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Cospectral budget of turbulence explains the bulk properties of smooth pipe flow
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Connections between the wall-normal turbulent velocity spectrum Eww(k) at wave number k and the mean
velocity profile (MVP) are explored in pressure-driven flows confined within smooth walls at moderate to high
bulk Reynolds numbers (Re). These connections are derived via a cospectral budget for the longitudinal (u′)
and wall-normal (w′) velocity fluctuations, which include a production term due to mean shear interacting
with Eww(k), viscous effects, and a decorrelation between u′ and w′ by pressure-strain effects [=π (k)]. The
π (k) is modeled using a conventional Rotta-like return-to-isotropy closure but adjusted to include the effects
of isotropization of the production term. The resulting cospectral budget yields a generalization of a previously
proposed “spectral link” between the MVP and the spectrum of turbulence. The proposed cospectral budget is also
shown to reproduce the measured MVP across the pipe with changing Re including the MVP shapes in the buffer
and wake regions. Because of the links between Eww(k) and the MVP, the effects of intermittency corrections to
inertial subrange scales and the so-called spectral bottleneck reported as k approaches viscous dissipation eddy
sizes (η) on the MVP shapes are investigated and shown to be of minor importance. Inclusion of a local Reynolds
number correction to a parameter associated with the spectral exponential cutoff as kη → 1 appears to be more
significant to the MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in
all regions of the pipe, the solution to the cospectral budget systematically underestimates the negative curvature
of the MVP within the buffer layer.
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I. INTRODUCTION

Pressure-driven flows at high bulk Reynolds numbers
(Re) within smooth walls continue to receive significant
experimental [1–8] and theoretical [9–12] attention. A recent
phenomenological theory, labeled the “spectral link” [11],
unfolded a number of features about the shape of the mean
velocity profile (MVP) in smooth pipes from the shape of
the turbulent kinetic energy spectrum ETKE(k), where k is a
wave number or inverse eddy size. In particular, the spectral
link showed qualitatively that curvatures in the MVP within
the buffer layer are connected to the exponential correction
of ETKE(k) at large k due to viscous effects, the logarithmic
MVP within the intermediate region is linked with the
inertial subrange scaling of ETKE(k) commonly described by
Kolmogorov’s theory [13,14] in the absence of intermittency
corrections [9,15], and the wake effects where the MVP
“overshoots” the logarithmic shape appear to be attributed
to the so-called von Kármán spectrum describing ETKE(k) at
k commensurate with the inverse of the pipe radius 1/R. The
spectral link is based on the argument that the turbulent stress
τt at a distance y from a wall is given by the product of a mean
velocity difference reflecting a momentum deficit across an
eddy of radius s and its turnover velocity given as [11]

τt ∼ vs [U (y + s) − U (y − s)] , (1)

where U (y) is the mean velocity at distance y from the bound-
ary, vs is a turnover velocity for an eddy of radius s centered
at some position x and height y whose order of magnitude
can be predicted from vs = ∫ ∞

1/s
ETKE(k)dk, and U (y + s) −

U (y − s) ≈ (dU/dy)(2s) is the mean velocity difference
associated with this momentum transporting eddy size. The
proposed spectral link further assumes that only eddies

attached to the wall efficiently transport momentum [11],
thereby setting 2s = y. These arguments have established a
phenomenological framework that links the turbulent momen-
tum flux to the MVP via ETKE(k), thereby offering new vistas
to explaining the shape of the MVP from the shape of ETKE(k).
However, the spectral link between vs and ETKE(k) used
by Gioia and co-workers is somewhat ad-hoc. In particular,
since the velocity gradient is dictated by vertical momentum
transport (i.e., vs is a vertical velocity scale), it is not clear
why vs should be related to the TKE spectrum [i.e., ETKE(k)]
and not the vertical velocity spectrum [i.e., Eww(k)], which
are notoriously different, especially in the energy-containing
range (i.e., for small k). Furthermore, linearizing U (y + s) −
U (y − s) ≈ (dU/dy)(2s) is only reasonable for small s, and it
is not evident why only eddies whose size 2s = y contribute to
U (y + s) − U (y − s). The assumption vs = ∫ ∞

1/s
ETKE(k)dk is

also questionable. In fact, within a phenomenological context,
the velocity scale vs could or should be interpreted as the
velocity variation across a distance 2s, which can be predicted
from the second-order velocity structure function computed at
a distance 2s, i.e.,

v2
s = |�w′(2s)|2 = |w′(x + s) − w′(x − s)|2, (2)

where w′ is the vertical velocity fluctuation, and the overbar
denotes time-averaging. As shown by [16], the structure
function and the spectrum of a velocity component are related
by the following relation:

|�w′(s)|2 ≈ 4

3

∫ ∞

π/s

Eww(k)dk + 4

3

s2

π2

∫ π/s

0
k2Eww(k)dk,

(3)
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where the first term includes all the energy in eddies of
size s or smaller, while the second term includes all the
enstrophy-like terms in eddies of size s or larger [enstrophy
ω2 = ∫ ∞

0 p2ETKE(p)dp]. The approximation employed by

Gioia and co-workers [11] to link |�w′(s)|2 to a turbulent
energy spectrum replaces Eww(k) with ETKE(k) and ignores
contributions from the enstrophy term.

An alternative formulation that maintains the analytical
tractability of the spectral link between the MVP and an energy
spectrum but relaxes some of these restrictive assumptions
frames the scope of this work. This alternative formulation
recovers many theoretical features of the spectral link [11]
but uses a cospectral budget for the longitudinal and wall-
normal velocity fluctuations. It is shown that the previously
proposed spectral link of Gioia and co-workers [11] naturally
arises from the production term in this cospectral budget.
This production term is determined by dU/dy instead of
[U (y + s) − U (y − s)] and Eww(k) instead of ETKE(k), and
eddies of all sizes are accounted for in momentum transfer
to the wall. The proposed cospectral budget is shown (i) to
be consistent with the onset of a −7/3 power-law scaling
in the cospectrum between longitudinal and wall-normal
velocity fluctuations for eddies within the inertial subrange
(not discussed for the previously proposed spectral link by
Goia and co-workers [11]), and (ii) to reproduce the MVP
across all regions in the pipe with changing Re as reported
experimentally [5,6].

II. THEORY

A. Definitions and general considerations

Consider the pressure-driven flow in a smooth pipe with
radius R having a cross-sectional area Ap = πR2 as shown
in Fig. 1. Let y = R − r be the normal distance to the
boundary, r the distance from the pipe center, U+ = U (y)/uτ

the dimensionless mean velocity profile, uτ = (τo/ρ)1/2 the
friction (or shear) velocity, τo the total wall stress, ρ the
fluid density, y+ = yuτ /ν the dimensionless distance from
the boundary, ν the fluid kinematic viscosity, R+ = Ruτ/ν

the von Kármán number, Ub the bulk (or area-averaged)

FIG. 1. (Color online) Schematic of the smooth-walled pipe flow
configuration showing the pipe length L, pipe radius R, distance
from the wall y = R − r , distance from the pipe center r , and the
resulting total stress distribution when the pressure gradient (∂P/∂x)
is assumed constant.

velocity defined as Ub = (1/Ap)
∫ R

0 U (r)dAs , where dAs =
2πrdr , and Re = UbD/ν the bulk Reynolds number based
on pipe diameter D = 2R. For a stationary and longitudinally
homogeneous pipe flow driven by a constant mean pressure
gradient, the mean longitudinal momentum balance reduces to

1

ρ

∂P

∂x
= 1

r

∂(rτ )

∂r
, (4)

where P is the mean pressure, x is the longitudinal distance
along the pipe length, and τ is the total shear stress.

Integrating with respect to r for a constant pressure gradient
results in

τ (r) = 1

ρ

(
∂P

∂x

)
r

2
+ C1, (5)

where C1 is determined so that at r = R (center of the pipe),
τ (R) = 0 due to symmetry, thereby resulting in

τ (r) = 1

ρ

(
∂P

∂x

)
r

2
= R

2

(
∂P

∂x

)(
1 − y

R

)
. (6)

Defining

τo = R

2

(
∂P

∂x

)
, (7)

and decomposing the τ into a turbulent τt and a viscous τm

contribution, leads to

τ (y) = τt + τm = τo

(
1 − y

R

)
, (8)

with τm = ρν
(y) and 
(y) = dU/dy. The τt is defined as

τt = −ρu
′
w

′ = −ρ

∫ ∞

0
Fwu (k) dk, (9)

where u′ is the turbulent longitudinal velocity component,
Fwu(k) is the one-dimensional cospectrum between u′ and
w′, and k is, as before, a wave number quantifying an eddy of
size 1/k. Hence, the mean momentum balance reduces to

ν
 +
∫ ∞

0
Fwu (k) dk = τo

ρ

(
1 − y

R

)
. (10)

Close to the wall boundary (i.e., y+ � 5), τt � τm and

 = (τo/ρν) (1 − y/R), which upon integration results in
the well-known parabolic velocity profile given as U (y) =
(τo/ρν) y (1 − y/D) in the viscous region of the pipe. How-
ever, for y/D � 1, the mean velocity profile reduces to its
linear form given by U (y) ≈ (τo/ρν) y. This MVP is used to
connect the wall stress to U (y) up to y+ = 1.

B. The cospectral budget

Beyond this thin region adjacent to the smooth wall surface
(0 � y+ � 1), ρu′w′ is not negligible relative to τm, and its
effects must be explicitly accounted for. Processes governing
the wall-normal variations in u′w′ can be identified through the
turbulent stress budget. For a stationary pipe flow, the turbulent
stress budget is expressed as follows [17]:

∂u′w′

∂t
= PR + PS + DS + TD + PD + VD, (11)
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where t is time, PR is the production term, PS is the pressure
strain, DS is dissipation, TD is turbulent diffusion, PD is
pressure diffusion, and VD is viscous diffusion. In turbulent
shear flows, the PR and PS terms are known to provide the
leading contributions to the stress budget, while the other terms
become non-negligible only in the near wall region [17,18].
In view of these observations, and to retain maximum
simplicity, an abridged stress budget with an interplay between
production and pressure strain terms is considered. However,
the dissipation term is also retained, which, as will be shown
later, provides the means of establishing the cospectral link
with the mean velocity profile in the buffer region. Therefore,
this approximated stress budget now reads

∂u′w′

∂t
= 0 = −σ 2

w
 + p′

ρ

(
∂u′

∂y
+ ∂w′

∂x

)
+ DS, (12)

where p′ is the turbulent pressure perturbation. The first
two terms on the right-hand side represent production (PR)
and pressure strain (PS), respectively (the full mathematical
formulation for the dissipation term is omitted for brevity but
can be found elsewhere [17]).

A cospectral budget that reflects a balance among these
terms is given as [15,19,20]

∂Fwu(k)

∂t
+ 2νk2Fwu(k) = G(k), (13)

where G(k) = Pwu(k) + π (k), Pwu = 
Eww(k) is the produc-
tion term, where

∫ ∞
0 Pwu(k)dk = −σ 2

w
, Eww(k) is the energy
spectrum [σ 2

w = ∫ ∞
0 Eww(k)dk], DS = − 1

2ν
∫ ∞

0 k2Fwu(k)dk

is viscous dissipation of u′w′, and π (k) is the velocity-pressure
interaction term satisfying the normalizing property∫ ∞

0
π (k)dk = p′

ρ

(
∂u′

∂y
+ ∂w′

∂x

)
, (14)

which acts to decorrelate u′ from w′ as discussed else-
where [18]. In conventional second-order closure modeling,
this term is closed via the so-called LRR-IP formulation
given as ∫ ∞

0
π (k)dk = −CR

1

T
(u′w′) + CIσ

2
w
(y), (15)

where LRR stands for Launder-Reece-Rodi (LRR) and IP
stands for the isotropization of the production [21] that was
proposed as a correction to the Rotta [22] model based on
rapid distortion theory [18], T = K/ε is a relaxation time
scale, K is the turbulent kinetic energy as before, ε is the
mean dissipation rate of K , CR ≈ 1.8 is the Rotta constant,
and CI is a constant associated with the isotropization of the
production term correcting the original Rotta model [18,23]. Its
value CI = 3/5 was previously predicted from rapid distortion
theory for isotropic turbulence [18,21] as well as early
numerical simulations [24]. This closure formulation for the
pressure-velocity interaction term is employed here because
of its ability to reproduce

∫ ∞
0 π (k)dk for homogeneous shear

flows [18]. When inhomogeneous flows in the axial direction
are encountered, issues with this closure scheme have been
studied for rapid axisymmetric expansion or contraction.
In these types of axisymmetric flows, cigar-shaped versus
pancake-shaped componentwise energy ellipsoids relax to

isotropy at different rates [23], and these rates were shown
not to be much faster than T . Other simulation studies [24]
suggest that the Rotta closure is valid as long as the time
scale of the mean flow is much larger than 0.2lf /[(2K)1/2],
where lf is the integral time scale of the flow, and the
quantity 0.2lf /[(2K)1/2] represents a characteristic time scale
of the triple moments [24]. Not withstanding these issues, and
noting that the LRR-IP model proved accurate for many wall-
bounded flows where the return to isotropy was sufficiently
fast compared to T [18,24,25], then

π (k) = −CR

Fwu(k)

τ (k)
+ CIPwu(k), (16)

where τ (k) = ε−1/3k−2/3 is a wave-number-dependent relax-
ation time scale that varies with k and ε consistent with
Kolmogorov’s theory (or K41) in the inertial subrange [13,14].
This wave-number-dependent relaxation time scale, attributed
to Onsager [26] by Corrsin [27], has been extensively used
in many turbulence theories [19,24,28–34]. Employing this
conventional approximation for π (k) and τ (k), the cospectral
budget reduces to

2νk2Fwu(k) = (1 − CI ) 
(y)Eww(k) − CR

Fwu(k)

τ (k)
. (17)

The relative importance of the Rotta component and the
viscous term 2νk2Fwu(k) in the cospectral budget can be
estimated from

2νk2Fwu(k)

CRFwu(k)/τ (k)
= 2

CR

(
ν3k4

ε

)1/3

≈ (kη)4/3, (18)

where η = (ν3/ ε)1/4 is the Kolmogorov microscale [35]. For
kη � 1, decorrelation between u′ and w′ due to molecular
effects can be ignored relative to the Rotta term. However, as
kη → 1, these two decorrelation terms become comparable in
magnitude, as may occur in the lower portion of the buffer
region.

C. The intermediate region

This region has been the subject of a recent investigation us-
ing the cospectral budget [15], and only the salient features are
reviewed. Consider the region where y+ � 10 but y/R � 1
so that τt ≈ τo. Assuming stationary conditions and upon
further ignoring the pressure and the turbulent and viscous
diffusion terms, the cospectral budget reduces to a balance
between production and pressure strain terms leading to

Fwu(k) = 1

A

ε−1/3Eww(k) k−2/3, (19)

where A = CR/(1 − CI ) = 1.8/[1 − (3/5)] ≈ 4.5. As far as
the intermediate region is concerned, neglecting diffusion
terms in the stress budget equation is an approximation that is
well supported by a large body of literature (see, e.g., [36,37]),
and hence ignoring their effects in the cospectral budget
may be viewed as plausible. When Eww(k) is given by its
K41 phenomenological form [13], EKol(k) = C ′

Kε2/3k−5/3,
generally valid for η � k−1 � y, then

Fwu (k) = C ′
K

A

ε

1
3 k− 7

3 . (20)
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The Fwu(k) expression agrees with Fwu(k) = Cuw
ε1/3k−7/3

first derived by Lumley [38] from dimensional considerations.
This cospectral scaling rule is now supported by measure-
ments in the high Reynolds number pipe, the boundary
layer, and atmospheric flows [18,34,39]. The value of C ′

K =
(24/55)CK , where CK ≈ 1.5 is the Kolmogorov constant
associated with three-dimensional wave numbers and leads
to Cuw = C ′

K/A ≈ 0.65/4.5 = 0.15. This Cuw estimate is
sufficiently close to the accepted Cuw = 0.15–0.16 [15,18,40]
directly estimated from measured Fwu(k) (in one dimension)
and 
(y).

To recover a “spectral link” between Eww(k) and U (y)
analogous (but not identical) to the one previously proposed
by Gioia and co-workers [11], the mean momentum balance∫ ∞

0 Fuw (k) dk ≈ τo/ρ is considered again within the inter-
mediate region. The Fwu(k) requires a description of Eww(k)
across all k. An idealized Eww(k) that is constant for k � ka

and abruptly switches to inertial subrange scaling for k � ka

is assumed and is shown in Fig. 2. Exponential corrections
(or a variant of them known as the Pao correction [18,39])
such as kη → 1 and low-wave-number modulations such as
kR → 1 are momentarily ignored in the assumed Eww(k)
shape. The two regions delineating the idealized shape of
Eww(k) in Fig. 2 are supported by a large corpus of data
collected across many field and laboratory experiments [18].
This idealized spectral shape for Eww(k) with its “break-
point” at kay = 1 is also consistent with Townsend’s attached
eddy hypothesis [3,41,42]. With this description for Eww(k),
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w
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)/
(C

′ K
 ε

2/
3 )

k/k
a

 

 

Idealized, γ
p
=8/3

ISR
ISR with exponential Corrections

FIG. 2. (Color online) The idealized vertical velocity spectrum
Eww(k) assumed in the calculations of Fwu(k). Much of the energy in
the vertical velocity variance (σ 2

w) is contained in two regimes, a near
constant regime for k < ka and inertial subrange scaling for k > ka

given by K41 scaling. The exponential corrections exp(−βdηk)
shown here for βd = 5.2 become significant near the viscous
subrange as kη → 1, while very-low-wave-number modulations
reduce Eww(ka) from its constant value to φp(kR) as kR → 1. Here,
φp(kR) = [1 + (Rk)−2]−γp for the case γp = 8/3 is shown. The
idealized two-regime spectrum (constant and inertial) used in the
analysis of the intermediate region is for βd = 0 and γp = 0.

∫ ∞
0 Fwu(k)dk is given as

τo/ρ = u2
τ = Cuw
ε1/3

(∫ ka

0
k−7/3
a dk +

∫ ∞

ka

k−7/3dk

)
,

(21)
resulting in

u2
τ = 7Cuw

4

ε1/3ka

−4/3. (22)

In the intermediate region, ε = 
u2
τ and ka = y−1 so that the

above expression for u2
τ can be rearranged to yield


 =
(

4

7Cuw

)3/4
uτ

y
, (23)

which upon integration with respect to y yields the log-law,

U (y)

uτ

=
(

4

7Cuw

)3/4

ln (y) + Bo, (24)

where Bo is an integration constant that varies with surface
properties. The constant [(4/7)C−1

uw ]3/4 = 2.7 is close to the
expected values of 1/κ observed in the literature (i.e., 2.3 �
1/κ � 2.6; see [18]), where κ is the von Kármán constant.
This provides confidence in the LRR-IP formulation and its
associated constants adopted here.

D. The entire pipe region: A spectral integration

In general, τt and τm are both significant for η < r � R

depending on the pipe region and Re. From the approximated
cospectral budget with an imposed Eww(k) given in Fig. 2, the
cospectrum is expressed as

Fwu(K) = (1 − CI )
Eww(k)[
2νk2 + CR

τ (k)

] . (25)

10
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β

FIG. 3. Variations of βd with Reλ reported across several simu-
lation studies. Circles and squares are taken from [43], pluses are
taken from high-resolution direct numerical simulations in [44],
and diamond is from a wind-tunnel experiment [39]. The line
βd ≈ 9.1 Re−0.1

λ is also shown and used in the cospectral calculations
of the MVP.
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The exponential cutoff as kη → 1 and low-wave-number
modulations φp(k) as kR → 1 are now included in Eww(k)
as shown in Fig. 2. Hence,

Eww(K) = φp(kR)min

{
Ekol(k)[exp(−βdηk)],

Ekol(ka)[exp(−βdηka)],
(26)

where ka = (1/y) as before and βd is the coefficient of the
exponential correction to Eww(k) in the viscous range [39].
When combining several studies together, βd appears to vary
with the Taylor microscale Reynolds number Reλ given by

Reλ = λ′σw

ν
, λ′ =

(
15ν

ε
σ 2

w

)1/2

, (27)

where λ′ is the Taylor microscale and σw can be determined by
integrating Eww(k) across all k as noted earlier. Upon fitting a
power dependence of βd on Reλ using simulation runs reported
in previous studies [39,43,44], a βd ≈ 9.1 Re−0.1

λ captures this
dependence as shown in Fig. 3.

Because there is little experimental information about the
behavior of Eww(k) for kR < 1, and to ensure that as k → 0,
Eww(0) = 0, we assumed φp(kR) = [1 + (Rk)−2]−γp , where
γp � 0. This adjustment leads to a decline in Eww(k) with
increasing eddy sizes when eddies become much larger than
R. When γp = 0, φp(kR) = 1 and no low-wave-number
modulations to the constant Eww(ka) are allowed. On the
other hand, if a von Kármán–like spectrum approximating
ETKE(k) at low k is employed as in the original spectral

link [11], γp = 17/6. As discussed elsewhere [11], it is the
φp(kR) that dictates the shape of the wake region in U (y).
A γp = 8/3 is selected to reflect some modulations at low
k. This choice is an intermediate between what was used by
Gioia and co-workers [11], proposed elsewhere [44] based on
high-resolution DNS, and what was experimentally reported
from the Superpipe experiments [45] about a near-constant
Eww(k) in the vicinity of kR ≈ 1 − 10. For this prescribed
Eww(k) shape, the resulting mean momentum balance is
given by∫ ∞

0

(1 − CI )
Eww(k)[
2νk2 + CR

τ (k)

] dk =
[
τo

(
1 − y

R

)
− ν


]
, (28)

necessitating an iterative procedure for computing 
(y) at
each y given that ε and η in the exponential corrections to
Eww(k) both vary with 
.

Upon vertically integrating the computed 
(y) with respect
to y, U (y) can be determined and shown in Figs. 4 and 6 for
various Re. Agreement between measured and modeled U+ is
encouraging. Despite its simplicity, the proposed model is able
to reproduce all the complex features of U (y). These features
include a buffer layer, an intermediate-log layer, and a wake
region characterized by the typical overshoot in velocities,
commonly referred to as Cole’s wake effect. There are two
regions where the model deviates from the measured U (y).
The first is in the buffer region (see Fig. 5), where the negative
curvature in the MVP appears slightly underestimated and the
second region is near the centerline. Possible explanations
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FIG. 4. (Color online) Comparison between measured (symbols) and modeled (solid line) profiles of U+ as a function of wall distance
y+ (left) using Eq. (28) across selected Re = 7.43 × 104, 1.45 × 105, 1.80 × 106, and 3.57 × 107. Measurements are from the Superpipe
experiment [5,6]. The parabolic (dots) and logarithmic (dashed) profiles with κ = 0.44 as reported by [5,6] are shown for reference.
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FIG. 5. (Color online) Same as Fig. 4 but zooming in on the buffer region. Since no measurements are reported in the buffer region for
Re = 3.57 × 107, it is not included in the zoom-in.

can be offered as a mix of different effects and are now
discussed. First of all, within the buffer region, the diffusion
terms in the Reynolds stress (and hence cospectral) budget,
although small, are not entirely negligible, and this can have
an effect on determining the shape of the mean velocity
profile. As is evident from Eq. (26), intermittency corrections
to K41 [14,46–48] and bottleneck effects [44,49–52] have
been ignored in the formulation of Eww(k). These adjustments
have been added to the idealized Eww(k) using simplified
expressions [44], and their joint contribution was shown to
be of secondary importance to the negative curvature in
U (y) (not shown). Another assumption employed here is
the constant CR = 1.8, but its Reynolds number dependence
may be significant [53,54]. Analysis reported elsewhere [54]
suggests increasing CR with increasing turbulent Reynolds
number (connected to but not identical to Reλ) until a saturation
value of 2.6 is reached (occurring at infinite Reynolds number).
A sensitivity analysis conducted here suggest that the negative
curvature in U (y) within the buffer region can be indeed
amplified but for a CR decreasing with increasing Reλ. The
assumption ε = 
τt , which is known not to hold in the buffer
or the wake regions, can be more restrictive. This assumption is
difficult to relax using an equilibrated TKE budget as assumed
here and as done earlier by Gioia and co-workers in their
derivation of the spectral link [11]. Another region where
the model appears to not reproduce well the measurements
is in the immediate vicinity of the pipe centerline. This is
not surprising, because 
 = 0 (by symmetry) at the pipe

centerline modeled ε = 0 when using an equilibrium TKE
budget resulting in an unrealistic σw = 0 as shown in Fig. 6.
Near the centerline and in the buffer region, the turbulent
kinetic energy budget is known not to be in equilibrium (i.e.,
ε 	= 
τt ) and must include its own turbulent flux-transport
terms [18] that need not be identical to those in the cospectral
budget. These TKE flux transport terms are dissipated in
the buffer region previously discussed because production of
turbulent kinetic energy generally exceeds the local dissipation
rate (by as much as a factor of 2 depending on the Reynolds
number), they become negligible in the intermediate region,
but then they function as a source term balancing ε near the
centerline region. Not withstanding these issues, the modeled
σ+

w = σw/uτ profiles appear to exhibit patterns that do not
deviate appreciably from measurements (i.e., within 10%)
except near the centerline and in the buffer region. Also,
both measured and modeled σ+

w reveal comparably weak Re
dependence (Re varied by more than three decades in the σ+

w

comparisons in Fig. 6).

III. DISCUSSION AND CONCLUSION

Previous analytical models for pressure-driven pipe flows
at high Re included, at minimum, three empirical (but
Re-independent) constants that were a priori fitted to
data [55]. The proposed cospectral budget has also well-
defined constants—the Rotta similarity constant CR = 1.8 and
the exponential spectral correction parameter βd , which varies
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FIG. 6. (Color online) Left panel: Same as Fig. 4 but for all profiles reported in the Superpipe experiment [5,6]. Right panel: measure
σ+

w = σw/uτ (plus symbol) for the highest and lowest Re and modeled σ+
w for all the reported profiles [5,6] are also shown. The arrow direction

indicates increasing Re.

with Reλ, are both constrained and can be inferred independent
of the cospectral model. In fact, it was shown here that CR can
be derived from the von Kármán and Kolmogorov constants.
However, at the low-wave-number end, a third constant γp that
describes the decay of energy for kR → 1 remains empirically
specified, although its value appears to be close to the one
predicted from the von Kármán spectrum at low wave numbers.

As already discussed, another class of analytical models
links the mean velocity profile to the spectrum of turbu-
lence [11] using two strong assumptions: (i) momentum
transporting eddies cannot be larger than y, and (ii) the kinetic
energy spectrum of turbulence is responsible for turbulent
shear stress production. The cospectral approach proposed
here relaxes the first assumption and entirely departs from the
second. In the proposed model, all wave numbers contribute to
Fwu(k) at any given y/R. Furthermore, the cospectral budget
reveals that the vertical velocity spectrum, not the turbulent
kinetic energy spectrum, is responsible for the production of
u′w′. This point is significant given that the turbulent kinetic

energy spectrum is known to exhibit different scaling laws at
low wave numbers when compared to its Eww(k) counterpart.
Some of these differences are also attributed to inactive
eddy contributions to the longitudinal velocity spectrum
Euu(k) that are absent in Eww(k). For example, studies on
individual velocity component spectra in the vicinity of ky = 1
suggest that Euu(k) (the main contributor to the turbulent
kinetic energy) approximately scales as k−1 while Eww(k)
approximately scales as k0, as discussed elsewhere [56,57].
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