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Evolution of length scales and statistics of Richtmyer-Meshkov instability from
direct numerical simulations
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In this study we present direct numerical simulation results of the Richtmyer-Meshkov instability (RMI)
initiated by Ma = 1.05, Ma = 1.2, and Ma = 1.5 shock waves interacting with a perturbed planar interface
between air and SF6. At the lowest shock Mach number the fluids slowly mix due to viscous diffusion, whereas
at the highest shock Mach number the mixing zone becomes turbulent. When a minimum critical Taylor microscale
Reynolds number is exceeded, an inertial range spectrum emerges, providing further evidence of transition to
turbulence. The scales of turbulent motion, i.e., the Kolmogorov length scale, the Taylor microscale, and the
integral length, scale are presented. The separation of these scales is found to increase as the Reynolds number
is increased. Turbulence statistics, i.e., the probability density functions of the velocity and its longitudinal and
transverse derivatives, show a self-similar decay and thus that turbulence evolving from RMI is not fundamentally
different from isotropic turbulence, though nominally being only isotropic and homogeneous in the transverse
directions.
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I. INTRODUCTION

The Rayleigh-Taylor instability is an instability that occurs
at the material interface between two fluids of different
densities when one fluid is accelerated into the other one.
In 1950, Taylor [1] provided a theoretical prediction of the
growth rate of irregularities on the material interface between
two fluids of different densities under constant acceleration.
In his pioneering work Richtmyer [2] extended the theory
of Taylor [1] to the impulsive acceleration of material inter-
faces. In the impulsive model of Richtmyer [2] the constant
acceleration g of the material interface is replaced by an
impulsive acceleration �uδ(t). According to Richtmyer [2],
the amplitude a(t) of a single-mode perturbation with wave
number k grows as

a(t) = (1 + k�uA+t)a+
0 , (1)

where (·)+ refers to values after the shock-interface interaction.
a+

0 is the postshock amplitude of the perturbed interface, A+ =
(ρ1 − ρ2)/(ρ1 + ρ2) is the postshock Atwood number, and t

is the time. Later, Richtmyer’s theoretical predictions were
experimentally verified by Meshkov [3], and the instability is
thus known as the Richtmyer-Meshkov instability (RMI).

There are two hypotheses to explain the generation of
vorticity at the material interface during shock-interface
interaction [4]. The first one is based on baroclinic vorticity
production; the other proposes that distorted transmitted and
reflected waves create pressure variations across the material
interface, which lead to tangential velocity perturbations.
According to Brouillette [4] both hypotheses can be formally
reconciled by noting that the induced tangential velocity
components are responsible for the circulation. For more
details see also Wouchuk and Nishihara [5], Wouchuk [6],
and Zabusky [7]. The generated vorticity amplifies the
initial interface perturbations, and if the initial energy in-
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put is sufficient, i.e., at sufficiently high Reynolds num-
bers, the flow evolves eventually into a turbulent mixing
zone.

Because of the high Reynolds numbers and the associated
small time and length scales, direct numerical simulations
(DNSs) seemed to be unfeasible, and therefore large eddy
simulations (LESs) have become the standard simulation ap-
proach to RMI [8–14]. Grinstein et al. [10] used a grid adaptive
Eulerian code with implicit LES (ILES) modeling to study
three-dimensional material mixing evolving from RMI. The
ILES model combines a second-order Godunov-type scheme
with the van Leer flux limiter. In the investigation of Schilling
and Latini [11], the authors performed ILES with a high-order
WENO scheme to study three-dimensional reshocked RMI to
late times. In LES and ILES the energy-containing large scales
are resolved and the dynamic interaction of unrepresented
small scales with grid-resolved large scales is modeled by
a subgrid-scale model. Due to the multiscale properties of
RMI underresolved numerical simulations are very sensitive
to the underlying numerical scheme, which does not only
model the unresolved scales but also captures discontinuities
such as shock waves and material interfaces; see Tritschler
et al. [15].

Some recent investigations showed that the Kolmogorov
length scale might be larger than assumed so far. In the exper-
imental investigation of Weber et al. [16] the authors provided
an estimate for the Kolmogorov length scale of a Ma = 1.5
shock accelerated shear layer. The estimate was obtained
from fitting model spectra to the experimental spectra, which
resulted in an estimate of 125 μm � η � 214 μm. Tritschler
et al. [17] found for the same shock Mach number a similar
range for the Kolmogorov length scale 75 μm � η � 224 μm.
Consistent with these estimates Lombardini et al. [9] found
η ≈ 620 μm for RMI driven by a Ma = 1.05 shock wave
and η ≈ 72 μm for Ma = 5 long after the shock-interface
interaction. Shortly after the shock-interface interaction the
Kolmogorov scale can, however, be considerably smaller,
being as small as η ∼ O(1) μm.
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For the present investigation the shock tube size is scaled
down in order to resolve all relevant length scales for Taylor
microscale Reynolds numbers Reλ � 140. With this setup we
are able to provide for the first time fully resolved results of
the Richtmyer-Meshkov instability.

The paper is structured as follows: in Sec. II we outline
the governing equations, which are solved with the numerical
method given in Sec. III. The numerical setup is provided in
Sec. IV. The results including grid convergence, the scales
of turbulent motion, such as the integral length scale, Taylor
microscale, and the Kolmogorov scale, as well as the proba-
bility density functions of the velocity and its longitudinal and
transverse derivatives are presented in Sec. V. We conclude
with a summary of our key findings in Sec. VI.

II. GOVERNING EQUATIONS

We solve the multicomponent Navier-Stokes equations in
conservative form

∂U
∂t

+ ∇ · F(U) = ∇ · Fν(U), (2)

where U are the conserved variables:

U = (
ρ ρu E ρYi

)
. (3)

The inviscid and viscous fluxes are given by

F(U) =

⎛⎜⎝ ρu
ρuu + pδ

(E + p)u
ρuYi

⎞⎟⎠, Fν(U) =

⎛⎜⎝ 0
τ

τ · u − qc − qd

−Ji

⎞⎟⎠.

(4)
Here we denote u = [u1,u2,u3] = [u,v,w] as the velocity
vector, p as the pressure, E as the total energy, ρ as the
mixture density, and Yi as the mass fraction of species i with
i = 1,2, . . . ,N , where N is the total number of species. The
identity matrix is δ. The viscous stress tensor τ for a Newtonian
fluid is

τ = μ [2S − 2/3δ (∇ · u)], (5)

where μ is the mixture viscosity and S is the strain rate tensor.
Equation (5) uses Stoke’s hypothesis according to which the
bulk viscosity is zero. We note that there is controversy
in literature about the value of the bulk viscosity of large
molecules, and setting it to zero may suppress some aspects of
the real flow physics.

According to Fourier’s law we define the heat conduction
as

qc = −κ∇T , (6)

where κ is the mixture heat conductivity. The interspecies
diffusional heat flux [18] is defined as

qd =
N∑

i=1

hi Ji (7)

with

Ji ≈ −ρ

⎛⎝Di∇Yi − Yi

N∑
j=1

Dj∇Yj

⎞⎠ . (8)

Di indicates the effective binary diffusion coefficient of species
i, and hi is the individual species enthalpy. The equations are
closed with the equation of state for an ideal gas

p(ρe,Yi) = (γ − 1) ρe, (9)

where γ is the ratio of specific heat capacities of the mixture
and e is the internal energy

ρe = E − ρ

2
u2. (10)

The ratio of specific heat capacities of the mixture γ is
calculated as

γ = cp

cp − R
, with cp =

N∑
i

Yi

γi

γi − 1
R, (11)

where R is the specific gas constant of the mixture with R =
R/M and

M =
(

N∑
i

Yi

Mi

)−1

. (12)

The viscosity and the thermal conductivity of the mixture, μ

and κ , are calculated according to [19]

μ =
∑N

i=1 μiYi/M
1/2
i∑N

i=1 Yi/M
1/2
i

, κ =
∑N

i=1 κiYi/M
1/2
i∑N

i=1 Yi/M
1/2
i

. (13)

The species specific viscosity μi is calculated from the
Chapman-Enskog viscosity model

μi = 2.6693 × 10−6

√
MiT

�μ,iσ
2
i

, (14)

where σi is the collision diameter and �μ,i is the collision
integral [20] given as

�μ,i = A(T ∗
i )B + C exp {DT ∗

i } + E exp {FT ∗
i }, (15)

with A = 1.16145, B = −0.14874, C = 0.52487, D =
−0.7732, E = 2.16178, and F = −2.43787, where the tem-
perature is normalized by the Lennard-Jones energy parameter
T ∗

i = T/(ε/k)i .
The thermal conductivity is calculated from the species

specific Prandtl number Pri as

κi = γi

γi − 1
Ri

μi

Pri
, (16)

and the mass diffusivities Di are given by

Di = μi

ρSci

. (17)

III. COMPUTATIONAL METHOD

Classical WENO approaches, albeit being formally high-
order accurate, are too dissipative at discontinuities and in
turbulent regions of the flow because in these regions the
theoretical maximum order is never achieved. In order to
reduce the excessive dissipation of classical WENO schemes
Hu et al. [21] developed an adaptive central-upwind sixth-
order accurate WENO scheme (WENO-CU6). This scheme
significantly reduces the numerical dissipation, while preserv-
ing the shock-capturing properties of classical WENO schemes
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and being only slightly computationally more complex than
the standard fifth-order WENO scheme. Additionally, Hu and
Adams [22] improved the scale separation of the original
version, which makes the WENO-CU6 scheme also applicable
to underresolved simulations.

In a recent investigation Hu et al. [23] introduced a
dispersion-dissipation condition for finite-difference schemes.
The dispersion-dissipation condition imposes a constraint on
dissipation and dispersion errors in order to prevent backscatter
of nonresolved spurious scales into the resolved-scale range.
The modified version B according to Hu et al. [23] of the
WENO-CU6 scheme is used in the present investigation.

Flux projection onto local characteristics is applied, which
requires the Roe-averaged matrix to be calculated for the full
multispecies system in Eq. (2) [24,25]. After reconstruction
of the numerical fluxes at the cell boundaries the fluxes
are projected back onto the physical field. A local switch
to a Lax-Friedrichs flux is used as entropy fix; see, e.g.,
Toro [26]. Temporal integration is performed by a third-order
total variation diminishing Runge-Kutta scheme [27].

The present numerical model has been tested and validated
for shock induced turbulent multispecies mixing problems at
finite Reynolds numbers [17,28,29]. Moreover, it has been
demonstrated that it is a state-of-the-art approach to turbulent
mixing processes evolving from RMI [15].

IV. NUMERICAL SETUP

The material interface separating air and SF6 is accelerated
by shock waves propagating with Ma = 1.05, Ma = 1.2,
and Ma = 1.5. The corresponding postshock thermodynamic
states are calculated from the Rankine-Hugoniot jump con-
ditions with the preshock state defined by the stagnation
condition p0 = 23 000 Pa and T0 = 298 K. The Schmidt
number of both gases is Sc = 1 and all other thermodynamic
gas properties, which are taken from Poling et al. [19], are
also constant; see Table I. The shock wave is initialized at
x = −Lx/4 and propagates in the positive x direction. The
transverse width Lyz of the shock tube is set to Lyz = 0.01 m,
and periodic boundary conditions are used in the y and z

direction. The fine-grid domain of the shock tube extends
symmetrically in the positive and negative x direction about
x = 0 m from −Lx/2 to Lx/2 with Lx = 2Lyz. A moving
reference frame is applied such that the mixing zone remains
within the fine-grid domain. The inflow and outflow boundary
conditions are imposed very far from the fine-grid domain
in order to avoid shock reflections. Outside of the fine-grid
domain the computational grid is coarsened to reduce the
computational costs. The fine-grid domain is discretized

TABLE I. Constant thermodynamic properties of air and SF6.

Property Air SF6

Mi [g mol−1] 28.964 146.057
(ε/k)i [K] 78.6 222.1
σi [Å] 3.711 5.128
γi 1.4 1.1
Pri 0.72 0.9

FIG. 1. (Color online) Schematic of the square shock tube show-
ing the dimensions of the computational domain.

by three different grid resolutions 1282 × 256, 2562 × 512,
and 5122 × 1024 resulting in cubic cells of size 78 μm �
�xyz � 19.5 μm. The three grid resolutions are used for the
convergence study, but only the results obtained on the finest
grid are presented later. A schematic of the computational
domain is given in Fig. 1.

In the present investigation the initial interface perturbation
is given by

ξ (y,z) = a1 sin (k0y) sin (k0z)

+ a2

13∑
n=1

15∑
m=3

an,m sin (kny + φn) sin (kmz + χm)

(18)

with the constant amplitudes a1 = −2.5 × 10−4 m and
a2 = 2.5 × 10−5 m and wave numbers k0 = 10π/Lyz, kn =
2πn/Lyz, and km = 2πm/Lyz. The amplitudes an,m and the
phase shifts φn and χm are given by an,m = sin(nm)/2, φn =
tan(n), and χm = tan(m).

For the purpose of verifying grid convergence an initial
length scale is imposed by a finite initial interface thickness

ψ(x,y,z) = 1

2

{
1 + tanh

[
x − ξ (y,z)

Lρ

]}
(19)

with Lρ = 0.001 m being the characteristic initial thickness.
The individual species mass fractions are imposed by YSF6 =
ψ and Yair = 1 − ψ . The time when the shock impacts the
perturbed interface is t = 0 s.

V. RESULTS

A. Grid convergence

In order to verify the convergence, the average Kolmogorov
length scale η̃ within the inner mixing zone (imz) according
to Tritschler et al. [15] as well as the compensated spectra of
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FIG. 2. Average Kolmogorov length scale of the inner mixing
zone for Ma = 1.05 (crosses), Ma = 1.2 (triangles), and Ma = 1.5
(circles) computed on three different grid resolutions 128 (dashed-
dotted), 256 (dashed), and 512 (solid lines with symbols).

enstrophy EE are presented in Fig. 2 and Fig. 3 for the three
grid resolutions.

We define the average Kolmogorov length scale as

η̃ =
〈( 〈ν〉3

yz

〈ε〉yz

)1/4〉
x

, (20)

where ε and ν are the viscous dissipation and the kinematic
viscosity and 〈·〉 denotes spatial averaging. The mean rate of
viscous dissipation of kinetic energy is calculated from the
single-point correlation of the fluctuating velocity gradients

ε = ν

[
∂u′′

i

∂xj

∂u′′
i

∂xj

+ ∂u′′
i

∂xj

∂u′′
j

∂xi

− 2

3

(
∂u′′

i

∂xi

)2
]

. (21)

For low-order statistics a resolution criterion of kmaxη � 1 is
adequate for DNSs. For higher-order statistics, however, it was
found (e.g., Ref. [30]) that a value of kmaxη � 1.5 is needed.

Following this criterion, the finest grid resolution �xyz ≈
19.5 μm sufficiently resolves turbulence with a minimal
Kolmogorov length scale of ηmin ≈ 9.3 μm. The average
Kolmogorov length scale given in Fig. 2 verifies that for
Ma = 1.05 and Ma = 1.2 the DNS resolution requirement is
satisfied throughout the simulation on the finest grid resolution.
For Ma = 1.5 it is satisfied after a short initial transient
t � 130 μs.

The Kolmogorov length scale reaches a minimum right after
the shock passage, which is η̃ ≈ 26 μm for Ma = 1.05 and
decreases as the shock Mach number is increased to η̃ ≈ 5 μm
for Ma = 1.5. After the shock passage the Kolmogorov length
scale monotonically increases to η̃ ≈ 211 μm and η̃ ≈ 92 μm
for Ma = 1.05 and Ma = 1.5, respectively, at the final time.

The compensated enstrophy spectra at t = 50 μs, t =
200 μs, t = 500 μs, t = 1000 μs, and t = 3500 μs for Ma =
1.05, Ma = 1.2, and Ma = 1.5 are shown in Fig. 3. At
Ma = 1.05 the peak enstrophy is fully resolved at all times
and for all grid resolutions, whereas at Ma = 1.5 the peak
enstrophy is not fully resolved at the earliest time t = 50 μs.
This is consistent with the average Kolmogorov length scale
at these times. For the intermediate shock Mach number
Ma = 1.2 the peak enstrophy is resolved on the two finest
grids.

Note that enstrophy is a sensitive quantity and that other
quantities converge already on coarser grids. From this, we
conclude that our simulation results on the finest grid qualify
as DNSs.

B. Scales of turbulent motion

The Taylor-microscale Reynolds number is defined as

Reλ = u′′λT

ν
, (22)

where u′′ is the RMS velocity fluctuation obtained from
Reynolds averaging, λT is the Taylor microscale, and ν is the
kinematic viscosity. According to Dimotakis [31] the Taylor
microscale Reynolds number must exceed Reλ � 100–140 or
Re � 104, if calculated as an outer-scale Reynolds number, in
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FIG. 3. Compensated enstrophy spectra for Ma = 1.05 (a), Ma = 1.2 (b), Ma = 1.5 (c) at t = 50 μs, t = 200 μs, t = 500 μs, t = 1000 μs,
and t = 3500 μs on three different grid resolutions 128 (dashed-dotted), 256 (dashed), and 512 (solid lines with symbols) with k̃ = k
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FIG. 4. Normalized turbulence kinetic energy spectra for Ma =
1.05 (crosses), Ma = 1.2 (triangles), and Ma = 1.5 (circles) at
t = 50 μs, t = 200 μs, t = 500 μs, t = 1000 μs, and t = 3500 μs.
The gray scale changes from black to light gray as time increases.
The dashed vertical line at kη = 1/8 marks the beginning of the
dissipation range.

order to observe fully developed turbulence. When the critical
Reynolds number is exceeded a range of scales evolves that
is independent from the large scales of motion and free from
viscous effects. Only then does the inertial-range similarity
concept of Kolmogorov [32] apply. The Taylor microscale
Reynolds numbers depicted in Fig. 5 (a) show that for the two
higher Mach numbers the Reynolds numbers are Reλ ≈ 143
and Reλ ≈ 47 after shock passage.

An inner viscous scale λν [31], i.e., the upper limit of the
dissipation range, can be estimated from the wave number kν

where the spectrum begins to deviate from the inertial range
spectrum, which is kνη ≈ 1/8 according to Dimotakis [31]
who found this value by inspecting the data compilation
of Saddoughi and Veeravalli [33]. The turbulence kinetic
energy spectra normalized as proposed by Saddoughi and
Veeravalli [33] are given in Fig. 4. The dashed line represents
the inner viscous wave number according to kνη ≈ 1/8, which
verifies that at this wave number all spectra begin to deviate

from the inertial range scaling. Figure 4 also verifies that all
spectra collapse within the dissipation range in agreement with
Kolmogorov’s theory.

From kνη ≈ 1/8 the inner viscous scale directly follows as

λν = 2π

kν

≈ 50η. (23)

The upper bound of the uncoupled range, the Liepmann-
Taylor scale λL, is the smallest scale that can be directly
generated from the outer scale δ. Based on experimental data
Dimotakis [31] determined that the Liepmann-Taylor scale is
proportional to the Taylor-microscale

λL ≈ cLλT , (24)

with cL as a flow-dependent parameter with a value of around
cL ≈ 5; cf. Dimotakis [31], Zhou et al. [34], and Robey
et al. [35].

The Taylor microscale λT is obtained from the curvature
of the transverse spatial covariance of the velocity fluctuations
Rt,i(r,t) at r = 0:

λT,i(t) =
[
−1

2

∂2Rt,i(0,t)

∂r2

]−1/2

, (25)

with

Rt,i(r,t) = 〈u′′
i (	x,t)u′′

i (	x + r	ej 
=i ,t)〉
〈u′′

i u
′′
i 〉

, with i = 2,3.

(26)
The transverse covariance is evaluated in the homogeneous
directions at each plane in the inner mixing zone with −3 �
r � 3, giving λT,y and λT,z. The directional Taylor microscales
are averaged in the streamwise x direction, from which the
effective mean Taylor microscale is calculated.

Dimotakis [31] argued that an uncoupled range of scales
exists when λL/λν � 1. The uncoupled range is illustrated in
Fig. 5(b) evolving between Liepmann-Taylor scale λL and the
upper limit of the dissipation range λν . In the present study only
the highest Mach number case exceeds Reλ > 100 and should
therefore exhibit a range of uncoupled scales. At Ma = 1.5
a range of uncoupled scales with λL > λν evolves for t �
400 μs. At this time the Taylor microscale Reynolds number
is Reλ ≈ 26, which is smaller than the expected value of Reλ >

100 − 140 according to Dimotakis [31]; see Fig. 5(a). Because
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FIG. 5. Taylor microscale Reynolds number and uncoupled range of scales, given by the inner viscous scale λν (dashed) and the Liepmann-
Taylor scale λL (solid) for Ma = 1.05 (crosses), Ma = 1.2 (triangles), and Ma = 1.5 (circles).

063001-5



V. K. TRITSCHLER, M. ZUBEL, S. HICKEL, AND N. A. ADAMS PHYSICAL REVIEW E 90, 063001 (2014)

kη

E
k
in

k
5/

3
m

2
s−

2

(a)

t

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

t

kη

(b)

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

t

kη

(c)

FIG. 6. Compensated spectra of turbulence kinetic energy for Ma = 1.05 (a), Ma = 1.2 (b), Ma = 1.5 (c) at t = 50 μs, t = 200 μs,
t = 500 μs, t = 1000 μs, and t = 3500 μs with k̃ = kη. The dashed vertical line at kη = 1/8 marks the beginning of the dissipation range.

of the uncertainties associated with the estimates for λL and
λν and the shallow intersection of their curves a more realistic
value for the critical Reynolds number in the present setup is
Reλ � 35–80.

Scales within the uncoupled range should exhibit a spectral
scaling close to a k−5/3 scaling. In Fig. 6 we show the
compensated spectra of turbulence kinetic energy for all Mach
numbers at 50 μs, 200 μs, 500 μs, 1000 μs, and 3500 μs over
the Kolmogorov normalized wave number. The dashed line
marks the beginning of the dissipation range at kη = 1/8.
As observed in Fig. 5 the lowest Mach number case does
not exhibit an uncoupled range of scales beyond t � 60 μs.
Accordingly, all scales are either affected by viscous effects
or driven by the large-scale motion, such that no scales can
become unstable and subsequently turbulent. As can be seen
in Fig. 6(a) almost the full spectrum is within the dissipation
range, which implies that the growth of the mixing zone
is dominated by the large scales of motion and molecular
diffusion.

For the medium Mach number, shown in Fig. 6(b), the
energy-containing scales are also relatively close to the
dissipation range with only a very narrow range of uncoupled
scales immediately after the shock-interface interaction; see
also Fig. 5(b). The existence of a k−5/3 range is not evident,
since the dominant wave numbers overlay an eventual inertial
range at t = 50 μs. At later times the spectrum becomes more
shallow than Kolmogorov’s scaling.

As the Mach number is increased to Ma = 1.5 an uncoupled
range of scales develops during the first t ≈ 400 μs, which
manifests in a narrow inertial range following approximately
k−5/3 at t = 50 μs as can be seen in the compensated energy
spectra in Fig. 6(c). At later times, however, an inertial range
following k−5/3 is not evident anymore. Only a very narrow
band of uncoupled scales exists for t � 200 μs, and thus,
scales are likely to be either damped by viscous effects or
affected by the large scales of motion beyond this time.

Scales within the uncoupled range can become unstable
through nonlinear growth and mode coupling, which quickly
removes the imprint of the initial perturbation. As seen in

Fig. 6(a), if the energy-containing mode initially is in the
dissipation range, the modes do not become unstable and
are slowly dissipated. At the highest Mach number, Fig. 6(c),
the modes become unstable, and the energy-containing mode
quickly breaks down into smaller scales leaving no evidence
of the initial perturbation.

Figure 7 shows the mixing zone width δx and the integral
length scale �. The integral length scale is calculated from the
longitudinal spatial velocity covariance [36]

�i =
∫ ∞

0
Rl,i(r,t) dr, (27)

with

Rl,i(r,t) = 〈u′′
i (	x,t)u′′

i (	x + r	ei,t)〉
〈u′′

i u
′′
i 〉

, with i = 2,3. (28)

To compute the spatial velocity covariance in the whole domain
Rl,i(r,t) the Wiener-Khinchin theorem is applied. The theorem
states that the autocorrelation function is the inverse Fourier
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FIG. 7. The mixing zone width δx and the integral length scale �

as a function of time.
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FIG. 8. Summary of length scales for Ma = 1.05 (a), Ma = 1.2 (b), and Ma = 1.5 (c). The solid lines with symbols represent the mixing
zone width δx (squares), the integral length scale � (diamonds), the Taylor microscale λT (plus), and the Kolmogorov length scale η (triangles).

transform of its power spectrum
Rl,i(r,t) = F−1[û′′∗

i û′′
i ]. (29)

Integration of Rl,i(r,t) leads to longitudinal integral scales in
the y and z direction, �y and �z. The directional integral
length scales �i are averaged in the streamwise x direction
from which the effective integral length scale � is calculated.

The mixing zone width is defined as

δx(t) =
∫ ∞

−∞
4〈YSF6〉yz(1 − 〈YSF6〉yz)dx, (30)

where 〈·〉yz denotes ensemble averaging in the cross-stream yz

plane.
The mixing zone width grows approximately proportional

to ∼t1/7, whereas the integral length scale in the homogeneous
directions grows as ∼t2/7. Various growth rate exponents �

have been proposed in the past ranging from � = 2/7 [37] to
� = 2/3 [38]. Our results are in the lower range of previously
published data.

A summary of all length scales is given in Fig. 8. It shows
the mixing zone width, the integral length scale, the Taylor

microscale, and the Kolmogorov length scale for the three
investigated shock Mach numbers Ma = 1.05, Ma = 1.2, and
Ma = 1.5. Figure 8 verifies the increasing separation of scales
with increasing shock Mach number. Weber et al. [39] also
presented the mixing zone width, the Taylor microscale, and
the Kolmogorov length scale obtained from experimental
measurements at Ma = 1.6 and Ma = 2.2. In the investigation
of Weber et al. [39] the separation of scales appears not to
depend on the shock Mach number. The Kolmogorov length
scale at Ma = 1.5 in our investigation has the same order of
magnitude as in the experiment of Weber et al. [39].

C. Decaying turbulence

There are two distinct canonical cases of decaying isotropic
turbulence which result from the solution of the Kármán-
Howarth equation: turbulence of Saffman type with a Birkhoff-
Saffman spectrum [40,41] E(k → 0) ∼ Lk2 and turbulence of
Batchelor type E(k → 0) ∼ Ik4, where L = ∫ 〈u × u′〉d r and
I = ∫

r2〈u × u′〉d r are known as Saffman and Loitsyansky
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FIG. 9. Average turbulence kinetic energy TKE and viscous dissipation rate ε in the inner mixing zone as functions of time for Ma = 1.05
(crosses), Ma = 1.2 (triangles), and Ma = 1.5 (circles).
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FIG. 10. Normalized probability density functions of the velocity
for Ma = 1.5. The gray scale changes from light gray to black as time
increases. The Gaussian distribution is given by the dashed line. The
PDFs are normalized by their standard deviation σ .

integrals, respectively. These two canonical cases have been
derived under the assumption that the triple velocity correlation
tensor as well as the pressure-velocity correlation decay fast
enough for remote points.

The Saffman integral L is an invariant provided that the
triple velocity correlation tensor and the pressure-velocity
correlation decay as O(r−2) implying that the global linear
momentum is conserved. Saffman [41] showed that in this
case the Saffman integral is proportional to L ∼ u2l3. Then
the decay of turbulence kinetic energy follows as u2 ∼ t−6/5,
whereas the integral scale grows proportional to l ∼ t2/5.

If the long-range statistics become uncorrelated according
to O(r−4), i.e., if turbulence is dominated by angular momen-
tum with negligible linear momentum the Loitsyansky integral
I is conserved [42]. Given that I = const and that the large
scales evolve in a self-similar way, the Loitsyansky integral
is proportional to I ∼ u2l5 [32] implying that the turbulence
kinetic energy of isotropic homogeneous turbulence decays as
u2 ∼ t−10/7, whereas the integral scale grows as l ∼ t2/7.

Ishida et al. [43] reported the kinetic energy of isotropic
turbulence to decay as ∼t−n with n ≈ 1.4, if the Loitsyansky
integral is constant and if the Taylor microscale Reynolds
number exceeds Reλ > 100. Long-range interactions between
remote eddies resulted in a deviation from I = const and thus
in n 
= 10/7.

In Fig. 9 the average turbulence kinetic energy in the
inner mixing zone is shown for shock Mach numbers Ma =
1.05, Ma = 1.2, and Ma = 1.5. After an initial transient all
cases exhibit a decay exponent close to n = 12/7 ≈ 1.71,
which is steeper than predicted by the third hypothesis of
Kolmogorov [32], i.e., n = 10/7. Ishida et al. [43], however,
found that n → 1.5 for Reλ = 62.5 and for lower Reynolds
numbers (Reλ = 31.3) n → 1.63, while n → 10/7 for Reλ =
125 from which the authors concluded that the Reynolds
number must exceed Reλ ≈ 100 in order to observe n = 10/7.
In the present simulations the Taylor microscale Reynolds
numbers are Reλ ∼ O(10) for the two higher shock Mach
number and Reλ � O(10) for Ma = 1.05 at late times as
depicted in Fig. 5. For the highest shock Mach number Ma =
1.5 the Taylor microscale Reynolds number is Reλ ≈ 140
after shock passage and decays to Reλ ≈ 20 at the latest
time. Burattini et al. [44] found a dependency between the
initial Reynolds number Reλ(t = 0) and the observed decay
exponent n of turbulence kinetic energy, that is, n → 1 as
Reλ(t = 0) → ∞. This dependence approximately follows
n = 1.05 + 60/Reλ(t = 0) in good agreement with other data
from the literature. For an initial Taylor microscale Reynolds
number of Reλ(t = 0) ≈ 140 the power-law exponent be-
comes n ≈ 1.48 and thus is smaller than the observed value
in the present investigation. Samtaney et al. [45] investigated
decaying compressible turbulence and found for a range of
different initial conditions the decay exponent of turbulence
kinetic energy to be in the range 1.37 � n � 1.71, which is in
good agreement with the present results.

It is interesting to note that all three cases follow the
same decay law and do not show a dependence on the
initial Reynolds number as observed previously [43,44]. Also,
the lowest Mach number case follows ∼t−12/7 even though
the flow does not become turbulent. Lombardini et al. [9]
investigated shock-initiated decaying turbulence at various
shock Mach numbers ranging from Ma = 1.05 to Ma = 5.
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FIG. 11. Normalized probability density function of the longitudinal (a) and transverse velocity gradients (b) for Ma = 1.5. The gray scale
changes from light gray to black as time increases. The Gaussian distribution is given by the dashed line. The PDFs are normalized by their
standard deviation σ .
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FIG. 12. Skewness (a) and kurtosis (b) of the velocity (solid line), the longitudinal velocity gradient (dashed line), and the transverse
velocity gradient (dashed-dotted) for Ma = 1.5.

The turbulence kinetic energy decay was found to be larger
than ∼t−6/5 and closer to ∼t−10/7, independent of the shock
Mach number. Tritschler et al. [15] also found the decay of
turbulence kinetic energy to be proportional to ∼t−10/7.

Figure 9(b) shows the average viscous dissipation rate in
the inner mixing zone as a function of time. The viscous
dissipation rate decays as ∼t−19/7, consistent with the decay
of turbulence kinetic energy.

D. Probability density functions

According to the theory of Kolmogorov, the probability
density function (PDF) of the velocity field of homogeneous
isotropic turbulence exhibits a Gaussian normal distribution.
However, Batchelor [46] showed that velocity gradients,
especially for scales that are close to the dissipation limit,
do not satisfy the assumption of uncorrelated long-range
interactions.

Jiménez et al. [47] investigated the vorticity statistics of
forced isotropic turbulence at Taylor microscale Reynolds
numbers ranging from Reλ = 35 to Reλ = 170. This work
indicates that the PDF of the single-point vorticity and the PDF
of strain of isotropic turbulence is non-Gaussian and shows
growing tails with increasing Reynolds numbers. Furthermore,
the tails of the PDF do not show an asymptotic behavior
for the limiting case Re → ∞. Despite the deviations from
Gaussianity and the lack of an asymptotic behavior, the spectra
showed a k−5/3 decay law and a dissipation range as predicted
by Kolmogorov. Jiménez et al. [47] explained this observation
with long coherent vortices (“worms”). The authors state
that these worms are part of the background vorticity and
responsible for a large amount of turbulent dissipation. The
worms themselves, however, are only responsible for a small
fraction of kinetic energy which is proportional to the volume
fraction that they occupy.

Wilczek et al. [48] found that decaying and forced
turbulence do not differ fundamentally, since the velocity
component PDFs show self-similarity when normalized by
the respective standard deviation. Furthermore, the vorticity
distribution exhibits an intermittent behavior as reported by

Jiménez et al. [47]. The velocity distribution deviates from
a Gaussian distribution with sub-Gaussian tails, implying a
kurtosis of γ2 < 3.

We show the statistics of the velocity and the transverse
and longitudinal velocity gradients of the Ma = 1.5 case in
Fig. 10 and Fig. 11. At lower Mach numbers the PDF show
qualitatively a similar behavior as the PDFs for a shock Mach
number of Ma = 1.5.

The PDFs are normalized by their respective standard
deviation σ . At later times the PDFs collapse, indicating a
self-similar decay as proposed previously [48]; see Fig. 10. The
PDFs of velocity are approximately Gaussian, with a kurtosis
slightly below that of the Gaussian distribution, i.e., γ2 ≈ 2.8.
This is in very good agreement with previous results [47]
for sustained isotropic turbulence, which found γ2 = 2.8 for
Reλ = 35.1. The skewness is expected to be zero in isotropic
turbulence. In the present case, it fluctuates around zero before
finally deviating to γ1 > 0 and approaching γ1 ≈ 0.05 at later
times; see Fig. 12(a) and Fig. 12(b).

10
−4

10
−3

10
1

10
2

10
3

10
4

t [s]

R
e δ

FIG. 13. Temporal evolution of different Reynolds number ap-
proximations for a shock Mach number of Ma = 1.5 [36] and as
given in Table II.
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TABLE II. Reynolds number approximations for a shock Mach
number of Ma = 1.5 [36].

Reδ
δx δ̇x

ν

(
�

η

)4/3 TKE1/2�

ν

(√
10�

λT

)2 1
100

(
λT

η

)4 3
20 Re2

λ

Reδ(t = 200 μs) 701 171 176 165 183 188
Symbol Solid Circle Triangle Diamond Square Dashed

The PDFs of the velocity gradients are clearly non-Gaussian
with long tails. The values of the statistical moments γ1, γ2 are
in very good agreement with that observed previously [47]. For
the longitudinal velocity gradient ∂v/∂y, shown in Fig. 11(a),
we find the skewness and kurtosis [see Fig. 12(a) and
Fig. 12(b)] to be only slightly smaller than that given by
Ref. [47] at Reλ = 35.1 (γ1 = −0.49, γ2 = 4.2) and Ref. [45]
(−0.5 � γ1 � −0.4) and in very good overall agreement. Note
that the Taylor microscale Reynolds number is Reλ ≈ 15–25 at
later times, which is smaller than the lowest Reynolds number
investigated in Ref. [47] of Reλ = 35.1.

The transverse velocity gradient ∂v/∂z shows good agree-
ment with that of Ref. [47], but begins to deviate at later
times becoming more skewed. The kurtosis γ2 of the transverse
velocity gradient agrees well with the value in Ref. [47], which
found γ2 = 5.7 for Reλ = 35.1.

Inspecting the compensated spectra of turbulence kinetic
energy, shown in Fig. 6, it is evident that for times t > 1000 μs,
the spectrum is very shallow with a large portion within the
dissipation range. The present data suggest that RMI exhibits
features of isotropic turbulence, provided that the energy
injected by the shock wave is strong enough to create a range of
uncoupled scales, which is the case in the present investigation
for Reλ � 35–80.

E. Outer-scale Reynolds number

For Richtmyer-Meshkov unstable flows the outer-scale
Reynolds number is estimated from the mixing zone width
δx and its growth rate δ̇x according to

Reδ = δx δ̇x

ν
. (31)

The temporal evolution of Reδ as given in Eq. (31) together
with length scale approximations for isotropic turbulence as
given in Ref. [36] are shown in Fig. 13 and listed in Table II. As
also reported in Ref. [39] the approximation given in Eq. (31)
overestimates the true Reynolds number in RMI, see Table II.
Reδ = 3/20Re2

λ can be considered as reference since it is
derived from the exact definition of the Taylor microscale

Reynolds number. According to the outer-scale Reynolds
number approximations given in Table II the Reynolds number
is in the range 165 � Reδ � 188 at t = 200 μs.

VI. CONCLUSION

Because direct numerical simulations (DNSs) of
experimental-scale setups are beyond todays computational
resources, DNSs on a reduced computational domain were
performed. For this reduced computational domain we have
presented fully resolved DNS results for the Richtmyer-
Meshkov instability evolving from a deterministic multimode
planar interface. The interface was accelerated by three
different shock waves of strength Ma = 1.05, Ma = 1.2, and
Ma = 1.5.

While at the lowest Mach number the dominant modes
slowly mix with the ambient fluid by viscous diffusion, a
turbulent mixing zone is obtained at the highest shock Mach
number. An uncoupled range of scales evolves associated with
the emergence of a narrow Kolmogorov inertial subrange for
t � 200 μs at Ma = 1.5. The Taylor microscale Reynolds
number decreases after the shock passage from Reλ ≈ 143 to
Reλ ≈ 13 at the final time. Increasing the shock Mach number
leads to larger Taylor microscale Reynolds numbers, and the
scales of turbulent motion become more and more separated.

The growth of integral scale and mixing zone width as
well as the decay rates of turbulence kinetic energy and
enstrophy are independent of the shock Mach number and in
good agreement with values known from decaying isotropic
turbulence.

Probability density functions of the velocity and its longi-
tudinal and transverse derivatives are also in agreement with
those for decaying isotropic turbulence.

We conclude that turbulence evolving from the Richtmyer-
Meshkov instability is not fundamentally different from
decaying isotropic turbulence despite being only isotropic and
homogeneous in two spatial directions. This is particularly
true when the Reynolds number exceeds a critical value and
the flow becomes turbulent. The critical Taylor microscale
Reynolds number was found to be Reλ � 35–80 for the
investigated relatively low shock Mach numbers.
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[47] J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, J.

Fluid Mech. 255, 65 (1993).
[48] M. Wilczek, A. Daitche, and R. Friedrich, J. Fluid Mech. 676,

191 (2011).

063001-11

http://dx.doi.org/10.1063/1.3638616
http://dx.doi.org/10.1063/1.3638616
http://dx.doi.org/10.1063/1.3638616
http://dx.doi.org/10.1063/1.3638616
http://dx.doi.org/10.1103/PhysRevE.81.056302
http://dx.doi.org/10.1103/PhysRevE.81.056302
http://dx.doi.org/10.1103/PhysRevE.81.056302
http://dx.doi.org/10.1103/PhysRevE.81.056302
http://dx.doi.org/10.1103/PhysRevE.86.066319
http://dx.doi.org/10.1103/PhysRevE.86.066319
http://dx.doi.org/10.1103/PhysRevE.86.066319
http://dx.doi.org/10.1103/PhysRevE.86.066319
http://dx.doi.org/10.1017/jfm.2014.436
http://dx.doi.org/10.1017/jfm.2014.436
http://dx.doi.org/10.1017/jfm.2014.436
http://dx.doi.org/10.1017/jfm.2014.436
http://dx.doi.org/10.1063/1.4733447
http://dx.doi.org/10.1063/1.4733447
http://dx.doi.org/10.1063/1.4733447
http://dx.doi.org/10.1063/1.4733447
http://dx.doi.org/10.1063/1.4813608
http://dx.doi.org/10.1063/1.4813608
http://dx.doi.org/10.1063/1.4813608
http://dx.doi.org/10.1063/1.4813608
http://dx.doi.org/10.1063/1.3139305
http://dx.doi.org/10.1063/1.3139305
http://dx.doi.org/10.1063/1.3139305
http://dx.doi.org/10.1063/1.3139305
http://dx.doi.org/10.1063/1.1678363
http://dx.doi.org/10.1063/1.1678363
http://dx.doi.org/10.1063/1.1678363
http://dx.doi.org/10.1063/1.1678363
http://dx.doi.org/10.1016/j.jcp.2010.08.019
http://dx.doi.org/10.1016/j.jcp.2010.08.019
http://dx.doi.org/10.1016/j.jcp.2010.08.019
http://dx.doi.org/10.1016/j.jcp.2010.08.019
http://dx.doi.org/10.1016/j.jcp.2011.05.023
http://dx.doi.org/10.1016/j.jcp.2011.05.023
http://dx.doi.org/10.1016/j.jcp.2011.05.023
http://dx.doi.org/10.1016/j.jcp.2011.05.023
http://arxiv.org/abs/arXiv:1204.5088
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1088/0031-8949/2013/T155/014016
http://dx.doi.org/10.1088/0031-8949/2013/T155/014016
http://dx.doi.org/10.1088/0031-8949/2013/T155/014016
http://dx.doi.org/10.1088/0031-8949/2013/T155/014016
http://dx.doi.org/10.1063/1.4865756
http://dx.doi.org/10.1063/1.4865756
http://dx.doi.org/10.1063/1.4865756
http://dx.doi.org/10.1063/1.4865756
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1017/S0022112099007946
http://dx.doi.org/10.1017/S0022112099007946
http://dx.doi.org/10.1017/S0022112099007946
http://dx.doi.org/10.1017/S0022112099007946
http://dx.doi.org/10.1017/S0022112094001370
http://dx.doi.org/10.1017/S0022112094001370
http://dx.doi.org/10.1017/S0022112094001370
http://dx.doi.org/10.1017/S0022112094001370
http://dx.doi.org/10.1103/PhysRevE.67.056305
http://dx.doi.org/10.1103/PhysRevE.67.056305
http://dx.doi.org/10.1103/PhysRevE.67.056305
http://dx.doi.org/10.1103/PhysRevE.67.056305
http://dx.doi.org/10.1063/1.1534584
http://dx.doi.org/10.1063/1.1534584
http://dx.doi.org/10.1063/1.1534584
http://dx.doi.org/10.1063/1.1534584
http://dx.doi.org/10.1016/j.euromechflu.2011.04.009
http://dx.doi.org/10.1016/j.euromechflu.2011.04.009
http://dx.doi.org/10.1016/j.euromechflu.2011.04.009
http://dx.doi.org/10.1016/j.euromechflu.2011.04.009
http://dx.doi.org/10.1017/S0263034600008557
http://dx.doi.org/10.1017/S0263034600008557
http://dx.doi.org/10.1017/S0263034600008557
http://dx.doi.org/10.1017/S0263034600008557
http://dx.doi.org/10.1017/jfm.2014.188
http://dx.doi.org/10.1017/jfm.2014.188
http://dx.doi.org/10.1017/jfm.2014.188
http://dx.doi.org/10.1017/jfm.2014.188
http://dx.doi.org/10.1002/cpa.3160070104
http://dx.doi.org/10.1002/cpa.3160070104
http://dx.doi.org/10.1002/cpa.3160070104
http://dx.doi.org/10.1002/cpa.3160070104
http://dx.doi.org/10.1017/S0022112067000552
http://dx.doi.org/10.1017/S0022112067000552
http://dx.doi.org/10.1017/S0022112067000552
http://dx.doi.org/10.1017/S0022112067000552
http://dx.doi.org/10.1017/S0022112006001625
http://dx.doi.org/10.1017/S0022112006001625
http://dx.doi.org/10.1017/S0022112006001625
http://dx.doi.org/10.1017/S0022112006001625
http://dx.doi.org/10.1103/PhysRevE.73.066304
http://dx.doi.org/10.1103/PhysRevE.73.066304
http://dx.doi.org/10.1103/PhysRevE.73.066304
http://dx.doi.org/10.1103/PhysRevE.73.066304
http://dx.doi.org/10.1063/1.1355682
http://dx.doi.org/10.1063/1.1355682
http://dx.doi.org/10.1063/1.1355682
http://dx.doi.org/10.1063/1.1355682
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/jfm.2011.39
http://dx.doi.org/10.1017/jfm.2011.39
http://dx.doi.org/10.1017/jfm.2011.39
http://dx.doi.org/10.1017/jfm.2011.39



