂
∂t

(

j (Rj ) + ∑N

k �=j 
k(Rj )
) . (25)

This function, bounded between zero and one, is unknown
for a general case. In the limiting case where the potentials
emitted by the surrounding bubbles are more important than
the potential generated by the bubble itself, the function
becomes zero indicating that direct bubble-bubble interactions
are not relevant. On the contrary, when the sum of the potentials
emitted by the surrounding bubbles is negligible, g becomes
unity, e.g., there is no need to solve for the system of N

equations to obtain the potential emitted by each bubble
because the coupling effect is negligible.

The relative importance of the potentials emitted by the
surrounding bubbles can be characterized in terms of the
attenuation induced by the effective medium surrounding the
bubble. To compute the total interaction potential impacting
the ith bubble we integrate the contribution of all potentials
emitted at a distance smaller than L = CR0/β

1/3
0 , where C is a

free parameter to be determined later. At distances larger than
L, the bubbles are assumed to interact through the averaged
field. In the absence of attenuation we can write

N∑
j=1

∂
j (xi ,t)

∂t
≈

∫ L

0

R0

r

∂
j (xj ,t)

∂t
4πr2ndr, (26)

where n is the number of bubbles per unit volume that can be
obtained as

n = β0

4/3πR3
0

. (27)

Equation (26) is also expected to be applicable in a general
case for small distances, where the attenuation of the effective
medium is negligible. However, if L takes large values, the
effective medium is going to induce an attenuation rate A

for the effective contribution of bubbles far away from the
ith bubble. If A is known, the effective contribution of the
potentials is corrected

N∑
j=1

∂
j (xi ,t)

∂t
≈

∫ L

0

R0

r

∂
j (xj ,t)

∂t
4πr2ne−Ardr, (28)

and the direct bubble-bubble interaction term correction can
then be obtained as

I ∗ =
N∑

j �=i

∂
j (xi ,t)

∂t
=

N∑
j=1

∂
j (xi ,t)

∂t
− ∂
i(xi ,t)

∂t
. (29)

To illustrate the influence of bubble-bubble interactions, let
us now consider an ideal situation where all the bubbles emit
the same potential intensity at a given instant (e.g., all the
bubbles have the same pressure and expansion velocity at a
given instant). Thus, we write Eq. (24) as

∂
j (Rj )

∂t
= gP0. (30)

In this case, for distances smaller than Lω/c < 1, Eq. (28) can
be exactly evaluated as

N∑
j=1

∂
j (xi ,t)

∂t
= 3(eAL − AL − 1)β0

(AR0)2eAL + 3(eAL − AL − 1)β0
P0.

(31)

When L is large (AL � 1), we can approximate the sum of
all the potentials emitted by the bubbles at a given location,

N∑
j=1

∂
j (xi ,t)

∂t
≈ 3β0

(R0A)2 + 3β0
P0, (32)

and the interaction correction term can be obtained using Eq.
(29) as

I ∗ = −(R0A)2

(R0A)2 + 3β0
P0. (33)

This equation reveals that the interaction term neglected in
the classical theory can be expressed in terms of the effective
attenuation of the medium. If the effective attenuation at a
given frequency is below a critical attenuation Ac value,

Ac =
√

3β0

R0
, (34)

then I ∗ tends to zero when decreasing the attenuation.
For dilute systems, where the attenuation is proportional
to the void fraction for frequencies well below the bubble
resonance frequency [22], the result above implies that the
term neglected in the classical approach is of order O(β0).
When the attenuation is large, the magnitude of the total
interaction potential is maximized (|I ∗| → P0) tending to
oppose a significant resistance to the expansion/compression
of the bubbles present in the system. In this case it is important
to note that, as the effective medium induces a large attenuation
on the potentials emitted by the surrounding bubbles, the
contribution of bubbles further than few times the averaged
interbubble distance is going to be negligible. Thus, Eq. (26)
is more suitable to obtain the interaction potentials at small
distances. In this case the potential emitted by the j th bubble
impacting on the ith bubble at distance r can be obtained
introducing the time lag, τ = dij

c
, Rj = R0(1 + X0e

ıωt e−ıωτ )
as

∂
j (xi ,t)

∂t
= g

ρ

(
pgeϒ − 2σ

R0
+ 4μıω

)
X0e

−ıωτ R0

r
. (35)

For monodisperse mixtures we replace Eq. (35) with Eq. (26)
to integrate it from zero to a given distance L. Beyond this
distance bubbles are assumed to interact through the averaged
field. Thus we obtain

I ∗ = I0X0e
ıωt , (36)

where I0 is zero in the regions of low attenuation (A < Ac)
and it becomes

I0 = − 1

ρ

3β0

(R0ω/c)2 [1 − e−ıLω/c(1 + ıLω/c)]

×
(

pgeϒ − 2σ

R0
+ 4μıω

)
, (37)
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above the critical attenuation [Eq. (34)]. Following the same
procedure used in the classical linear theory, the modification
introduced in the driving term of the Rayleigh-Plesset equation
due to direct bubble-bubble interactions gives an additional
correction on the bubble’s resonance frequency and damping
coefficient as

ω2
0 = p0

ρR2
i,0

(
Re(ϒ) − 2σ

Ri,0p0

)
+ Re(I0)

R2
i,0

, (38)

δ = 2μ

ρR2
i,0

+ p0

2ωρR2
i,0

Im(ϒ) + ω2Ri,0

2c
+ Im(I0)

2ωR2
i,0

. (39)

As stated above, this expression is not closed. It contains
an unknown free parameter C and a frequency-dependent
function g that is bounded between zero (for regimes with
small attenuation) and one (for regimes with large attenuation).
We note that C can be identified with a nondimensional inter-
action distance and therefore we expect it to be approximately
constant irrespective of the bubble radius and void fraction
C = Lβ1/3

R0
. Numerical tests, which solve for the full problem,

are used in the next section to obtain a better understanding
about reasonable values of C and g for a general case.

In the next section we provide numerical and experimental
evidence that supports the veracity of the arguments exposed
in this section.

IV. NUMERICAL TESTS

We now describe the general simulation setup that is used
to solve the full (nonlinear) bubble model. We consider air
bubbles in water with a known concentration β0 and an average
radius R0 defined at a reference pressure, p0 = 1 atm, and
temperature, T0 = 25 ◦C. The bubbles are seeded according to
a known probability distribution function f (a) that represents
the distribution of equilibrium bubble radii in the system. For
instance, for the polydisperse case included in this paper, we
initialize the bubble population with a random distribution of
bubbles obeying the following Gaussian distribution:

f (a) =
{

1
b
√

2π
exp

[−(a−R0)2

2b2

]
, 0.1R0 � a � 5R0

0, otherwise,
(40)

where R0 = 110 μm and b/R0 = 0.25 (Fig. 1). Bubbles are
distributed randomly in a rectangular domain of dimensions
[−Lx/R0 : Lx/R0][−Ly/R0 : Ly/R0][−Lz/R0 : Lz/R0].

A one-dimensional Gaussian pressure pulse is initialized in
a bubbly liquid at rest (u = 0) following the equation

p(x) = p0
(
1 + ε exp

[−x2/s2
p

])
. (41)

The initial bubble radius is then obtained from Laplace’s
equation so that bubbles are in equilibrium with the initial
pressure. This unphysical initialization procedure is only an
artifact that only influences the initial state of bubbles in a
small region with a characteristic length of the order of sp,
and has no significant impact on the results. For the simulation
contained in this work, we have set ε = 10−4 and sp

R0
= 1.

To obtain a representative behavior of the averaged bubble
propagation, the pressure disturbance is integrated in a plane
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FIG. 1. Histogram of the bubble size distribution used in the
simulation for validation against the classical linear theory results
(results presented in Fig. 2). R0 = 110 μm.

perpendicular to the wave propagation. Thus, we define the
pressure perturbation p′ at a given sampling point xi as

p′(xi) =
∫∫

[p(xi,y,z) − p0] dydz∫∫
dydz

. (42)

Then, following Ref. [27], the attenuation and speed of sound
are obtained using the Fourier transform of the temporal
evolution of p′(xi) at multiple sampling points. The values
for the complex and real parts of the complex wave number
are fitted by least squares using the data from five equally
spaced sampling points. In particular, two different sets are
used; the first ones use a spacing of 10R0 chosen to correctly
capture the speed of sound in the high frequency range. The
second set of points is chosen with spacing 30R0 to minimize
the influence of round-off errors in the low attenuation regions.

A. Validation test case: Wave propagation results neglecting
direct bubble-bubble interactions

One of the advantages of the numerical approach is that
it allows us to reproduce ideal situations where the code can
be rigorously validated against traditional linear theories. In
particular, in this section we will switch off the direct bubble-
bubble interaction term and use a coarse mesh in the z direction
so that the concentration in every computational cell is given
by the averaged concentration. In these conditions, the full
model presented in Ref. [18] is expected to recover the classical
linear theory predictions for the attenuation and phase speed
of linear waves propagating across a bubbly liquid neglecting
direct bubble-bubble interactions.

The computational domain size is set to (Lx

R0
)(Ly

R0
)( Lz

R0
) ∈

[−3500 : 3500][−250 : 250][−250 : 250], the grid size is
(�x/R0)(�y/R0)(�z/R0) = 10 × 10 × 500, and the ini-
tial void fraction, β0 = 4

3πn
∫

a3f (a)da is set to β0 =
2.5 × 10−4.

As expected, Fig. 2 shows good agreement between the
theoretical predictions and the simulation results, validating
the capability of the code to reproduce the theoretical results
predicted by the classical linear theory, in those conditions
where the grid does not resolve the scattered waves emitted
by the individual bubbles. Both attenuation and phase velocity
are very well reproduced for frequencies up to the resonance
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FIG. 2. Speed of sound and attenuation of a polydisperse bubble
cloud of randomly distributed bubbles obtained from simulation
results and comparison with the traditional linear theory neglecting
bubble-bubble interactions [22].

frequency. The peak on the phase velocity is especially chal-
lenging for the numerical method due to the large velocities
obtained there, but the match for the attenuation for values
above 0.2 dB/cm is remarkably good. The results obtained
become noisy as we approach the maximum frequency that
can be numerically solved, which is defined as fmax = c/�x.
For the simulations included in this work we set �x = 10R0.
When comparing the maximum frequency with the bubble

natural frequency (fN = 1
2π

√
3γp0

ρR2
0

) we conclude that, for air

and water systems at atmospheric pressure, we expect the
results to be highly influenced by spatial discretization errors
for nondimensional frequencies of the order of ten times the
bubble resonance frequency ( f

fN
≈ 10).

B. Numerical and theoretical results of wave propagation
accounting for direct bubble-bubble interactions

In order to investigate the influence of direct bubble-
bubble interactions on wave propagation we consider various
monodisperse bubble clouds with a different concentration
β0 and bubble radius R0. Unlike the previous case, the grid
now is refined in order to capture not only the coherent
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FIG. 3. (Color online) Influence of the fitting parameter L/R0 on
the phase velocity and attenuation of a monodisperse bubble cloud of
randomly distributed air bubbles in water obtained from simulation
results for case A (g = 1 in all cases). For reference, the predictions
of the classical linear theory (g = 0) and the results from simulations
are included.

wave, but also the waves scattered by the surrounding bubbles
that are a result of direct bubble-bubble interaction. The
simulation domain, ( Lx

Rref
)( Ly

Rref
)( Lz

Rref
) ∈ [−3500 : 3500][−250 :

250][−250 : 250], is discretized with a regular Cartesian grid
of size �x/Rref = �y/Rref = �z/Rref = 10, where Rref =
30 μm. The bubble number density is initially set to a
constant value given by nref = βref

4/3πR3
ref

where βref = 2 × 10−4.

Monodisperse bubble clouds with R0 < Rref at constant nref

fulfill two different conditions: The bubble radius remains
small compared to the grid size and the interspacing between
bubbles is larger than the grid size. The grid spacing quoted
above and used in the calculations that follow was selected

TABLE I. Bubble radius, concentration, and best fitting interac-
tion distance L for the simulation results shown in Fig. 4.

R0 (μm) fres (kHz) β0 L/R0

Case A 30 109 2 × 10−4 40
Case B 15 219 2.5 × 10−5 63
Case C 7.5 438 3.125 × 10−6 133
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FIG. 4. (Color online) Phase velocity and attenuation of a monodisperse bubble cloud of randomly distributed air bubbles in water obtained
from simulation results for cases A (top), B (middle), and C (bottom). The dashed horizontal line on the attenuation plots indicates the upper
bound for which the numerical attenuation values are reliable, due to numerical dissipation. For reference, the predictions of the classical linear
theory and the proposed extension of the theoretical results with constant C = 2.3 are included.
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by examining results on a series of progressively finer meshes
and verifying an approximate independence of the phase speed
and attenuation to grid resolution. As was reported in [18],
this establishes that we are adequately capturing the local
pressure and velocity fluctuations induced by the bubbles.
As the leading-order truncation error in our WENO scheme
is dissipative, we also computed attenuation rates for waves
propagating on the finest grid in the absence of bubbles, i.e.,
a pure inviscid liquid. As numerical dissipation is the only
source of attenuation in this case, this serves to establish a
lower bound on the attenuation rates that we can reliably
assess. The value is indicated on the attenuation plots that
follow.

Figure 3 contains the phase speed and attenuation simu-
lation data obtained from simulations for the conditions of
case A (Table I). Theoretical predictions for the classical
theory (LT g = 0) and the extended theory with g = 1 (LT
g = 1) for different values of C are included for reference.
Recall that we expect the real solution to be bounded between
these two limiting cases, where results tend to the classical
linear theory predictions for the regions with low attenuation
(A � Ac = 8.11 dB/cm) whereas the predictions for g = 1
should better represent the regions of large attenuation (A >

Ac). The solutions in the limit of g = 0 are independent of
the nondimensional interaction distance C. On the contrary,
when g > 0, results are sensitive to C. Based on this fact,
we use the region with the largest attenuation to calibrate the
nondimensional interaction distance C. We remark that in this
region we expect g to be approximately constant and equal
to 1. The peak values of both phase speed and attenuation
are overpredicted by the linear theory up to factor 2 for
case A. The modified linear theory significantly improves
the fitting between theory and numerical results fitting the
“nondimensional interaction distance” to C = 2.3. This value
falls within the range of the averaged interspacing, which
is consistent with the fact that only bubbles nearby directly
interact with a given bubble, whereas the rest interact through
the averaged field.

Figure 4 depicts the results for the various conditions
included in Table I, all of them with constant bubble number
density. We can see how the differences between the two
limiting cases become clear as the concentration increases
for frequencies of the order of the bubble natural resonance
frequency. As expected, direct bubble-bubble interactions be-
come less important as void fraction decreases. The maximum
errors are significantly reduced down to 20% for concen-
trations of the order of 10−5 and the differences are almost
negligible for lower concentrations. The critical concentration
threshold for which direct bubble-bubble interactions are
important therefore coincides which the expected value (β =
10−4) although one must keep in mind that we only observe
significant differences for frequencies of the order of the
resonance frequency. Finally, the distance required to obtain
the best fitting value increases as the void fraction decreases
(Table I). This is consistent with the fact that as concentration
decreases, the bubble interspacing increases. A constant value
of C = 2.3 in the three cases significantly improves the fitting
between the extended linear theory and numerical simulations
in the range of frequencies where the attenuation is above the
critical value Ac.
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1.0

1.5

2.0

2.5

3.0

3.5

4.0

10-6 10-5 10-4 10-3

C

β

FIG. 5. Best fitting value of the nondimensional interaction
distance, Lβ1/3/R0, for various bubble radius and concentrations for
monodisperse bubble clouds. The number of bubbles range from

n/nref = 0.5 to 2. The nondimensional value C = Lβ1/3

R0
remains

approximately constant irrespective of the concentration and bubble
radius.

To gain more insight into the applicability of the fitting
constant value to a wider range of conditions we represent
in Fig. 5 the nondimensional fitting parameter C = Lβ1/3

R0
for

various tests with slightly higher and lower values of the
bubble number density. Remarkably, the value of C remains
approximately constant ranging from 2 to 2.5 for all the
different conditions tested, which include a very large range
of bubble concentrations.

It is interesting to note that some of the observations
extracted from Fig. 4 have been systematically observed
in previous experimental and theoretical studies reported in
the literature. For instance, Silberman [9] has observed a
systematic overprediction of attenuation predicted by the
traditional linear theory on the regions of large attenuation
above the resonance frequency, slightly underpredicting the
attenuation coefficient for frequencies below the attenuation
peak. Similar mismatching has been found by Commander
and Prosperetti in Ref. [22] when fitting the data from
both Silberman [9] and Fox et al. [8]. This later case is
interesting because measurements also include phase speeds
experimentally measured in the frequency range where there
is a clear mismatch in the attenuation. The theoretical results
derived by Sangani also pointed out that the attenuation
around the resonance frequency is lower than that predicted
by the classical theory when introducing correction terms
to account for the effect of non-negligible void fractions
[6]. Wilson et al. [11] and Leroy et al. [12] report lower
values of the phase velocities than those predicted by the
traditional linear theory in the range of frequencies where we
find large attenuation. These observations are consistent with
the numerical results obtained in this work and with the fact
that direct bubble-bubble interactions are probably negligible
in the low frequency limit (e.g., g ≈ 0), whereas they have
an important influence for frequencies above the resonance
frequency.

In an attempt to reproduce this effect observed experimen-
tally, we numerically reproduce the lowest concentration tested
by Silberman [9] (β0 = 3.77 × 10−4), where the bubble size
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FIG. 6. (Color online) Phase velocity and attenuation of a poly-
disperse bubble cloud of randomly distributed bubbles obtained from
simulation results and comparison with the experimental results
of Silberman [9], the linear theory (LT) predictions of Ref. [22]
(LT g = 0) and the modified linear theory accounting for direct
bubble-bubble interactions in the limiting case of g = 1. The dashed
horizontal line on the attenuation plots indicates the upper bound for
which the numerical attenuation values are reliable, due to numerical
dissipation.

ranges between 0.994 and 1.07 mm. These conditions are
in the limit of the highest values of void fraction for which
it is possible to obtain a grid independent solution with the

current numerical model. In Fig. 6 we include the theoretical
predictions for the two limiting cases corresponding to the
classical linear theory (g = 0) and the limit of g = 1, for
which we use the value of L previously fitted from numerical
results (Lβ1/3/R0 ≈ 2.3). The agreement between the mod-
ified linear theory, numerical simulations, and experiments
is relatively good in the regions of large attenuation, where
the classical linear theory overpredicts the attenuation. At
the lowest frequencies, where the attenuation is small, the
experimental values tend to the g = 0 solution, consistent with
the previous discussion. We note that the simulation results
are not reliable in this regime because the attenuation values
are below our estimate for the numerical dissipation, even on
the finest mesh we considered. While finer meshes (or less
dissipative schemes) could be used to alleviate this problem,
we refrain from such calculations since they would not affect
the conclusions drawn.

V. CONCLUSIONS

This work uses the model proposed by Fuster and Colonius
[18] to study the influence of direct bubble-bubble interactions
on the acoustic properties of the effective medium. Taking
advantage of the results obtained with the full nonlinear
model that accounts for bubble-bubble interactions, we are
able to isolate the influence in the linear regime of waves
scattered by individual bubbles on the effective linear acoustic
response of the mixture. Consistent with previously reported
experimental [9] and theoretical data [6], the numerical results
provide evidence that the classical linear theory overpredicts
the attenuation and phase velocity above the natural resonance
frequency.

A modification of the linear theory is suggested to try
to capture these effects. The new theory introduces a char-
acteristic distance L that we identify with an “interaction
distance.” In those regions where the attenuation is larger than a
critical value defined as Ac = √

3β0/R0, the individual bubble
response is assumed to be influenced by the waves scattered
by bubbles at distances smaller than L, whereas the interaction
with bubbles placed further takes place through the averaged
pressure field. The comparison between the numerical results
obtained with the full nonlinear model and the extended linear
theory reveals that the proposed correction term significantly
improves the theoretical predictions when the nondimensional
value for the interaction distance, Lβ

1/3
0 /R0, is approximately

constant (Lβ
1/3
0 /R0 ≈ 2.3) for void fractions below 10−3.
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