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Numerical studies of three-dimensional (3D) time-periodic flow inside a lid-driven cylinder revealed that a
weak perturbation of the noninertial state (Reynolds number Re = 0) has a strong impact on the Lagrangian
flow structure by inducing transition of a global family of nested spheroidal invariant surfaces into intricate
coherent structures consisting of adiabatic invariant surfaces connected by tubes. These tubes provide paths
for passive tracers to escape from one invariant surface to another. Perturbation is introduced in two ways:
(i) weak fluid inertia by nonzero Re ∼ O(10−3); (ii) small disturbance of the external flow forcing. Both induce
essentially the same dynamics, implying a universal response in the limit of a weak perturbation. Moreover,
we show that the motion inside tubes possesses an adiabatic invariant. Long-term experiments were conducted
using 3D particle-tracking velocimetry and relied on experimental imperfections as natural weak perturbations.
This provided first experimental evidence of the tube formation and revealed close agreement with numerical
simulations. We experimentally validated the universality of the perturbation response and, given the inevitability
of imperfections, exposed the weakly perturbed state as the true “unperturbed state” in realistic systems.
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I. INTRODUCTION

The scope of the present study is transport phenomena in
three-dimensional (3D) unsteady deterministic flows. This is
motivated by the still limited insight into this matter, despite
its relevance to numerous systems in both nature and industry.
Important classes of realistic deterministic flows are laminar
flows and averaged or Euler-flow representations of turbulent
flows (e.g., Reynolds-Averaged Navier-Stokes equations [1]).
Examples encompass a large range of length and time scales
and range from geophysical and oceanographical flows [2,3]
via industrial fluids processing [4,5] to advanced microfluidic
systems [6–8].

In our study we investigated transport in terms of coherent
structures formed by the Lagrangian trajectories of tracers
that are passively advected by the flow. This “Lagrangian
flow structure” geometrically restricts and guides the tracer
dispersion and thus determines the transport properties of the
flow. This ansatz has found widespread and successful appli-
cations in studies of chaotic tracer advection (the kinematic
mechanism underlying efficient distributive mixing) [9–13].

We concentrate specifically on qualitative changes in the
3D transport properties due to bifurcations in the Lagrangian
flow structure induced by very weak perturbations. To this
end, we adopt the 3D time-periodic flow inside a lid-driven
cylinder according to [13–17] as a representative experimen-
tally realizable system. Numerical studies of this configuration
exposed remarkable responses of the Lagrangian flow structure
of the stroboscopic map in the Stokes limit (Re = 0) to
minute inertial perturbations [Re ∼ O(10−3–10−2)]: transition
of a global family of nested spheroidal invariant surfaces
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to intricate coherent structures, each formed by merger of
(remnants of) two spheroids and one tube, embedded in
chaos [13,16,17]. Observations of a similar behavior in a
completely different system, an external 3D time-periodic
flow driven by a rotating sphere, strongly suggest this is
a universal phenomenon [18]. The tube structure is closely
related to the capture into resonances in 3D steady and
unsteady flows [19–22].

The study below aims at deepening the understanding
of the impact of weak perturbations on 3D transport by
addressing the following aspects. First, we further explore the
degree of universality by investigating whether the observed
dynamics can be induced in the 3D cylinder flow through
perturbations other than fluid inertia. Second, we further
unravel the mechanisms underlying tube formation. The
studies in [13,16–18] put forth emergence of certain types
of isolated periodic points as a trigger for this phenomenon.
However, the fundamental question of whether the tubes are
merely individual spiraling orbits or indeed, as conjectured
in [16], constitute distinct coherent structures parametrized
by a (local) adiabatic invariant remains open. We employ
methods proposed in [10,23,24] to investigate this. Third,
we further experimentally analyze and validate the observed
tracer dynamics and formation of coherent structures by
the way of 3D particle-tracking velocimetry (3D-PTV). This
expands on earlier experimental studies on the current system
in [15,25].

The paper is organized as follows. Section II defines
the system and introduces different ways of perturbation.
The experimental setup is elaborated in Sec. III. Section IV
provides a theoretical-numerical analysis on the response of
the Lagrangian flow structure of the unperturbed flow to
perturbation. Experimental analysis of observed behavior is
carried out in Sec. V. Conclusions are drawn in Sec. VI.
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FIG. 1. (Color online) Schematic of the flow forcing by piece-
wise steady translation of the bottom wall. (Inset) Trajectory of the
bottom wall in the three-step forcing protocol adopted in this study.
(Adapted from [25].)

II. PROBLEM STATEMENT

A. Flow configuration

In this study, we considered 3D flows inside a cylinder of
radius R and height H = 2R, driven by the motion of the
bottom wall (Fig. 1). The motion of the bottom wall follows
a sequence of piecewise steady translations according to a
prescribed time-periodic forcing protocol to be specified in
Sec. II C. At each forcing step, the bottom wall translates at a
velocity uwall over a distance Dwall in direction θstep with respect
to the x axis. Similar to [25], the present study is restricted
to highly viscous fluids, yielding very small diffusion time
scales Tν = R2/ν and rendering the unsteady transient time
during the switchings between forcing directions negligible,
i.e., Tν/Tstep = R2/νTstep � 1, with Tstep = Dwall/uwall the
duration of each forcing step. Thus the stepwise flow u is
effectively governed by the steady incompressible Navier-
Stokes equations, reading

∇ · u = 0, Reu · ∇u = −∇p + ∇2u, (1)

in a nondimensional form relative to the unit cylinder C :
[r,θ,z] = [0,1] × [0,2π ] × [−1,1] in cylindrical coordinates.
The nondimensional system is parametrized by two nondimen-
sional numbers: the Reynolds number Re = uwallR/ν � 1 and
the nondimensional wall displacement at each forcing step
D = Dwall/R.

B. Velocity boundary conditions

No-slip velocity conditions u = 0 are imposed on the top
wall and cylinder wall; condition u = uwall is imposed on the
translating bottom wall, with uwall,x = uwall cos θstep, uwall,y =
uwall sin θstep, and uwall,z = 0. Two kinds of translation veloc-
ities uwall are employed: rigid-wall conditions uwall = 1 and
smooth conditions uwall = (1 − r2)2. The rigid-wall conditions
occur in the real system and have been incorporated in the
analytical solution for the Stokes limit, Re = 0; see [26].
However, the discontinuity of the rigid-wall conditions at the
bottom rim (r,z) = (1, − 1) deteriorates the convergence of
the spectral flow solver developed for the simulations of the
inertial case, Re > 0 [27]. Utilization of the smooth conditions
eliminates this problem without compromising the physical
validity of the results. The flows due to the rigid-wall and

smooth conditions are topologically equivalent; differences
are entirely quantitative [16,25].

C. Time-periodic forcing protocol

The flow is driven by a systematic repetition of a prescribed
forcing protocol. This results in a time-periodic flow of the
form

u(x,t + T ) = u(x,t), (2)

with T = nTstep the total period time and n the number of
forcing steps with fixed duration Tstep. We use the same
time-periodic forcing protocol as employed in [25]. Here each
forcing period consists of three consecutive translations of
the bottom wall with a stepwise offset angle � = 2π/3 and
stepwise dimensionless displacement D. This yields

θstep = (k − 1)�, Dstep = D, (3)

as forcing conditions for steps 1 � k � 3. The bottom wall
travels in counterclockwise direction along the sides of an
equilateral triangle (Fig. 1).

D. Flow composition and perturbation

The stepwise steady boundary conditions cause the flow
during the step k to identify with reorientations of the steady
flow us induced by the translation of the bottom wall in the
positive x direction. Hence, the flow during step k is given by

u(r,θ,z) = us(r,θ − k�,z), (4)

with us being the base flow. Moreover, the base flow us—
and thereby the total flow u—can be considered to be a
superposition of an unperturbed primary flow u0 and a weak
secondary flow u′, i.e.,

us(r,θ,z) = u0(r,θ,z) + u′(r,θ,z), (5)

where u0 coincides with the Stokes limit Re = 0.
The secondary flow u′ can be introduced numerically in

two ways. First, by explicitly considering a weak fluid inertia
(nonzero Re � 1) and a numerical resolution of the full base
flow us using the aforementioned spectral flow solver [13,17],
the secondary flow can be implicitly defined as

u′(r,θ,z; Re) = us − u0. (6)

Second, u′ can be introduced directly by an additional transla-
tion of the top wall at an angle θ = θ0 and relative magnitude
ε under noninertial conditions. The top-wall translation alone
results in a flow field,

u′(r,θ,z; ε,θ0) = εu0(r,θ − θ0, − z), (7)

and in the linear Stokes limit admits direct superposition upon
the unperturbed base flow u0 following (5).

Parameters (ε,θ0) are attuned such that u′ according to (6)
and (7) are of comparable magnitude for given Re. Thus, the
alternative perturbation via the top wall enables the emulation
of the role of weak fluid inertia. Note that a similar method,
termed Reynolds-number correction, is adopted in [28]. How-
ever, it must be stressed that both perturbations are physically
meaningful. In fact, they trigger essentially similar dynamics
in the limit of weak perturbation. This universality in response
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is a key to the comparative numerical-experimental analysis
below.

E. Tracer motion as stroboscopic map

Tracer motion is governed by the kinematic equation
dX/dt = u, with X the current position of a tracer released
at position X0. The periodicity (2) of the flow admits an
alternative description of the tracer motion by a stroboscopic
map,

Xi+1 = Xi + m(Xi) = Xi + m0(Xi) + m′(Xi). (8)

Here Xi the tracer position after the ith period. The total map
m can, consistent with the flow field, be formally decomposed
into a contribution m0 by the unperturbed flow u0 and a
contribution m′ with relative magnitude,

ξ = |m′|/|m0| � 1, (9)

due the perturbation u′. Note that ξ indicates the perturbation
strength for the generic case; it is of ξ ∼ O(Re) and ξ ∼ O(ε)
for the above perturbations via fluid inertia and the top wall,
respectively.

III. EXPERIMENTAL METHODS

Experimental analysis of tracer motion has been carried out
by the 3D-PTV using the laboratory setup shown schematically
in Fig. 2. This setup is essentially a modified version of
that utilized in [25]. It consists of a transparent Perspex
cylinder (inner radius, 20 mm; height, 40 mm) that is fixed
within a square box. The cylinder-box configuration is held
in place by a metal frame (not shown) above a horizontal flat
plate. The latter acts as driving bottom wall of the cylinder
flow and can perform in-plane translation along any designed
path (at a speed set to uwall = 2 mm/s) by a motion-control
system (implemented in LABVIEW2007). A minute gap of
0.3 mm is maintained between cylinder and plate to avoid
vibrations due to physical contact with the cylinder. (The
velocity boundary condition is thus somewhere between the
smooth and rigid-wall conditions as per Sec. II B.) Silicon oil
(AK 10 000, Wacker GmbH, Germany) has been employed
as the working fluid; its kinematic viscosity ν = 10−2 m2/s

FIG. 2. Schematic of the laboratory setup for particle tracking by
3D-PTV.

and density ρ = 970 kg/m3 ensure laminar flow conditions
(Re = uwallR/ν � 2 × 10−3). The cylinder is submerged in a
shallow fluid layer of about 5 mm on the flat plate (contained
by sidewalls) in order to prevent fluid leakage from the cylinder
and entrainment of air during the wall translation. The flow
domain is filled with the working fluid via the removable top
lid (Fig. 2).

The fluid is seeded by polystyrene tracer particles (diameter
20 μm) that are tracked by four CCD cameras (specifications
are in [25]) facing the cylinder interior through its top
wall (Fig. 2). Data processing of the particle imagery for
determination of velocity vectors and trajectories is performed
with the 3D-PTV algorithm developed at Eidgenössische
Technische Hochschule, Zürich, Switzerland [29,30]. This al-
gorithm incorporates optical refraction by said top wall. Hence,
there is no need for further suppression or compensation of
effects by refraction. Seeding particles are about an order of
magnitude smaller than those utilized in [25]; given the same
working fluid, this results in a favorable particle dynamics for
reliable tracking. Cameras and a motion-control system are
synchronized by the same LABVIEW algorithm.

The experiments were conducted at bottom-wall velocity
uwall = 2 mm/s and stepwise displacement Dwall = 80 mm,
resulting in a nondimensional wall displacement D = 4. This
gives a duration of 40 and 120 s per step and period, respec-
tively, enabling tracking of 30 periods per hour. Recording
at a frame rate of 1 Hz yields 4 × 120 = 480 images per
period of about 2 MB each (nearly 1 GB in total per period).
Measurement sessions spanned up to 1200 periods (40 h)
and produced up to 576 000 images (around 1.2 TB in
data). Storage and (in particular) transfer capacity of the
data-acquisition system determined the experimental limits.

IV. LAGRANGIAN FLOW STRUCTURE

A. Periodic lines of the unperturbed flow

The topology of the tracer trajectories in the 3D cylinder
flow has been extensively examined before [13–17]. Two
features important in the current context are confinement of
tracers released in the base flow us to closed streamlines
symmetric about the planes x = 0 and y = 0 [Fig. 3(a)]
and, intimately related to that, their restriction to spheroidal
invariant surfaces in the corresponding unperturbed time-
periodic flow [Fig. 3(b)]. These invariant surfaces are, in
fact, level sets of an axisymmetric constant of motion Fs(x),
i.e., Fs(Xi) = Fs(X0), which is invariant under map (8) for
vanishing m′ [14].

Relevant entities within the invariant surfaces are periodic
points, i.e., tracers that systematically return to their initial
position after p periods: Xi+p = Xi . Period-p points on
adjacent invariant surfaces merge into period-p lines in the
3D unperturbed flow [15,16]. Their properties are determined
by the spectrum λ = (λ1,λ2,λ3) = eig(F) of the deformation
tensor

F = ∂Xp/∂X0 = I + ∂m/∂X0, (10)

associated with the individual periodic points [9]. Points on
periodic lines invariably possess one unit eigenvalue, say
λ1 = 1, and fall into one of two categories: first, elliptic
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yx
(a)

(b)

FIG. 3. Fundamental properties of the unperturbed flow. (a)
Closed streamlines (symmetric about plans x = 0 and y = 0) of
base flow us ; (b) invariant spheroids of the time-periodic flow in
the noninertial limit Re = 0. Simulation using rigid-wall boundary
conditions. (Reproduced from [25].)

points (λ2 = λ∗
3 = eiω) defining the centers of continuous

families of closed orbits in the stroboscopic map (8) (“elliptic
islands”) within invariant surfaces; second, hyperbolic points
(λ2 = λ−1

3 = λ defining the centers of chaotic regions within
invariant surfaces [15]). (Here i = √−1 and the symbol “∗”
denotes complex conjugate.) These periodic lines play a key
role in the response of the system to perturbations, where
distinction between the two types becomes significant.

It is important that, though systematically recurring to
the same position, the actual continuous path of a tracer
on a periodic orbit generically is quite extensive. Typical
tracer paths between two visits to period-1 and period-2
points are shown in Figs. 4 and 5, respectively, demonstrating
substantial excursions throughout the domain. (See, e.g., [14]
for identification algorithms for periodic points.) Therefore,
though the response to perturbation will be studied primarily

x

y

x

y

FIG. 4. (Color online) Continuous tracer paths (blue solid line)
corresponding with a period-1 point (blue circle) on the period-1 line
(red triangles). (a) D = 4; (b) D = 14. Simulations of the unperturbed
flow using smooth boundary conditions.

in terms of stroboscopic map (8), continuous tracking of
tracers nonetheless remains necessary for exposing the dy-
namics. This has consequences, in particular, for experimental
analyses, since handling of the corresponding data volumes
constitutes the principal limit on the measurement capabilities
(Sec. III). Periodwise instead of continuous data acquisition
(if possible) would enlarge the experimental range by about
two orders of magnitude.

B. Universality in response to perturbation

Perturbation of the system by weak fluid inertia, inducing
nonzero secondary flow u′, (6), destroys the invariant surfaces
and leads to significantly different tracer dynamics [13,16,17].
Tracers exhibit distinct behavior depending on their proximity
to elliptic segments of periodic lines. Tracers “far away”
from such periodic lines oscillate about the original invariant
surface and, in the long term, average out the effect of the
secondary motion. As a result, tracers remain entrapped in
shells (“adiabatic shells”) of thickness O(

√
ξ ), with ξ defined

in (9), centered on its original invariant surface [16]. The
corresponding constant of motion Fs(x) becomes an adiabatic
invariant of the perturbed flow. On the other hand, tracers
“near” periodic lines may escape from their original shell
and be transported to another shell through a connecting tube
[emerging in stroboscopic map (8)] centered on the elliptic
segment of a given periodic line. This is demonstrated in
Fig. 6(a) by way of the stroboscopic map of a single tracer

x

y

x

y

FIG. 5. (Color online) Continuous tracer paths (blue solid line)
corresponding with a period-2 point (blue circle) on the period-2
line (black/dark triangles). (a) D = 4; (b) D = 14. Period-1 lines
(red/gray triangles) are included for reference. Simulations of the
unperturbed flow using smooth boundary conditions.
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FIG. 6. (Color online) Formation of tubes on the period-1 line (red/large markers) connecting adiabatic surfaces under weak perturbation
(D = 14). (a) Fluid inertia (Re = 0.005); (b) top-wall motion (ε = 0.0005,θ0 = π/6). Visualization by the 3D perspective and r − z projection
of the stroboscopic map of a single tracer (blue/small markers). Simulations using smooth boundary conditions.

released near the tube on the inner shell and tracked both
forward and backward in time. Note that this behavior may
happen for periodic lines of basically any periodicity p [16,17].

The alternative perturbation via the top wall, inducing
nonzero secondary flow u′ of comparable magnitude [see (7)]
triggers essentially the same behavior. This is demonstrated
in Fig. 6(b) by a tracer released at the same position as that
in Fig. 6(a). The structures are in close agreement in both
cases. Notable differences between both kinds of perturbation
occur only near the cylinder wall, where the secondary flow
of the wall-induced perturbation becomes much smaller than
its inertia-induced counterpart. Here motion in the former case
slows down considerably, causing tracers to remain confined
for prolonged periods of time before entering the outer shell.
This is reflected by the relatively higher tracer density in this
area in Fig. 6(b).

The above findings illustrate that the system responds to
weak perturbations in a universal way that is dependent on the
strength of the perturbation [quantified by ξ according to (9)]
yet is independent on its nature. This universality is crucial
to the numerical-experimental analysis below by admitting
comparison of perturbed dynamics without the need to exactly
replicate the perturbation. Numerical simulations may employ
the perturbations following Sec. II D; laboratory experiments
can rely on experimental imperfections as natural perturbation.

The above universality in response to weak perturbations
confirms the analytical results following [19], where it was
shown that the ensuing global behavior in flows with invariant
surfaces containing periodic points (which includes the present
spheroidal surfaces) is independent of the exact form of
the perturbation. The only condition is that it has a finite
component normal to the adiabatic surface at the periodic
points, which is, in accordance with general theory, treated
in [31,32].

C. Structure of the tubes

Tracers nearing the vicinity of elliptic (segments of)
periodic lines, instead of remaining within an adiabatic shell,
gradually leave that shell via tubes centered on these lines
as demonstrated in Fig. 6. The formation of such tubes is
due to resonances of the secondary motion in a stroboscopic
map (8). More specifically, tubes form on the 1D manifolds of
isolated periodic points in map (8) that emanate from breakup
of periodic lines. This mechanism has been investigated in

detail in [18] for a comparable 3D time-periodic flow and
is suspected to also occur here (conclusive establishment is
outstanding).

Each periodic point on an elliptic (segment of a) periodic
line defines the center of a continuous family of closed orbits
on an invariant surface (i.e., the elliptic islands according
to Sec. IV A). Perturbation causes the matching islands on
neighboring shells to merge into concentric tubes that provide
a pathway for tracer transport. (Tracers always travel from an
inner shell to an outer shell in the cases considered here.)
On each shell, the outmost closed trajectory of the base
flow around the elliptic point of the periodic line defines the
entrance zone into the tube. The area of the entrance zone
is a function of the perturbation strength ε and the value of
the adiabatic invariant Fs(x). Tracers randomly moving in an
adiabatic shell may at some point enter the entrance zone
and, upon doing so, start propagating along the tube instead
of continuing their excursion in the shell. This entrapment is
very similar to the phenomenon of “capture into resonance”
studied in [21]. When a tracer switches from the motion on an
adiabatic shell to the motion in a tube, it performs a fast switch
between two drastically different adiabatic invariants. The
motion on shells namely has its own adiabatic invariant, and
the motion along the tube has a completely different adiabatic
invariant. This entrapment is very similar to the phenomenon
of “capture into resonance” first described in [33] and first
studied in applications to fluid flows (or volume-preserving
systems) in [21].

Individual tracer entering a tube outlines its extent by de-
scribing a tight spiral that consequently intersects neighboring
shells next (Fig. 7). Each coil of the spiral lies approximately on
the shell that the tracer is intersecting at a given moment. Thus,
multiple tracers describe a nested family of concentric tubes
centered on the periodic line, as demonstrated in Figs. 8(a)
and 8(b). At certain moments, different for different tracers
and defined by the conservation of the tube adiabatic invariant
(introduced below), tracers leave the tubes and emerge on new
shells.

D. Adiabatic invariant for the tubes

The tracer motion through the tube consists of three parts:
capture into the tube, transport through the tube, and release
from the tube. In this section, we aim at seeking an adiabatic
invariant, complementary to the adiabatic invariant Fs(x) of
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FIG. 7. (Color online) Continuous tracer path (gray) of the single
tracer outlining the period-1 tube (blue; indicated by arrow) on the
period-1 line (red triangles) (D = 14). Perturbation by fluid inertia
(Re = 0.005). Simulations using smooth boundary conditions.

the adiabatic shells (Sec. IV B), that is embedded in the tube
dynamics.

Consider a point A on a given tube. There exists a closed
curve of unperturbed stroboscopic points [m′ = 0 in terms
of map (8)], �A, passing through A. This curve lies on
the shell that the tube is intersecting and encloses the local
cross-sectional area of the shell, SA. Thus, �A = ∂SA. At
every point Xi ∈ SA, we can introduce a velocity vector
Vi = (Xi+1 − Xi)/T generated by map m(X). We define the
flux of perturbation as

 = 1

ξ

∫
SA

Vi · n dσ, (11)

where n and dσ are the unit normal and area element of SA,
respectively, and ξ corresponds with the relative perturbation
strength (9). The positive direction of n is taken to be the
direction of the angular velocity of the unperturbed motion
along �A.

The component of Vi that corresponds to m0 does not
contribute to the flux, since its direction is in the same plane
as SA. Thus, (11) reduces to

 = 1

ξ

∫
SA

V′
i · n dσ, (12)

where V′
i is the velocity component induced by the pertur-

bation m′. The definition of  is a generalization of the
definition of an adiabatic invariant introduced in [10,23] for
volume-preserving flows to stroboscopic maps. Thus, we can
expect  to be conserved for a tracer traveling along a tube,
in other words, to define the sought-after adiabatic invariant:
(Xi) = (X0) for tracer positions Xi inside the family of
tubes.

Function  is evaluated for the three concentric tubes
shown in Fig. 8(a). To this end one point on each tube was
selected as an initial condition. It is somewhat complicated to
evaluate V′

i at every point inside SA. However, one can see that
the cross-sectional area is relatively small for most part of the
tube. This provides the possibility of applying the averaged
value of V′

i on a given SA for the computation of . The tracer
is swirling around the period-1 line to form a tube. So V′

i can be
approximated by the velocity of the period-1 fixed point in SA.
Moreover, V′

i = 0 in the absence of perturbation, since m0 is
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FIG. 8. (Color online) Adiabatic invariance in period-1 tubes
demonstrated for three concentric period-1 tubes (purple/gray/blue;
inner/middle/outer) induced by fluid inertia (Re = 0.005). (a) r − z

projection; (b) cross section perpendicular to symmetry plane θ =
π/6; (c) adiabatic invariant  following (12) along the tubes (pur-
ple/gray/blue: lower/middle/upper). Simulations for D = 14 using
smooth boundary conditions.

not contributing and perturbation m′ = 0, which is consistent
with the property of a period-1 point (i.e., fixed point in the
map). Thus, we arrive at

 ≈ 1

ξ
SA(V′

i · n). (13)

The conservation of  defines the input-output function for the
transport through the tubes. Suppose a given tracer entered the
tube from a certain shell. Then the area of SA at that moment
is equal to the area of the entrance zone. Initially, as the tracer
moves inside the tubes, the area of the entrance zone on the
shells that the tracer is passing by increases. Thus, the tracer
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stays inside the tubes. However, after a while, the dynamics
changes: As the tracer comes closer to the side of the cylinder,
the values of V′

i decrease. Therefore, for  to be conserved,
the value of SA must increase. At a certain shell the value of
SA for the tracer in question reaches the value of the entrance
zone on that shell. As a result, the tracer cannot “fit” in the tube
anymore and exits the tube to that new shell. This mechanism
can be described as last-in–first-out: The deeper was the shell
where a tracer got into the tube, the longer it stays in the tube,
thus getting out closer to the side of the cylinder.

Figure 8(c) gives the function  obtained by the above
approximation throughout each of the concentric tubes. The
function values clearly retain at a distinct (approximately)
constant level in the entire tube area, demonstrating that 

indeed defines an adiabatic invariant. The smaller is the value
of , the closer the tube is to the period-1 line. Moreover,  is
best conserved in the region where the cross-sectional area of
the tube is relatively small. Hence, shown approximations of 

are relatively more accurate in the smaller tubes (purple/inner,
gray/middle) compared to the larger tube (blue/outer). The
numerical approximation becomes inaccurate as the tracer
approaches the tube exits (r > 0.85). This is caused by (i)
the rapid increase in cross-sectional area and (ii) the existence
of a hyperbolic segment of the period-1 line nearby, which
renders evaluation of V′

i imprecise. A rapid change in  as the
tracers approaching the escape zone is shown in Fig. 8(c),
which indicates that the motion of the tracer on shell is
characterized by a different adiabatic invariant, Fs(x), instead
of  (Sec. IV B). The presence of an adiabatic invariant 

for the tubes has important implications. First, it proves that
the tubes indeed constitute distinct and complete coherent
structures (in the sense of individually belonging to one smooth
and regular level set of ). Second, it deterministically and
uniquely connects a given inner shell with a given outer shell
via a distinct tube. These findings, in turn, imply that the union
of tubes and shells (denoted “adiabatic structures” in [16]) also
define distinct coherent structures.

V. EXPERIMENTAL INVESTIGATION

A. Validation of the base flow

The base flow us is the elementary “building block” of
the time-periodic flow fields and its validation is important
to asses the overall quality of the experimental data. This
concentrates primarily on a qualitative matching of funda-
mental properties in the Stokes limit rather than on one-to-one
quantitative agreement with numerical simulations. Minor
deviations in boundary conditions at the driving bottom wall
essentially preclude this (Secs. II B and III). However, similar
to [25], this is inconsequential for the fundamental dynamics.
Relevant properties are (i) closed streamlines; (ii) symmetric
streamlines about planes x = 0 and y = 0; (iii) coincidence of
the stepwise flow with reorientations of the base flow [25].
To this end, velocity fields and corresponding trajectories
are measured separately for each of the three forcing steps.
Moreover, the flow forcing is performed with the translation of
the bottom wall in both forward and reversed directions. Thus-
obtained six separate data sets were a posteriori combined
into one field, where each set was reoriented such that the

y

z

x

FIG. 9. Streamlines of the base flow obtained from laboratory
experiments by particle tracking using 3D-PTV.

forcing direction coincided with that of the base flow. Hence,
the combined field should match the base flow and possess the
fundamental properties discussed above within an acceptable
tolerance. Analysis similar to [25] proved the experimental
data to be of sufficient quality for the present study.

Figure 9 presents a number of typical streamlines taken
from the six (reoriented) data sets. This visually demonstrates
that together they indeed constitute a coherent family of
streamlines that are closed and symmetric about planes x,y =
0 within acceptable error margins. Note the close (qualitative)
agreement with the streamlines obtained from the analytical
velocity field shown in Fig. 3(a).

B. Period-1 lines

Experimental data for time-periodic flows are obtained
from long-term experiments (1200 periods) with dimension-
less displacement D = 4. Two data sets are generated: one with
periodwise step sequence k = {1,2,3}; one with reversed step
sequence k = {3,2,1} and reversed stepwise forcing direction.
Former and latter data sets define time-reversal counterparts
in the Stokes limit. The fundamental entities of interest in
these flows, i.e., periodic lines, must match for forward and
time-reversed flows [13]. Verification of this property enables
further assessment of the data quality.

The present three-step flow accommodates period-1 lines
in the symmetry plane θ = π/6, the presence of which
has been demonstrated experimentally in [25]. However,
through an analysis analogous to [34], additional period-1
lines, emerging in pairs symmetric about the θ = π/6 plane,
can be identified. Figure 10 shows simulated period-1 lines
(curves described by red markers) in comparison to the
combined experimental results (blue/scattered markers). The
latter clearly outline well-defined entities and, in that sense,
validate the presumed time reversibility of the flow. Moreover,
the experimental period-1 lines both within and outside the
symmetry plane are in a close agreement with their simulated
counterparts. (Note that the experimental data only partially
reveal the pair of period-1 lines outside the symmetry plane.)
Differences between numerical and experimental lines are
mainly quantitative and must be attributed to aforementioned
deviations in the boundary conditions. Exposure of period-1
lines outside the symmetry plane further consolidates the first
experimental evidence of their existence provided in [25].
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FIG. 10. (Color online) Period-1 lines obtained by 3D-PTV
(blue/scattered markers) versus numerical simulations rigid-wall
boundary condition (curves described by red markers) for D = 4.
(a) 3D perspective view; (b) top view. The black frame in panel (a)
outlines symmetry plane θ = π/6.

C. Period-1 tubes

The numerical study in Sec. IV revealed a significant impact
of even very weak perturbations on the long-term dynamics
of the system by triggering the formation of tubes connecting
adiabatic shells. Moreover, this impact transpired as universal
in that it depended only on the strength of the perturbation
yet not on its nature. Both weak fluid inertia and minute

x

P2
1

y

P1

P2
2

FIG. 12. (Color online) Tube bifurcation at intersections of
period-1 (red/dark gray) and period-2 (black) lines demonstrated
by the stroboscopic map (blue/light gray) of a single tracer for
D = 4. Labels indicate period-1 (P1) and period-2 (P21,2) tubes;
arrows indicate direction of motion. Numerical simulations using top-
wall perturbation (ε = 0.0005,θ0 = π/6) and rigid-wall boundary
conditions.

disturbances of the flow forcing affected the dynamics in the
same way. This strongly suggests that small imperfections
in experimental conditions (e.g., geometry, nonpassive tracer
particles) will have a similar impact on the long-term behavior.
Hence, such imperfections can be exploited as a natural
perturbation in laboratory experiments.

Figure 11(a) presents a long-term stroboscopic dynamics
of a single tracer (tube described by blue markers) tracked
by the 3D-PTV in relation to the experimental period-1 line
(curve described by red markers). A spiraling orbit outlines the
portion of a tube centered on the period-1 line. Comparison
with the numerical simulations shown in Fig. 11(b), obtained
using the rigid-wall boundary conditions and the top-wall dis-
turbance as a weak perturbation (ε = 0.0005 and θ0 = π/6),
reveals an excellent agreement. Experimentally measured and
simulated structures are very similar in location and extent.
This experimentally validates two fundamental properties:
(i) The tube formation is induced by weak perturbations;
(ii) the response to weak perturbations is universal.

D. Tube bifurcation

Instead of connecting with adiabatic shells, tubes may
undergo bifurcations in higher-order tubes [13,16]. In fact,
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FIG. 11. (Color online) Formation of a period-1 tube on the period-1 line (curve described by red markers) demonstrated by the stroboscopic
map of a single tracer (tube described by blue markers) for D = 4. (a) Experiments using 3D-PTV; (b) numerical simulations using top-wall
perturbation (ε = 0.0005 and θ0 = π/6) and rigid-wall boundary conditions.

063002-8



COMPARATIVE NUMERICAL-EXPERIMENTAL ANALYSIS . . . PHYSICAL REVIEW E 90, 063002 (2014)

x

y

(a)

(b)

FIG. 13. (Color online) Experimental evidence for period-2 be-
havior consistent with the formation of period-2 tubes for D = 4.
(a) Maps of individual tracers (distinguished by color/grayscale and
marker size) centered on simulated period-2 lines (curves described
by black markers); (b) periodwise alternation of a single tracer
between positions X+ = {X0,X2, . . . } and X− = {X1,X3, . . . } (large
markers) on either side of symmetry plane θ = π/6. The curve
bisecting period-2 lines indicates period-1 line; solid lines in panel
(b) indicate continuous tracer paths.

the period-1 tube partially outlined in Fig. 11 exhibits such a
behavior at both its ends upon reaching two intersections of the
period-1 line with two period-2 lines. This is demonstrated in
Fig. 12 by numerical simulations. Two elliptic period-2 lines
(black) are symmetric about the symmetry plane (θ = π/6),
and both intersect the period-1 line (red/dark gray). The period-
1 tube (P1) confluences with two period-2 tubes P21 and
P22. Tracers migrate in one direction, indicated by the arrows,

along the tube structure: advection along the period-2 tubeP21

towards the first intersection; switch to the period-1 tube P1;
advection along P1 towards the second intersection; switch to
the period-2 tube P22; advection along P22. The entrance
and exit of the period-2 tubes P21 and P22, respectively,
connect with adiabatic shells (not shown). Hence, this tube
arrangement, though of a more intricate structure, connects
two adiabatic shells in essentially the same way as observed
for period-1 tubes.

Experimental investigation of the tube bifurcation is ex-
tremely challenging due to the slow nature of this phenomenon.
Traveling through the entire tube structure takes thousands
of periods while the experimental data cover only 1200
periods. Hence, at present, only experimental validation
via circumstantial evidence is feasible. We concentrate on
two aspects: (i) the experimental demonstration of period-2
behavior consistent with formation of the period-2 tubes and
(ii) the experimental demonstration of tube bifurcation at the
intersections of period-1 and period-2 lines.

Figure 13(a) shows the stroboscopic map of several experi-
mental tracer particles (labeled by color/grayscale and marker
size) in the vicinity of the simulated period-2 lines (curves
described by black markers). Each tracer alternates between
either side of the symmetry plane (signifying period-2 motion)
and thus gradually outlines a pair of spiraling orbits centered
on one of the period-2 lines. This periodwise alternation
between positions X+ = {X0,X2, . . . } and X− = {X1,X3, . . . }
in the stroboscopic map is shown in detail in Fig. 13(b)
for one particular tracer (compare the pattern described by
the corresponding continuous path with that of the period-1
trajectories in Fig. 7). This reveals a close correlation between
the simulated period-2 behavior and observed tracer dynamics
in the experiments, thus establishing at least a fundamental
consistency with the formation of period-2 tubes.

Figure 14(a) illustrates the simulated tracer dynamics (tube-
like structures described by blue markers) at the confluence
of the period-1 line (curve described by red markers) and
one of the period-2 lines (not shown). The tracer progresses
from right to left and, instead of continuously spiraling around
the period-1 line, thus outlining a tube, develops a “hole” in
the tube at the location of the intersection between period-1
and period-2 lines, before resuming its spiraling motion at a
substantially larger radius. Period-2 tube P21 of the structure
shown in Fig. 12 (also outlined by a single tracer) penetrates
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FIG. 14. (Color online) Tracer dynamics near the tube bifurcation on the period-1 line (curve described by red markers) demonstrated by
the stroboscopic map (tubelike structures described by blue markers) of a single tracer for D = 4. (a) Numerical simulations using top-wall
perturbation and rigid-wall boundary conditions; (b) experiments using 3D-PTV. Shown are 3D perspective and r − z projection.
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the above “hole” and continues towards the left as period-1
tube P1, where the latter is enclosed by the left segment of
the period-1 tube in Fig. 12. This signifies highly complicated
(and very peculiar) dynamics in this area. Figure 14(b) shows
the stroboscopic map of an experimental tracer in this area. Its
behavior that is entirely consistent with the simulations (seen
the most clearly in the r − z projections) in that the tracer,
while moving leftwards, also starts with demarcating a tube
segment, subsequently outlines the “hole area” and then returns
to a spiraling motion about the period-1 line. Note that only first
signs of the latter stage in the experimental tracer propagation
could be made visible due to the limited data available in this
particular region. This nonetheless provides a further important
(circumstantial) experimental evidence of the tube bifurcation
at the intersections of period-1 and period-2 lines.

VI. CONCLUSIONS

In the present study we investigated the impact of weak
perturbations on the Lagrangian flow structure of 3D unsteady
deterministic flows. We adopted a 3D time-periodic laminar
flow inside a lid-driven cylinder as representative experi-
mentally realizable system. Theoretical-numerical analyses
addressed fundamental issues of the response of the 3D
time-periodic Stokes flow driven solely by the bottom wall to
weak perturbations. Laboratory experiments performed using
the 3D-PTV have been performed for experimental analysis
and validation of key aspects of the observed dynamics.

The Lagrangian flow structure of the unperturbed time-
periodic flow consists of a global family of nested spheroidal
invariant surfaces. Perturbation of this state has been induced in
two separate ways: (i) weak fluid inertia and (ii) disturbance of
the flow forcing by slight motion of the top wall. The parame-
ters of the latter were attuned to attain comparable perturbation
strengths. This yielded essentially identical responses in that
both perturbations resulted in transition to the same state,
comprising intricate coherent structures, formed by merger of
adiabatic shells emanating from (remnants of) spheroids and
tubes, embedded in chaos. This conclusively demonstrated
the universal nature of the role of weak perturbations in
the Lagrangian dynamics of flows with invariant surfaces
containing periodic points.

Furthermore, the existence of a separate adiabatic invariant
for the tubes has been demonstrated, which has important

implications. First, it proves that the tubes indeed constitute
distinct coherent structures. Second, it deterministically con-
nects a unique pair of adiabatic shells via a distinct tube. This,
in turn, implies that the coherent structures thus formed also
define distinct entities that admit representation by an adiabatic
invariant.

Experimental investigation strengthened earlier observa-
tions that periodic lines indeed emerge in actual physical
systems. Here existence of periodic lines both within and
symmetrically arranged about a designated plane has been
demonstrated. Moreover, experimental evidence for the for-
mation of tubes on periodic lines has been found. Substantial
portions of period-1 tubes have been directly isolated from
3D-PTV data; circumstantial evidence for period-2 tubes and
tube bifurcations has been found. These findings, besides the
phenomena themselves, experimentally validated the univer-
sality of the response to weak perturbations. The laboratory
experiments namely relied entirely on small imperfections
as a natural perturbation. This, in fact, exposed the weakly
perturbed state as the true “unperturbed state” in realistic
systems.

Ongoing and future efforts concentrate on several topics.
Essential is continued experimental analysis and validation
of long-term dynamics so as to further support theoretical
and numerical results. Here an important challenge is further
development of the 3D-PTV algorithms in order to enable
longer tracking of individual tracer particles. The longest
tracks in the data sets employed in this study (spanning 1200
periods), e.g., covered a few hundred periods. Extending the
track length of a substantial amount of tracers to the total
duration of the experiment would tremendously enhance the
experimental analysis without the need for longer experiments
(a major challenge in its own right). A further subject of great
interest is the universality of the response to perturbation. Here
a central question is whether similar behavior can be induced
by, e.g., nonpassive particles (lift, buoyancy) or thermal effects
(fluid buoyancy).
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