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Statistics of the island-around-island hierarchy in Hamiltonian phase space
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The phase space of a typical Hamiltonian system contains both chaotic and regular orbits, mixed in a
complex, fractal pattern. One oft-studied phenomenon is the algebraic decay of correlations and recurrence
time distributions. For area-preserving maps, this has been attributed to the stickiness of boundary circles,
which separate chaotic and regular components. Though such dynamics has been extensively studied, a full
understanding depends on many fine details that typically are beyond experimental and numerical resolution.
This calls for a statistical approach, the subject of the present work. We calculate the statistics of the boundary
circle winding numbers, contrasting the distribution of the elements of their continued fractions to that for
uniformly selected irrationals. Since phase space transport is of great interest for dynamics, we compute the
distributions of fluxes through island chains. Analytical fits show that the “level” and “class” distributions are
distinct, and evidence for their universality is given.
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I. INTRODUCTION

Area-preserving maps constitute the simplest models
of chaotic behavior in conservative dynamics. Such two-
dimensional maps typically arise through a Poincaré section
of a two degree-of-freedom Hamiltonian system. In virtually
all physical applications where chaos arises in classical
mechanics, the phase space consists of a mixture of both
regular and chaotic orbits. A typical phase space, for the
Hénon map studied in this paper, is presented in Fig. 1. While
there are many rigorously known properties of such maps
(e.g., Poincaré-Birkhoff theory, KAM theory, Aubry-Mather
theory, etc.), the striking numerical observation of an infinite
hierarchy of regular islands embedded in a chaotic sea of
nonzero measure [1,2] has resisted rigorous approaches. Orbits
in this chaotic “fat fractal” [3] have a highly irregular motion
and stick for long times in the neighborhood of the boundaries
of islands. This leads to an observed algebraic decay of
correlation functions, Poincaré recurrences and survival times,
that is, to distributions of the form

P (t) ∼ t−γ . (1)

The recurrence time exponent is connected with the exponent
of the mean square displacement 〈[�x(t)]2〉 ∼ tβ , by γ + β =
3 [4].

There has been much controversy over (1) [4–14]: is the
decay really asymptotically a power law? If it is, does the
value of γ depend upon the specific map, its parameters, or
the location in phase space?

One explanation for algebraic decay is a simple model
based on a hierarchical Markov chain or tree [7,8] using
the transport theory of MacKay et al. [15]. The point is
that each island embedded in a chaotic sea corresponds
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to a nested set of invariant circles surrounding a point on
an elliptic periodic orbit. The outermost of these circles,
the “boundary circle,” is sticky because it is enclosed by
remnant invariant circles, “cantori” (see Fig. 1). The flux
of chaotic trajectories through these cantori limits to zero
approaching the boundary [15]. Moreover, each island is
generically surrounded by other islands that correspond to
additional (librational) elliptic periodic orbits formed where
the winding number around the first orbit is rational (see, e.g.,
Fig. 1): this is the Poincaré-Birkhoff scenario. If some of these
islands are outside the boundary circle, they too are in the
chaotic sea. The boundary circles of these new islands are also
enclosed by sequences of cantori with fluxes approaching zero.

While there are potentially many islands embedded in
a chaotic sea (for example, islands formed by a saddle-
center bifurcation [2]), the simplest model keeps only the
islands in the Poincaré-Birkhoff hierarchy; this gives the
binary, Markov tree model of Meiss and Ott [8], sketched in
Fig. 2. The sequence of islands that correspond to successive
rational approximants of the boundary circle winding number
correspond to one branch of this tree and are labeled by “level”;
see Fig. 4. Between two neighboring levels there is a cantorus
of minimal flux, and successive minimal flux cantori bound
a state on the Markov tree. A second branch of the tree is
formed by the hierarchy of cantori that surround the main
island at a given level. This corresponds to incrementing the
“class.” This construction gives a binary tree (see, e.g., Fig. 4):
transitions to the right correspond to incrementing the level
and thus approaching a fixed boundary circle, and transitions
to the left correspond to incrementing the class, i.e., orbiting
smaller island in the hierarchy.

The simplest situation corresponds to a self-similar tree.
The transition rates are then determined using the MacKay-
Greene renormalization theory [16] for the levels, and by
an analog of the Feigenbaum period-doubling scenario for
classes [17]. In this case, γ can be obtained analytically
in the Markov approximation [7,8]. A major disadvantage
of this method is that the assumed self-similar structure
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FIG. 1. (Color online) Six classes of the island-around-island
hierarchy for (7) at K = −0.171 979 979 40. The upper right panel
shows the class-one island around (xe,ye) and the stable and unstable
manifolds of the hyperbolic fixed point. The state S = 1 corresponds
to a period-7 island chain (upper left); around each of these islands is
period-7, class-two chain, the state S = 10. The class-one boundary
circle, BC is the labeled circle (brown) in the upper right panel, and
the class-two boundary circle BC ′ is in the upper left panel. Bounds
of each panel are given in the form (x0,y0) + (�x,�y) indicating the
bottom left and width and height of the panel.

of islands-around-islands occurs only at specially chosen
parameter values for a given map and is only asymptotic;
moreover, the level and class self-similarities do not occur
simultaneously in one-parameter families of maps.

Nevertheless, observed algebraic decay rates appear to
exhibit some degree of universality [4]. This is, however, a
delicate numerical problem since chaos, by its very definition,
precludes accurate, long computations, and the observations
show that the decay rates fluctuate with increasing time even
up to the longest times, say, 1010 iterations, that have been
computed. In recent years a statistical approach has been in-
troduced in order to obtain a universal decay rate [13,14]. This
approach is based on the idea that the dynamics in different
regions of phase space will be described by different scalings,
and in some sense this is equivalent having an ensemble

FIG. 2. (Color online) Tree for the Hénon map at K =
−0.171 979 979 40 with the phase space shown in Fig. 1. Each node
is labeled by the state S, the winding number sequence for each
class, p1

q1
: p2

q2
: · · · and the flux (13) through the pair of periodic

orbits. Several transition probabilities, pS,S′ , are also indicated.
The class one boundary circle for this case has rotation number
ωBC = [0; 6,1,4,1,5,1,2,1, . . .].

of Markov models in which the transition rates are chosen
randomly from some distribution. The idea is that the long-time
statistics is governed by orbits that stick near small islands in
various regions of phase space. The detailed structure of these
islands depends upon location. Thus one can consider the long
time statistics to be governed by an ensemble of localized
structures.

For example, Cristadoro and Ketzmerick [13] showed that γ
does not depend on the realization but rather on the probability
distribution of transition rates. In their work this distribution
was chosen in an ad hoc way, and to be the same for level and
class transitions. The paper [13] used a specific distribution,
namely a uniform one. If there is some universal distribution,
then one expects that this explains the universality of γ for
different maps and parameter values. In the present work we
provide evidence that such a distribution does exist for the
Hénon map.

Ceder and Agam [14] assumed that the transition rates are
effectively self-similar, but added white noise fluctuations.
They showed that this causes fluctuations in γ that do not
decay even for very long times.

We start in Sec. II by reviewing some of the properties of
area-preserving maps, and in particular of the model that we
will use, Hénon’s quadratic area-preserving map. In Sec. III
we discuss numerical methods to compute periodic orbits of
various rotation numbers. In Sec. IV we will extend the work
of Greene et al. [18] on the distribution of continued fraction
elements for boundary circles, showing that this distribution
appears to be universal over variations in the parameter of
the Hénon map, as well as over classes of islands. Finally, in
Sec. V we compute a distribution of scaling factors for the flux
through periodic orbits in the islands-around-islands hierarchy.
We show that the distribution has two forms, depending upon
whether the ratio is computed for fluxes through successive
levels that approach a given boundary circle, or for fluxes
between successive classes of islands.
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II. PRELIMINARIES

A. Area-preserving maps

A map T is a discrete-time dynamical system, defining a
trajectory by the iteration �x ′ = T (�x) for a point �x ∈ Rn. An
orbit of T is a sequence {�xt : �xt+1 = T (�xt ),t ∈ Z}. The map
preserves volume if

det(DT ) = 1, (2)

where DT is the Jacobian of T . For the two-dimensional case,
letting �x = (x,y), the Jacobian is the 2 × 2 matrix

DT =
(

∂x ′
∂x

∂x ′
∂y

∂y ′
∂x

∂y ′
∂y

)
.

Since this matrix has determinant one, its eigenvalues form
a reciprocal pair λ1λ2 = 1. An orbit {�x0,�x1, . . . ,�xq−1 . . .} has
period-q, when �xq = �x0, or equivalently if T q(�x0) = �x0. The
eigenvalues of the Jacobian DT q( �x0) determine the linear
stability of the orbit. The Jacobian of the composition can
be computed using the chain rule

DT q(�x0) =
q−1∏
t=0

DT ( �xt ).

For the area-preserving case, John Greene encoded stability in
a convenient index he called the “residue” [19],

R = 1
4 [2 − Tr(DT q)]. (3)

When R < 0 the fixed point is hyperbolic (0 < λ1 < 1 < λ2),
when 0 < R < 1 it is elliptic (|λi | = 1) and when R > 1 it
is hyperbolic with reflection (λi < 0). When the fixed point
is elliptic, it has eigenvalues e±2πiω0 , and the local rotation
frequency ω0 is related to the residue by

R = sin2(πω0). (4)

An orbit that encircles an elliptic fixed point may have a
rotation or winding number, the average number of times the
orbit goes around the fixed point per iteration. A period-q orbit
always has rational winding number, ω = p/q, where p ∈ Z
represents the total rotation of the orbit per period. An invariant
circle enclosing the fixed point generically has an irrational
winding number. Indeed, Moser’s twist theorem asserts that
a fixed point of a smooth enough map has a neighborhood
containing a Cantor set of invariant circles when ω0 �= 1

2 , 1
3 , or

1
4 and when a twist condition is satisfied [20,21].

An effective numerical technique for finding these invariant
circles is based on Greene’s residue criterion [19]. This asserts
that an invariant circle with irrational winding number ω

exists when periodic orbits in its neighborhood have bounded
residue. In the case that an irrational torus is isolated, when
it is locally robust, Greene found that the residues of periodic
orbits that limit on the circle approach a limiting threshold
value, R ≈ 0.25. Conversely, he found that if the residues
are unbounded, then there are no nearby invariant circles.
Aubry-Mather theory implies that when the map has twist,
each destroyed circle is replaced by a cantorus, topologically
a Cantor set [21].

Following the pioneering work of Greene, MacKay, and
Stark (GMS) [18], we will use the residue criterion (see

Sec. III) to find “boundary circles,” that is, circles that are
locally isolated from one side. GMS showed that the rotation
number ωBC of a typical boundary circle is unusual from a
number theoretic point of view; this can be seen most easily
using the continued fraction expansion. Recall that any real
number ω has a continued fraction expansion

ω = m0 + 1

m1 + 1
m2+···

= [m0; m1,m2, . . .], (5)

where m0 ∈ Z and mi ∈ N [22,23]. When ω is irrational, this
expansion is infinite, and a truncation after n terms gives a
rational approximation,

ωn = pn

qn

= [m0; m1,m2, . . . ,mn], (6)

called the nth convergent to ω. We will compute the rotation
numbers for boundary circles for the Hénon map and their
continued fraction expansions in Sec. IV.

B. Hénon map

As a model, we will use Hénon’s famous area-preserving
quadratic map [24]; it is a one-parameter family that can be
written in the form

T :

{
x ′ = −y + 2(K − x2)
y ′ = x

. (7)

This map can be generated by the discrete Lagrangian

L(x,x ′) = xx ′ − 2x

(
K − x2

3

)
,

using the equations y ′ = ∂L
∂x ′ y = − ∂L

∂x
.

The map (7) has a pair of fixed points when K > − 1
4 . The

point

xe = ye ≡ 1
2 (−1 + √

1 + 4K) (8)

has residue R = 1
2

√
1 + 4K , and so is elliptic when − 1

4 <

K < 3
4 , and the point

xh = yh ≡ 1
2 (−1 − √

1 + 4K) (9)

has residue R = − 1
2

√
1 + 4K , and so is hyperbolic.

The Hénon map is reversible [25], i.e., there exists an
involution, I , such that T −1 = I ◦ T ◦ I . Equivalently, T

can be factored into the product of two involutions, T =
(T ◦ I ) ◦ I with

I :

{
y ′ = x

x ′ = y
, T I :

{
y ′ = y

x ′ = −x + 2(K − y2)
. (10)

We will use these involutions to aid in finding periodic orbits;
see Sec. III.

C. Islands around islands

The elliptic fixed point (8) is the “parent” of an islands-
around-islands hierarchy: it is typically encircled by other
elliptic periodic orbits, which in turn are encircled by yet
more periodic orbits. Indeed, any elliptic period-q orbit can
be thought of as a fixed point of T q , and thus is also typically
encircled by a family of invariant circles that form a set of
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q-islands in the phase space. The map T q also typically has
periodic orbits, of period q ′, say, that encircle the original orbit.
Thus this whole structure repeats on a smaller scale, giving qq ′
islands-around-islands in the full phase space; an example is
shown in Fig. 1.

We are interested in how these islands are embedded
in a connected chaotic component of the phase space. The
boundary of a chaotic component consists of boundary circles:
the outermost invariant circles surrounding elliptic periodic
orbits. It seems to be generic that the boundary of a chaotic
component consists of infinitely many circles [3]. Some of
these are created by islands that encircle other islands: this is
the case for Fig. 1, where each island has a set of period-7
islands outside its boundary circle.

This hierarchical structure was modeled as a tree by Meiss
and Ott [8]; the nodes of the tree correspond to a partition
of a connected chaotic component into regions that represent
different stages of the island-around-island hierarchy; see, e.g.,
Fig. 2. This simplest version of this tree is binary; its nodes
can be labeled by a binary sequence S = s0s1 . . ., with si ∈
{0,1}. Each node represents a portion of the chaotic component
surrounding a given periodic orbit. Following [8], the null
state “∅” denotes the root of the tree, it corresponds to the
phase space outside the resonance zone formed by the stable
and unstable manifolds of the hyperbolic fixed point (the thin
red and blue curves in Fig. 1). Orbits in this region can be
unbounded, and we view ∅ as absorbing: whenever an orbit
leaves the resonance zone, iteration stops.

The boundary circle of the elliptic fixed point corresponds
to the largest invariant circle that encloses the fixed point, we
denote it by BC. The states below ∅ on the tree represent a
partition of the chaotic component outside BC and inside the
main resonance zone. Some of the periodic orbits that rotate
about the elliptic fixed point are outside BC. Indeed, since the
rotation number is typically a monotone decreasing function of
distance, the rotation numbers of the orbits encircling the fixed
point typically decrease with distance from the elliptic point,
converging to zero as they approach the broken separatrix; see
Fig. 3.1 Between every pair of rational rotation numbers, there
are infinitely many irrationals and these correspond to cantori
that encircle BC. The flux through these cantori is a rapidly
varying function of their rotation number; it typically has
sequence of sharp local minima as ω → ω−

BC [8,15]. The states
correspond to chaotic regions around rational rotation numbers
that are bounded by these locally minimal-flux cantori. This
gives a sequence of “levels,” states that limit on a given
boundary circle.

One way to choose the states is to use the periodic orbits
with rotation numbers that are the convergents (6) of the
continued fraction expansion of ωBC . These rational rotation
numbers are alternately larger than and smaller than ωBC

[23, Theorem 4]. Indeed, (5) implies that ω1 = m0 + 1
m1

and
ω2 = m0 + m2

m1m2+1 so that ω1 > ωBC > ω2. More generally
one can see that the convergents in the outer region, where
ω < ωBC , correspond to even i. For example, in Fig. 1, ωBC =

1Note that ω does not always decrease monotonically; in particular,
this does not occur near twistless bifurcations [26,27].

FIG. 3. The winding number ω as a function of the distance from
the elliptic point for (7) at K = −0.171 979 979 40. The rotation
number decreases monotonically, with flat spots marking the location
of islands.

[0; 6,1,4,1,5,1,2,1, . . .]. The first convergent p1

q1
= 1

6 = [0; 6],
gives rise to a period-6 island chain in the trapped region, while
the second 1

7 = [0; 6,1] gives a chain embedded in the outer,
chaotic component. These correspond to the largest steps seen
in Fig. 3. Subsequent even convergents, e.g., 6

41 = [0; 6,1,4,1],
41
280 , 158

1079 , etc., result in smaller islands closer to the boundary
circle that are too small to be seen in the figure. For the
tree representation, incrementing the level corresponds to a
transition to the right, and will be denoted with the symbol
“1.” This sequence of convergents gives the first branch of the
tree, as shown in Fig. 4; each of these states belongs to class
one. The first four of these states are indicated in Fig. 2.

When the positive residue periodic orbit defining a level
is elliptic, it is surrounded by an island of “class two.” For
example if the state S = 1 with rotation number p/q is elliptic,
then the map T q has q-fixed points surrounded by islands.
The boundary circle about this family will have some rotation
number, ωBC ′ , say, relative to T q . The outer convergents to
ωBC ′ correspond to states of “class two,” and to a step to the

FIG. 4. (Color online) Schematic diagram depicting the binary
level-class tree. Outer convergents to the class-one boundary circle
give the rightmost branch of the tree, the states S = 1j . When there
is an island in this component, it gives rise to states of class-two with
first approximant S = 10, and successive convergents giving states
101j that converge to the class-two boundary circle.
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left on the binary tree (denoted by the symbol “0”). Thus the
period-7 island around island the first period-7 island is the 1

7 :
1
7 orbit; it corresponds to a state of 49 islands for T and to the
state S = 10 on the tree. Subsequent outer convergents to the
boundary circle of the period-7 island correspond to the states
S = 101	, 	 = 1,2, . . ., as shown on the right panel of Fig. 4.

In general a state S = s1s2s3, . . . has a class equal to one
plus the number of zeros in S, and a level equal to the number
of ones in S. For example, the state S = 1011 corresponds to
a periodic orbit of class two and level three.

D. Markov tree model

To study transport in a connected chaotic component
with an infinite set of islands-around-islands, Meiss and
Ott introduced a Markov model based on the tree structure
discussed above [8]. Here we recall some of the notation for
this model.

A Markov model for transport on the tree is defined by
transition probabilities pS→S ′ for each pair of connected nodes
on the tree; recall Fig. 2. The probability of such a transition is
determined by the flux of trajectories that move from one state
to another, and this is limited by the area of the turnstile [15] in
the most resistant cantorus that divides the states. We denote
this flux by �WS,S ′ = �WS ′,S ; it is symmetric because the net
flux through any region of phase space must be zero. The flux
through a cantorus can be computed by the MacKay-Meiss-
Percival action principle [15]; see Sec. III. It is known that the
average transit time through a state bounded by such partial
barriers is exactly equal to the area AS of the accessible region
of phase space in the state S divided by the exiting flux [28].
The Markov approximation is to assume that these transit times
are long enough that correlations are unimportant, and so that

the transition probability is

pS,S ′ = �WS,S ′

AS

.

The only nodes that are connected on the tree are parent-
daughter nodes. The daughters of a state S = s1s2s3 . . . sj are
denoted by concatenation: S0 and S1. The unique parent of S,
obtained by deleting the last symbol, is denoted DS. There are
two important transition probabilities, pS→DS for moving “up”
from state S to its parent, and pDS→S for moving “down” from
parent to daughter. It is convenient to categorize the change in
transition probabilities from state to state by the two ratios

w
(i)
S = pS→Si

pS→DS

= �WS,Si

�WS,DS

, (11)

a
(i)
S = pS→Si

pSi→S

= ASi

AS

. (12)

These ratios are measures of the asymmetry between motion
“up” and “down” the tree.

Meiss and Ott, assumed that the tree is self-similar. In
this case the ratios (11) and (12) are independent of the
state S, though they depend on the choice of class, i = 0,
or level, i = 1. Self-similarity only occurs for special cases.
The renormalization theory of MacKay and Greene implies
that for a critical noble invariant circle, the level hierarchy
is asymptotically self-similar [16]. Similarly, just as for the
Feigenbaum period-doubling scenario, there are cases in which
the class hierarchy will be asymptotically self-similar [17]. The
case of a self-similar tree with seven islands as the outermost
convergent of each boundary circle was shown in Fig. 1. Note,
however, that for a generic choice of parameter value, neither
self-similar scenario will hold. An example of this more typical
behavior is shown in Fig. 5. Here, unlike in Fig. 1, the number

FIG. 5. (Color online) Four classes of the islands-around-islands hierarchy for (7) with K = −0.1995, and the corresponding tree. Unlike
Figs. 1 and 2, the tree is not self-similar. Here the class-one boundary circle has rotation number ωBC = [0; 8,1,2,1,2,1,3,1, . . .].
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of islands and the rotation number of the boundary circles vary
with class.

The fluxes �WS,S ′ are given by the difference between
the action of the minimal flux cantorus between S and S ′,
and the action of its homoclinic, minimax orbit [15]. Since
the cantori are difficult to compute, we will compute instead
the flux through the periodic orbits themselves. If {�xe

t : t =
0, . . . ,qS − 1} and {�xh

t : t = 0, . . . ,qS − 1} denote the elliptic
and hyperbolic period qS orbits for state S, then

�WS =
qS−1∑
t=0

[
L

(�xe
t

) − L
(�xh

t

)]
(13)

is the flux through the periodic orbit pair. We replace (11) with

w
(i)
S = �WSi

�WS

, (14)

the rate of the decrease in flux through a daughter periodic
orbit relative to its parent.

If the tree were self-similar, the ratios (11) and (14) would
be the same: everything is geometrically similar under the
renormalization scaling coefficients [8]. When the tree is not
self similar, this is no longer the case. Therefore the flux ratios
found in this paper are only an approximation of those that
dictate the dynamics on the Markov tree.

We will investigate in Sec. V the variation of the ratio (14)
with the state S.

III. NUMERICAL METHODS

A. Finding periodic orbits

Periodic orbits can be most easily found using the symme-
tries of the reversible map as described in Ref. [17]. The fixed
sets of the involutions (10) define four rays emanating from
the elliptic fixed point (8):

Fix(I )+ = {(y,y) : y > ye},
Fix(I )− = {(y,y) : y < ye},

(15)
Fix(T I )+ = {(K − y2,y) : y > ye},
Fix(T I )− = {(K − y2,y) : y < ye}.

Note that Fix(I )+ and Fix(I )− together comprise the fixed set
of the involution I , and correspondingly for T I . It was found
in Ref. [17] that all positive residue, class-one periodic orbits
have a point on the dominant symmetry set Fix(T I )+. Hence
if (xq(y),yq(y)) = T q(K − y2,y), one must solve the single
equation

yq(y) − y = 0 (16)

for y, the position along the symmetry line.
A solution of (16) is found iteratively using a secant method

with a trust region. As a first guess we use the distance between
the parent elliptic point and the corresponding hyperbolic
point, scaling it by an ad hoc power law:

y = ye ± (yh − ye)

(
1 − ω

ω0

)a

, (17)

where ω is the winding number of the desired orbit around
its parent, ω0 is the linearized winding number of parent, and

we chose a = 10. The sign in (17) is determined according
to the location on the symmetry line of the daughter periodic
orbit relative to the parent periodic orbit point which lies on the
same symmetry line. The symmetry line on which the daughter
elliptic periodic orbit is found is determined as in Ref. [17].
This equation should be reasonable for the case of an island
with a rotation number that monotonically decreases to zero
as the hyperbolic point is approached.

The trust region for the secant method is determined
using the rotation number of the orbit, computed using polar
coordinates about its parent elliptic point. That is, an orbit
with rotation number ω = p/q must rotate p times around the
parent elliptic point in q iterations. The first two convergent
orbits on the opposite sides of a boundary circle (see Sec. III B)
define the trust region, assuming that the rotation number
is indeed monotonic. If this method fails, we use simulated
annealing to try additional guesses.

To find an orbit of higher class, one has to provide a
guess, (17), based on the location of the parent elliptic and
hyperbolic points. For that one has to choose one point from
each of these orbits that are in the same “island.” This is done
by simply choosing the iterates of the two orbits that minimize
the angle between them in polar coordinates, relative to their
parent elliptic point.

B. Finding boundary circles

We compute boundary circles using the method of
GMS [17,18]. Given a pair of positive residue periodic orbits
of the same class (encircling a given parent) with rotation
numbers p

q
and p′

q ′ that are Farey neighbors (pq ′ − qp′ = ±1),
and q ′ > q, their mean residue is defined by

R∗ = (RR′φ)φ
−2

, (18)

where φ is the golden mean, so that φ2 = φ + 1. GMS found
that, asymptotically, there is an invariant circle between the
neighbors if R∗ is much smaller than 0.25. We will use
the threshold Rth = 0.3, which gives faster convergence to
the boundary circle; recall Ref. [17].

Assuming that the rotation number is a monotone decreas-
ing function of distance from the parent orbit, the goal is to find
the invariant circle with the smallest rotation number. If the
two orbits have small enough mean residue, then the interval
[p

q
,
p′
q ′ ] may contain an invariant circle. To test this, we find

the Farey daughter orbit, with rotation number p′′
q ′′ = p+p′

q+q ′ and
then compute mean residue of the two subintervals. If the lower
rotation number interval has R∗ < Rth, we take that interval as
a candidate containing the boundary, and divide again. If not,
we take the higher interval. If both fail, we go one step back
and take an interval with larger rotation number. This gives the
Farey sequence of a candidate boundary circle which is closely
related to its continued fraction expansion; recall Ref. [18].

C. Building the Markov tree

Using the method described above we found periodic
orbits that approximate the class-one boundary circle for (7)
for a uniform grid of 4000 values of K ∈ [−0.25,0.75].
Orbits with periods up to 105 were found, giving continued
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FIG. 6. (Color online) Rotation numbers for the Hénon map (7)
as a function of K . The solid curve shows the rotation number ω0

of the elliptic fixed point, (4), and the dark-gray (green) squares
show the rotation number ωBC of the class-one boundary circle. The
lowest points show the rotation number ω2 of outermost convergents
to the boundary circle; black squares denote stable (0 < R < 1) and
light-gray circles (red), unstable (R > 1) orbits. When the orbit is
unstable, the state 10 and all of its descendants do not exist.

fraction expansions with 8 to 18 coefficients. Recall that
the convergents to the class-one boundary circle describe the
rightmost branch of the tree (states S = 1j in Fig. 4). If the
positive residue orbit for a state S is elliptic (0 < R < 1), it is
encircled by an island, and we next find the convergents that
approximate its class-two boundary circle. These correspond
to the states S0,S01,S011, . . .. We found boundary circles up
to class four.

For the 4000 values of K , the algorithm found 2667
class-one boundary circles, their rotation numbers are shown
as a function of K in Fig. 6. The algorithm fails to find periodic
orbits in two intervals of K , the largest being (0.1920,0.4033).
The failure is due to twistless bifurcations in the neighborhood
of tripling (K = 5

16 ) and quadrupling (K = 0) points [26,27]
that cause the rotation number to not be a monotone function.
The figure also shows the rotation number ω2 = p2

q2
of the

outermost convergent [black squares and red (light-gray)
circles]. There are ranges of K for which the positive residue
orbit in this state is unstable, indicated by the red (light-gray)
points in the figure. This especially occurs near the tripling
bifurcations of the elliptic fixed point. When the state S = 1 is
not elliptic, it has no class-two island, and so the state S = 10
and all of its descendants do not exist. An example of such a
tree is shown in Fig. 7.

One implication of this is that the number of computed
class-two boundary circles is reduced: the algorithm found
5−16 convergents for 1290 class-two boundary circles, the
states 101j .

D. Error analysis

Once a tree (the corresponding periodic orbits, residues, and
fluxes) was computed, it was found that for some states the
ratio (14) was larger than one. Since increasing level or class
should result in smaller areas, such a ratio signals an anomaly.
By investigating some special cases, we found that this was
a numerical error and there were two possible problems. The
first is that �WS cannot be computed if it is too small relative
to the accumulated numerical error of the orbit finding routine.
To deal with this, we discarded all data from orbits for which

�WS < 200εqS,

FIG. 7. (Color online) Island hierarchy for (7) when K = 0.575. The tree is incomplete because the positive residue periodic orbit, with
rotation number 1

3 at state S = 10 is unstable. Nevertheless, the 11 state has a period-8 island, with a corresponding class hierarchy. The
class-one boundary circle has rotation number ωBC = [0; 2,1,1,1,4,1,5,1, . . .]
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(a) (b)

FIG. 8. Distribution of continued fraction elements for the class-one boundary circle K ∈ [−0.25,0.75] compared with the conditional GK
distribution p̃GK (20): (a) all coefficients and (b) those for i > 4.

where qS is the period of the orbit and ε = 10−15 is the error
bound of the secant method solver. The second problem is
that the last few continued fraction coefficients of the rotation
number of the boundary circle may be incorrect due to the
arbitrary choice Rth = 0.3 of the threshold residue. To deal
with this, we discarded the last two coefficients computed.
These corrections removed most of the anomalous values.

IV. ROTATION NUMBERS OF BOUNDARY CIRCLES

In this section we study the distribution of the continued
fraction coefficients mi for the rotation numbers of the
boundary circles of the Hénon map (7). The results are
compared to the distribution that would occur if the rotation
numbers were real numbers selected at random with uniform
measure, namely, the Gauss-Kuzmin (GK) distribution [23],

pGK (n) = pGK (mi = n) = − log2

[
1 − 1

(1 + n)2

]
. (19)

In their pioneering work, Greene et al. (GMS) [18]
computed some 400 boundary circles, mostly for Chirikov’s
standard map with K ∈ [0.75,0.97]. They found 5−12 ele-
ments for the rotation number of each boundary circle and
computed separate distributions for the outer (even) and inner
(odd) elements. They conjectured that for the outer (even)

coefficients only the elements mi = 1 and 2 occur, while for
the inner (odd) coefficients only elements mi � 5 occur. Note
that these observations contrast with (19) where the probability
of arbitrarily large elements is nonzero. Making use of the
enormous improvement in computing power since 1986, when
Ref. [18] was published, we explore here the distribution of
mi for the Hénon map (7).

As discussed in Sec. III C, we found approximately 2700
boundary circles of class one for K ∈ [−0.25,0.75] and
computed, on average, 14 continued fraction elements for
each. The last two coefficients were discarded, as discussed
in Sec. III D. Figure 8 shows the empirical probability mass
function, pBC(m), the frequency of occurrence of m ∈ N in the
resulting list of coefficients mi . Since the coefficients in any
numerical calculation are bounded, mi � mmax, we compare
the numerical results to a conditional GK distribution

p̃GK (m) = pGK (m|m < mmax) = CpGK (m), (20)

where C is simply the factor that normalizes the distribution
up to mmax (C = 1.05 for mmax = 30, as in the figures).

Figure 8(a) presents the distribution of all coefficients for
the class-one circle, combining the inner and outer coefficients.
In Fig. 8(b), the same data is shown after discarding the first
four coefficients (mi for i � 4) for each boundary circle, so

(a) (b)

FIG. 9. Distribution of continued fraction elements for the class-one boundary circle for K ∈ [−0.25,0.75] compared with the conditional
distribution p̃GK (20) using only elements with i > 4: (a) odd (inner) coefficients and (b) even (outer) coefficients.

062923-8



STATISTICS OF THE ISLAND-AROUND-ISLAND . . . PHYSICAL REVIEW E 90, 062923 (2014)

TABLE I. Probabilities of appearance of an entry m as an outer (even) coefficient of the continued fraction expansion of a boundary circle
of the specific state. The first four (i � 4) and the last two coefficients for each continued fraction have been discarded.

pBC(m) (outer coefficients)

m ∅ 1 10 11 100 101 110 111

1 0.876 24 0.864 67 0.924 44 0.901 03 0.928 57 0.972 73 0.946 84 0.922 39
2 0.122 39 0.129 11 0.075 56 0.096 16 0.071 43 0.027 27 0.053 16 0.077 61
3 0.000 88 0.003 29 0.000 94
4 0.000 29 0.001 83 0.001 87
5 0.000 10 0.000 37
6 0.000 37
7 0.000 37
8 0.000 10
Total no. 10 246 2734 675 3203 14 110 301 670

that details of the global form of the map are deemphasized.
Comparing the two panels of Fig. 8 shows that the distribution
is not too sensitive to the lower coefficients, though the higher
m values occur less frequently in Fig. 8(b). In both cases, it
appears that the distribution is monotonically decreasing at
rate that is similar to, though not identical to (20). Indeed, for
m > 5 the empirical values of pBC(m) appear to be smaller
than p̃GK (m) by a fixed ratio,

pBC(m) = αpGK (m). (21)

We found that for 5 < m < 30, α = 0.32 ± 0.1 for the data in
Fig. 8(a) and α = 0.21 ± 0.04 for Fig. 8(b).

Figure 9 is the same as Fig. 8(b) but splits the data into inner
and outer coefficients. Note that both of these distributions
deviate from the GMS results. For the odd i the distribution still
follows (20) for large m: for 5 < m < 30, α = 0.39 ± 0.08.
The largest element found is m = 48 while in GMS the largest
value found was 5. For the outer coefficients, though we found
very few mi > 3, some larger coefficients are seen; the largest

element found is m = 8. Comparing Fig. 8(b) and Fig. 9(a),
we note that if mi with both i odd and even are taken into
account the resulting distribution for i > 4 is closer to p̃GK

than the separate distributions.
These results suggest that the distribution pBC deviates

from (20), and for large m is a fixed fraction as in (21), and
thus that the elements mi for boundary circle rotation numbers
are unbounded.

The data in Figs. 8 and 9 are for the class-one boundary
circle. The data for higher class circles is very similar. This data
is given in Tables I and II, separated into subsets corresponding
to individual states. Thus, for example, the column labeled
S = 1 in these tables corresponds to the distribution of
elements for the rotation number of the class-two boundary
circle that encircles the elliptic periodic orbit in state 1. The
outer convergents of this circle are represented by the states
S = 101j . Similarly, the column labeled 10 corresponds to a
class-three boundary circle with outer states S = 1001j , etc.
The indication is that the distributions are independent of class
or site.

TABLE II. Probabilities of appearance of an entry m as an inner (odd) coefficient of the continued fraction expansion of a boundary circle
of the specific state. The first four (i � 4) and the last two coefficients for each continued fraction have been discarded.

pBC(m) (inner coefficients)

m ∅ 1 10 11 100 101 110 111

1 0.257 76 0.259 26 0.2779 0.317 11 0.385 54 0.396 14 0.3467 0.341 67
2 0.290 86 0.300 47 0.283 22 0.315 48 0.253 01 0.309 18 0.261 79 0.286 53
3 0.219 86 0.236 70 0.217 92 0.215 50 0.132 53 0.154 59 0.191 04 0.213 19
4 0.111 46 0.124 48 0.113 14 0.101 00 0.072 29 0.077 30 0.120 28 0.101 76
5 0.041 95 0.046 23 0.065 30 0.041 10 0.072 29 0.038 65 0.045 99 0.050 60
6 0.014 65 0.010 58 0.022 02 0.005 93 0.012 05 0.014 49 0.015 33 0.005 12
7 0.010 26 0.005 01 0.009 87 0.002 25 0.012 05 0.009 66 0.007 08 0.001 14
8 0.008 36 0.005 01 0.002 28 0.000 41 0.012 05 0.004 72
9 0.005 54 0.002 23 0.001 52 0.000 61 0.024 10 0.00354
10 0.005 13 0.002 78 0.001 52 0.000 20 0.012 05
11 0.004 39 0.001 67 0.001 52
12 0.003 56 0.000 84 0.001 52 0.002 36
13 0.003 23 0.001 39 0.000 20
14 0.002 57 0.001 11 0.000 76 0.000 20 0.00118
15 0.002 65 0.000 56
�16 0.017 78 0.001 67 0.001 52 0.012 05
Total no. 12 085 3591 1317 4891 83 414 848 1759
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(a) (b)

FIG. 10. (Color online) Probability distributions of the log-flux ratio (22). (a) Distribution of vlevel, corresponding to right-going transitions
S → S1 for S in (23) using bins of size 0.4. (b) Distribution of vclass, corresponding to left-going transitions, S → S0 using bins of size 0.2.
The shades (black and red) show two ranges of K as indicated.

We turn now to a heuristic explanation of our calculations.
KAM theory implies that smooth, Diophantine invariant
circles are structurally stable. For a subclass of Diophantine
numbers, i.e., those for which there is a sufficiently small C >

0 such that there is no solution to |ω − p

q
| < C

q2 for integers
(p,q) with q > 0, there is a bound on the continued fraction
elements [23, Theorem 23]. This bound is not uniform in C,
thus for a random selection of Diophantine numbers, there
is no uniform bound on the elements. The outer coefficients
correspond to periodic orbits on the chaotic side of the
boundary circle: from this side the circle appears isolated.
Critical circles with noble rotation numbers (numbers for
which the elements in the tail of the continued fraction are all
1’s) were found in Refs. [16,29,30] using the renormalization
methods introduced by MacKay [16] and further developed in
Refs. [29,30]. These are isolated from both sides. Following
the more general argument of GMS, we expect that the outer
(even i) coefficients will eventually have this property. Even
the smaller i coefficients show the strong influence of the
robustness of noble rotation numbers: mi = 1 occurs about
85% of the time. The inner coefficients should have no
such restriction: the mi should satisfy the GK distribution.
However, the small mi coefficients are still influenced by the
nobility of the robust circles, and so their occurrence exceeds

that predicted by (19). Combining these ideas implies that
distribution for the larger values of m should be a fixed
fraction of the GK distribution, as (21). Finally for small
i, the mi are influenced by the actual value of the winding
number as a function of K , (4), and thus will not be uniformly
distributed. Nevertheless, we found that the distributions for
the larger, i > 4, coefficients are similar to those found when
the contributions of all i are taken into account.

V. DISTRIBUTION OF FLUX RATIOS

In this section we compute the distribution of the flux ratios
w

(i)
S , defined by (14), associated with the states on the Markov

tree. Since these ratios are all positive, but vary over several
orders of magnitude, we will analyze their log-distribution, or
equivalently the distribution of

v
(i)
S = − ln w

(i)
S . (22)

We chose the minus sign above so that v
(i)
S > 0 when the

flux ratio is smaller than one, which, as noted in Sec. III D,
is expected since areas should decrease when level or class is
incremented. In particular we will study the distribution for the
right-going steps (recall Fig. 2), corresponding to incrementing
the level, v

(1)
S = vlevel

S and the left-going steps, v
(0)
S = vclass

S

(a) (b)

FIG. 11. (Color online) Event distributions for vlevel (a) and vclass (b), and fits to the Gaussian mixture model (24) (red-dashed line) and the
Gamma distribution (25) (black-solid line). Parameter values used in the fits are given in Table III.
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TABLE III. The fitting parameters to the Gaussian mixture (24)
and Gamma (25) distributions for the computed values of vlevel and
vclass. The last row gives the fraction f of pG or p in the tails, (26).

vlevel vclass

Parameter p pG p pG

α1 1.5 ± 0.2 527 ± 22 1.26 ± 0.06 444 ± 13
α2 342 ± 15 114 ± 13
α3 86 ± 5.5 56 ± 10
μ1 2.92 ± 0.03 4.21 ± 0.04 4.12 ± 0.06 4.71 ± 0.02
μ2 6.37 ± 0.09 5.52 ± 0.05
μ3 9.4 ± 0.2 6.76 ± 0.06
β1 2.6 ± 0.2 0.73 ± 0.03 1.09 ± 0.04 0.57 ± 0.03
β2 1.52 ± 0.05 1.83 ± 0.05
β3 4.1 ± 0.1 0.3 ± 0.07
C 3122 988
f 0.12 0.015 0.22 0.05

corresponding to incrementing the class, separately. We will
use states with up to four elements, so given that (14) is a ratio
of daughter to parent flux, there will be seven parent states for
each level and class transition,

{1,10,11,100,101,111}. (23)

Thus, vlevel
S is computed using (22) with a state S selected

from (23) and a daughter S1, and vclass
S is computed for the

same states, but with a daughter S0.
The computed distributions p(vlevel) and p(vclass) are

presented in Fig. 10 for data from two subsets of the full range
K ∈ [−0.25,0.75] combining ratios from all of the parent
states in (23). In both cases, the distributions are similar in
the different intervals of K .

We now fit two model distribution families using the
binned-likelihood method to determine the best values
of the parameters to maximize the log-likelihood for the
data. The binned-likelihood method was implemented by the
framework “Root” [31]. The first model is a three-Gaussian
mixture model

pG(x) =
3∑

j=1

αje
− (x−μj )2

2β2
j (24)

with parameters αj ,βj ,μj , of which eight are independent
upon normalization.2 The second is a shifted Gamma distribu-
tion,

p(x) =
⎧⎨
⎩ (x−μ1)α1−1e

− x−μ1
β1

β
α1
1 (α1)

x > μ1

0 x < μ1

, (25)

with the three parameters α1,β1,μ1. For the fits, as in Fig. 10,
a bin size of �v = 0.2 was used for vclass and of 0.4 for
vlevel. Comparisons of the raw event count distributions with
the best fits are presented in Fig. 11. Since the distributions
in the figures are event counts, they are not normalized, so
the Gamma distribution is multiplied by a constant C, and the
Gaussian mixture has unnormalized amplitudes αi . The values
of the best fit parameters are presented in Table III.

In order to evaluate the quality of the fit we use the
quantile-quantile plots presented in Fig. 12. For each quantile
v in the data we find the quantile vth so that the cumulative
distributions match: Pth(vth) = Pdat(v), and then plot vth as
a function of v. Here Pth is taken to be PG or P , the fitted
analytical cumulative distribution and Pdat is the numerical
one. From Fig. 12 we see that for all cases, there is a range
vmin < v < vmax over which the fit is good, but that in the tails,
the fits deviate from the data. The weight of the regions outside
[vmin,vmax] is the quantity

f = Pth(vmin) + 1 − Pth(vmax). (26)

For the Gaussian mixture model, f � 0.05 for both cases,
indicating the high quality of this fit. For the Gamma
distribution, f is larger, though it seems acceptable as a fit to
the distribution of vlevel; this is confirmed visually in Fig. 11.
One has to keep in mind that Gaussian mixture model has
eight parameters, many more than the three of the Gamma
distribution.

Finally, we will compare the fitted distribution to a
smoothed version of the data using the characteristic function
to do the smoothing. As usual, to extract the distribution of the

2We also attempted fits with one or two Gaussian mixtures, but
these fit the data poorly.

(a) (b)

FIG. 12. (Color online) Quantile-quantile plots of the numerical data for vlevel (a) and vclass (b) compared with the fits to the Gaussian
mixture model with three components, and the Gamma distribution.
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(a) (b)

FIG. 13. (Color online) Fitted Gaussian mixture and shifted Gamma distributions using the parameters in Table III, compared to the
smoothed characteristic function fit pC for (a) levels and (b) classes.

v, we have collected the data into bins and fit the distribution
to the occupation numbers of the bins. This partition into bins
is somewhat arbitrary and may lead to details that are incorrect
on fine scales. To gain control of the various scales we will use
the characteristic function

fC(k) = 〈e−ikz〉 =
∫

dz p(z)e−ikz. (27)

The Fourier transformation will be computed using bins
but it will interpolate different scales. Here we work with
standardized set of J bins uniform on [vlow,vhigh]. If Xj

is the number of v’s in the j th bin, then its weight is
pj = Xj

C
, with normalization constant C. The integral for the

characteristic function (27) is computed using the trapezoidal
rule upon transforming the integration variable to have average
0 and standard deviation 1. Transforming back we obtain a
smoothed distribution pC(v) of the original data. The width
of the bins is chosen to be �v = 0.2 for both vlevel and for
vclass. The smoothed distribution pC(v) gives indeed a faithful
representation of the original data according to a Kolmogorov-
Smirnov test: the null hypothesis that the distributions are the
same has significance values 1 for levels and 0.88 for classes.
A comparison of the smoothed distribution with the fits pG

and p are shown in Fig. 13.
Finally, we computed distributions of the flux ratios v

(i)
S for

the individual states (23) and found that their shape appears
to be independent of state. This indicates that the distributions
shown in Fig. 13 appear to be universal for different levels of
the island-around-islands hierarchy.

VI. SUMMARY

We have presented some statistical properties of boundary
circle rotation numbers and flux ratios for the Hénon map (7)
over the full range of K for which it has an elliptic fixed point.
These quantities play an important role in the Markov tree
model for transport as formulated by Meiss and Ott [8].

We analyzed the distribution of the elements mi of the
continued fraction for boundary circle rotation numbers
and found, in contrast to the results of Greene et al.
(GMS) [18], strong evidence that the inner coefficients (odd
i) are unbounded. The distribution was contrasted to the

Gauss-Kuzmin (19) distribution, which applies to a uniform
distribution of irrational numbers. We found that the fraction
of elements taking small values is larger than expected from
Gauss-Kuzmin and conversely that large elements occur with
smaller probability. Moreover we have some indications that
for m � 5, the distribution is a fixed fraction of that expected
from Gauss-Kuzmin. The evidence presented indicates that
the empirical distribution is universal over different island
hierarchies in the phase space (see Table II). An analytical
understanding of these results awaits future studies.

We studied the distribution of flux ratios that determine
the decrease in flow through phase space upon moving to
smaller structures corresponding to islands-around-islands
(classes) or being trapped nearer to a boundary circle (levels).
The numerical results indicate that there are two universal
distributions, one for classes and one for levels, independent
of the parent state and of the value of the parameter K . From
Table III and Fig. 11, it is clear that the distributions for
levels and classes are significantly different. Visually it appears
that the distribution of flux ratios for levels is a log-Gamma
distribution, while that for classes is a superposition of log-
Gaussian distributions.

The existence of such distributions is a basic assumption of
various recent studies on the universality of algebraic decay
of correlations and Poincaré recurrence distributions for area-
preserving maps [13,14]. In the future, we plan to compute the
distribution of the area ratios, (12), and hope to verify that the
distributions that we have observed here also apply to other
maps, such as Chirikov’s standard map. We also leave the study
of the validity of the Markov approximation to future studies.
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