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Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method
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The embedding of a time series provides a basic tool to analyze dynamical properties of the underlying chaotic
system. To this purpose, the choice of the embedding dimension and lag is crucial. Although several methods
have been devised to tackle the issue of the optimal setting of these parameters, a conclusive criterion to make
the most appropriate choice is still lacking. An accepted procedure to rank different embedding methods relies
on the evaluation of the maximum Lyapunov exponent (MLE) out of embedded time series that are generated by
chaotic systems with explicit analytic representation. The MLE is evaluated as the local divergence rate of nearby
trajectories. Given a system, embedding methods are ranked according to how close such MLE values are to the
true MLE. This is provided by the so-called standard method in a way that exploits the mathematical description
of the system and does not require embedding. In this paper we study the dependence of the finite-time MLE
evaluated via the divergence rate method on the embedding dimension and lag in the case of time series generated
by four systems that are widely used as references in the scientific literature. We develop a completely automatic
algorithm that provides the divergence rate and its statistical uncertainty. We show that the uncertainty can provide
useful information about the optimal choice of the embedding parameters. In addition, our approach allows us to
find which systems provide suitable benchmarks for the comparison and ranking of different embedding methods.
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I. INTRODUCTION

Embedding data from a time series is an important tool to
investigate the dynamical properties of the underlying chaotic
system. As stated by the Takens-Mañè embedding theorem [1],
these properties can be inferred starting from a sufficiently
large sample of the time series, provided a suitable pair
of integer parameters, the dimension m and the lag L, is
chosen [2]. Regrettably, the Takens-Mañè theorem gives no
clues on how to choose the embedding parameter pair (m,L).

Several different methods have been devised to address the
issue of the parameter choice. A review of these methods
is given by Cellucci et al. [2]. In their work, methods
were compared by analyzing two dynamical properties: The
maximum Lyapunov exponent (MLE) and the robustness to
noise. Robustness to noise is determined in terms of impact
on the cumulative distribution of interpoint distances in the
embedding space. However, the embedding parameters (m,L)
are found to vary when noise is added to the time series and
it is not clear whether a wrong embedding choice produces a
lesser degree of robustness.

The determination of the MLE provides a more decisive
way to rank the quality of different embedding methods. The
reason is the existence of the so-called standard method [3–5],
a technique that, independently of any embedding, allows for
determining the standard MLE χS of a dynamical system
S by directly exploiting its analytic description. Given an
(m,L)-embedded time series, i.e., embedded by using a
particular parameter pair (m,L), the MLE can be estimated
by determining the local divergence rate of nearby trajectories
[6–8] (see [9] for a recent comprehensive review on this
topic). Henceforth, this estimate is referred to as �S (m,L).
So, according to Cellucci et al., method A is considered to
be superior to method B if �S (mA,LA), calculated by using
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the embedding pair assessed via A, approaches χS better than
�S (mB,LB), calculated by using the embedding pair assessed
via B.

The key parameter that determines the validity of the rank-
ing procedure described above is the uncertainty σ�,S (m,L) of
the calculation of �S (m,L): If the variation of �S (m,L) be-
tween different embedding points does not significantly exceed
the uncertainty affecting the MLE calculations within each
single embedding point, namely, σ�,S (m,L), the dynamical
system turns out to be unsuitable for the sake of comparing
different embedding methods. The origin of the statistical
uncertainty, or noise, that affects finite-time MLE evaluations
was first discussed by Grassberger et al. [10]. By using an
argument based on the central limit theorem, they showed
that, at least for attractors with short correlation time, noise is
normally distributed and has an amplitude that depends on the
duration of the time sequence on which MLE is evaluated
or, equivalently, on the number of time steps considered.
For intermittent attractors, the noise distribution departs from
normal behavior and typically shows positive skewness due to
exponential tails [11]. Consequently, provided the embedding
choice is correct, the noise behavior should be reflected in
the distribution of the MLE estimated by determining the
local divergence rate �S (m,L). In addition, the mean of
distributions corresponding to different, correct embedding
choices is necessary to approach the same value χS . The
uncertainty σ�,S (m,L) should show a similar behavior, i.e.,
uncertainties corresponding to different, correct embedding
choices are to tend to the same value and follow the same
distribution.

In this paper we consider time series generated by four
reference systems widely discussed in the scientific literature
and for which the standard method is applicable. We first
calculate �S (m,L) and its uncertainty σ�,S (m,L) for the
embedding points (m,L) belonging to the lattice 2 � m � 10,
1 � L � 10. The calculation of the MLE relies on an algo-
rithm that automatically identifies the longest straight segment
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on the growing section of the time-dependent divergence
exponent. Second, we study the dependence of both �S and
σ�,S on the embedding parameters m and L.

We find that, below a suitable threshold, squared uncertainty
values σ 2

�,S (m,L) are approximately normally distributed.
In addition, embedding points showing an uncertainty lying
significantly outside this distribution are more likely to provide
�S (m,L) values far from χS . Thus, uncertainty can indeed
be used to sort out (m,L) pairs that are likely to provide
a reliable embedding. Finally, by using an approach based
on statistical hypothesis testing, we show that, for example,
the Rössler system is less suitable than the Mackey-Glass
system as a benchmark to compare different embedding
methods.

The paper is organized as follows. The reference dynamical
systems used in the present paper are the topic of Sec. II. Our
implementation of the divergence rate method to determine
the MLE is discussed in Sec. III. The assessment of the
distribution of the squared uncertainty is presented in Sec. IV.
Consequences with regard to optimal choice of the embedding
parameters and to the suitability of a dynamical system as
a benchmark for the comparison and ranking of different
embedding methods are discussed in Sec. V.

II. REFERENCE SYSTEMS

In the present paper we used sample time sequences of 106

points generated by calculating the evolution of four dynamical
systems [6,12]: The discrete Hénon map and the Lorenz,
Mackey-Glass, and Rössler continuous systems. The Hénon
map is governed by the following system of equations [13]:

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn.
(1)

Here we used a = 1.4 and b = 0.3. The Lorenz attractor is
governed by the following system of equations [14]:

dx

dt
= σ (y − x),

dy

dt
= x(r − z) − y, (2)

dz

dt
= xy − bz.

Here we used σ = 10, r = 45.92, b = 8/3, and a sampling
time δt = 0.03. The Rössler attractor is governed by the
following system of equations [15]:

dx

dt
= −y − z,

dy

dt
= x + ay, (3)

dz

dt
= b + z(x − c).

Here we used a = 0.15, b = 0.2, c = 10, and δt = 0.125.
The Mackey-Glass attractor is governed by the following
equation [16]:

dx(t)

dt
= a

x(t − τ )

1 + [x(t − τ )]c
− bx(t), a,b,c > 0. (4)

Here we used a = 0.2, b = 0.1, c = 10, τ = 30, and δt =
1.5.

For the multidimensional systems (1)–(3), the time se-
quences to be embedded were generated by sampling the x

component only. The integration of the systems of differential
equations (2)–(4) was carried out by using a sixth-order
Runge-Kutta algorithm and taking the sampling time δt as
the integration time step. The first point of each sequence was
assigned by means of a random generator.

III. IMPLEMENTATION OF THE
DIVERGENCE RATE METHOD

Starting from a sample time sequence {x1,x2,x3, . . . ,xn} of
a scalar, real variable x, the embedding procedure consists in
constructing a set of m-dimensional vectors Xi such that the
lth component of Xi (0 � l < m) is given by xi+lL. Given
an embedding pair (m,L), we consider a set of N = 500
randomly selected pairs Xi ,Xj of m-dimensional vectors. The
selection occurs without replacement. Each Xi ,Xj pair must
satisfy the two following conditions [2]: (i) ‖Xi − Xj‖ � r ,
with r corresponding to a given percentile of the distribution
of all Euclidean distances ‖Xi − Xj‖, and (ii) |i − j | � c0,
where c0 is a constraint linked to the autocorrelation function.
Theiler [17,18] suggests to take c0 equal to the autocorrelation
time, whereas Gao and Zheng [6] suggest to take c0 =
(m − 1)L. Here we set c0 to the first zero of the autocorrelation
function multiplied times m(L + 1).

The time-dependent divergence exponent �(k) is then
defined as

�(k) ≡
〈

ln
‖Xi+k − Xj+k‖

‖Xi − Xj‖
〉
,

where k is a non-negative integer delay and the average 〈· · · 〉
is taken on the N -dimensional set of Xi ,Xj pairs. From the
definition it follows that �(0) = 0.

An important step in our algorithm is that, rather than
considering a single calculation for each value of k, we
determine each point of �(k) and the respective uncertainty
σ�(k) as the pointwise sample mean and sample standard
deviation of a set of M different calculations, respectively,

�(k) ≡ 1

M

M∑
i=1

�i(k),

σ�(k) ≡ 1

M − 1

M∑
i=1

[�i(k) − �(k)]2.

In the following M = 50 and the maximum value of the delay k

was set to 100 for the Hénon map, 200 for the Lorenz attractor,
and 400 both for the Mackey-Glass and the Rössler attractors.

Figure 1 shows the time-dependent divergence exponent
�(k) for the Lorenz attractor and different values of r .
Typically, there is a k range within which the dependence
of � on k turns out to be linearly growing and independent of
the boundary conditions. The corresponding value of the MLE
is then given by the slope of �(k) divided by δt (δt = 1 for
maps). The slopes of �(k) tend to increase for progressively
smaller r . The reason is that the smaller r is, the smaller the
probability that two close points belong to trajectories that
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FIG. 1. (Color online) Time-dependent divergence exponent
�(k) for the Lorenz attractor, obtained by using the embedding pair
(3,3). The different plots correspond to eight different values of r:
0.01%, 0.03%, 0.1%, 0.3%, 1%, 3%, 10%, and 30%. For the sake of
clarity, only one point every five is plotted.

are still approaching each other. The analysis discussed below
refers to data obtained by setting r = 0.01%.

Finally, to determine �S (m,L), the following automatic
procedure is used.

(i) The plateau �∞ of �(k) at k � 1 is estimated by
averaging the ten largest available k values.

(ii) Thereupon, the lowest k, referred to as kslope, is
determined such that �(k) > 0.9�∞.

(iii) Given the growing section of � = �(k)|k � kslope, we
determine the point P of abscissa kP that allows for the longest
straight-line segment, centered on P , that fits the data with a
reduced χ2 not larger than 1 + √

8/(2� − 1), where 2� is the
length of the segment (in other words, a fit is assumed to be
valid if the corresponding χ2 does not exceed its expected
value by twice its standard deviation).

(iv) If more adjacent points satisfy the requirement of step
(iii), point P is selected by considering the minimum χ2.

(v) To increase accuracy, a final straight-line fit is carried
out; the fitting segment is centered in P and has a length equal
to 2�′, where �′ ≡ 
�/2�; the fit result is taken to be valid if
�′ � 2, i.e., if the new length is at least 4.

(vi) The estimated MLE �S (m,L) is set to the straight-line
slope divided by the time step δt of the sample time sequence;
accordingly, the uncertainty σ�,S (m,L) on �S (m,L) is set as
the error on the slope divided by δt :

�S (m,L) = 1

δt

k�(k) − k �(k)

k2 − k k
, (5a)

σ�,S (m,L) = 1

δt

[
(k2 − k k)

kP +�′∑
k=kP −�′

1

σ 2
�(k)

]−1/2

, (5b)

where, for a generic f (k),

f (k) ≡
[

kP +�′∑
k=kP −�′

f (k)

σ 2
�(k)

] [
kP +�′∑

k=kP −�′

1

σ 2
�(k)

]−1

. (6)

The reference MLE χS was calculated for each of the four
dynamical systems by implementing the standard method [3–
5]. The four values are reported in Table I. Each value corre-
sponds to the sample mean and the sample standard deviation

TABLE I. Standard value χS of the MLE, calculated for each
of the four dynamical systems of Sec. II by means of the standard
method. The digit in parentheses corresponds to the uncertainty σχ,S
on the respective least significant digit.

Dynamical
system S χS

Hénon 0.41924(9)
Lorenz 1.2346(6)
Rössler 0.08889(9)
Mackey-Glass 0.00742(2)

of the results of ten runs, each made of 107 integration steps:
The result of a run corresponds to the very last integration step.

In the remainder of the paper, results are discussed in terms
of �S (m,L) and its uncertainty σ�,S (m,L) normalized to the
related standard value χS , namely,

μS (m,L) ≡ �S (m,L)

χS
, (7a)

σS (m,L) ≡ 1

χS

[
σ 2

�,S (m,L) + �2
S (m,L)σ 2

χ,S

χ2
S

]1/2

. (7b)

For each of the four dynamical systems, the MLE was
calculated on the lattice 2 � m � 10, 1 � L � 10. The results
are shown in Fig. 2. Apparently, points for which μS (m,L) ≈ 1
are characterized by lower uncertainty. The investigation of
this correlation is the topic of the following section.

IV. DISTRIBUTION OF UNCERTAINTY

Because σ 2
�,S (m,L) � σ 2

χ,S , from Eq. (7b) it follows that
σS (m,L) ≈ σ�,S (m,L), so the statistical properties of σS (m,L)
are mainly given by those of σ�,S (m,L). As a result of the
straight-line fit [see Eq. (5b)], the squared uncertainty is
essentially given by the sum of contributions stemming from
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FIG. 2. (Color online) Diagram of the uncertainty σS (m,L), nor-
malized to the respective uS (see Sec. IV), vs the normalized MLE
μS (m,L). Each point corresponds to an embedding pair. Black lines
correspond to σ = uS . Points below (above) the black lines are
represented with dots (crosses). The ordinate axes are logarithmically
scaled.
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the variances of the points belonging to the time-dependent
divergence exponent �(k). By virtue of the central limit
theorem, for each embedding pair (m,L), the squared uncer-
tainty is expected to follow a normal distribution provided
the number of degrees of freedom ν, which is of order �, is
sufficiently large. This is the case for Lorenz, Mackey-Glass,
and Rössler continuous systems, for which � � 50. The normal
approximation should also work satisfactorily with regard to
the Hénon map, for which � � 10. The mean value of the
uncertainty can be estimated by assuming homoscedasticity
with respect to k in Eqs. (5b) and (6):

σ�,S (m,L) ≈ σ�




√
12

�
, (8)

where 
 ≡ �δt is the length of the time interval on which
the linear fit is carried out and σ� = σ�(k) for the k values
belonging to the �(k) slope.

As discussed in the Introduction (Sec. I), the intrinsic
distribution of a finite-time MLE is approximately normal,
so its squared uncertainty is expected to be χ2 distributed.
If one considers only the “good” embedding pairs, namely,
those whose �(k) plots deliver MLE values close to the
standard one, both the MLE values and the corresponding
squared uncertainties are expected to follow the same intrinsic
distributions, independently of the values of m and L. The
reason is that those �(k) plots approximately have the same
slope and the same length 
. Consequently, once observational
conditions are fixed (e.g., the sampling time δt), a dynamical
system is characterized by a typical MLE distribution as
well as by a typical uncertainty distribution and thus by a
typical average uncertainty. To verify this crucial statement
we proceeded as follows.

Given the system S, let VS (uS ) be the set of the sample
variances (the squared uncertainties) that do not exceed the
upper constraint u2

S : VS (uS ) ≡ {σ 2
S (m,L)|σ 2

S (m,L) � u2
S}. By

exploiting the Shapiro-Wilk test [19] and using a significance
threshold α = 0.01, we determined (if any) the maximum
value u2

S such that the set VS (uS ) is compatible with a normal
distribution. The value of uS for each of the four dynamical
systems is reported in Table II along with the root-mean-square
value �S of the uncertainties belonging to VS (uS ).

The root mean square �S turns out to be a parameter typical
of the dynamical system that, despite being dependent on
the observational conditions, is independent of the embedding
choice. It describes the uncertainty with which the MLE can be

TABLE II. Maximum value uS (column 2) such that the set
VS (uS ) of squared uncertainties that do not exceed u2

S is compatible
with a normal distribution according to the Shapiro-Wilk test (p �
0.01) and (column 3) root-mean-square value �S of the uncertainties
belonging to VS (uS ).

Dynamical
system S uS �S

Hénon 0.033 0.023
Lorenz 0.017 0.015
Rössler 0.0064 0.0057
Mackey-Glass 0.016 0.013
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FIG. 3. (Color online) Distribution of the variance for each of the
four dynamical systems. Red (dark gray) bins refer to σS (m,L) values
that do not exceed the respective threshold uS . Conversely, yellow
(light gray) bins refer to σS (m,L) values that exceed the respective
threshold uS . For the sake of clarity, only data corresponding to
σS (m,L)/uS � 4 are shown.

estimated by means of the divergence rate method. The distri-
bution of the variance for each of the four dynamical systems is
shown in Fig. 3. As predicted, the red (dark gray) histograms,
which correspond to the sets VS (uS ), are bell shaped.

V. DISCUSSION

The distribution of the normalized MLE μS (m,L) for each
of the four dynamical systems is shown in Fig. 4. Clearly,
values of μS (m,L) whose corresponding σS (m,L) belong to
VS (uS ) [histograms marked in red (dark gray)] tend to cluster
about 1 or in regions nearby.
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FIG. 4. (Color online) Distributions of the normalized MLE for
each of the four dynamical systems: The yellow (light gray) histogram
refers to all available data; the superimposed, red (dark gray)
histogram refers to normalized MLE values whose corresponding
σS (m,L) does not exceed the respective threshold uS [i.e., σ 2

S (m,L) ∈
VS (uS )]. Each horizontal error bar corresponds to 5.15�S , i.e., the
width of the two-tailed 99% nonrejection region (level of significance
equal to 0.01). The error bars are centered about the mean values of
the red (dark gray) histograms.
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Actually, the Hénon map produces an additional cluster
of low uncertainty points that lie far from the optimal value
μ = 1. This behavior can be explained, first, by considering
that most of the points in the cluster about μ = 1 have L � 2,
whereas most of the points belonging to the other “spurious”
cluster correspond to lag values L � 3, and, second, by taking
into account the discrete nature of this chaotic system: Higher-
lag embeddings sample the trajectories too slowly and thus
describe an aliased system.

Figure 4 also shows how potentially good points, namely,
embedding points such that μS (m,L) ≈ 1, are distributed in
comparison with the typical uncertainty �S . For example,
in the case of the Rössler attractor, potentially good MLE
values are peaked about 0.87 and have a standard deviation
of 0.005. The normalized MLE μ of the Rössler attractor
is clearly slightly underestimated, probably because of its
intermittency, i.e., the extremely long correlation time of
this attractor. More importantly, the standard deviation is
very close to the �S for the Rössler dynamical system
(see Table II) and therefore well within the corresponding
99% nonrejection region, given by 5.15�S . Consequently,
the Rössler attractor is not useful to compare between
different embedding methods by using the MLE calculation
as a gauge: Different embedding choices essentially yield
the same result. On the other hand, the other three dy-
namical systems, and especially the Mackey-Glass attrac-
tor, appear to be more appropriate to be used as bench-
marks.

Our approach can be used to evaluate the MLE of time
sequences generated by unknown dynamical systems. The

investigation of the distribution of the MLE calculated via
divergence rate method and of the related uncertainty, for
example, by identifying normally distributed clusters of values,
can provide clues to optimally tune the embedding parameters
and thus to reconstruct the dynamics of the underlying
dynamical system.

Finally, it is worth noting that the statistical properties of the
finite-time MLE evaluated by means of our algorithm comply
with the theory discussed by Grassberger et al. [10]. In the
case of continuous systems with short correlation times, if the
sampling frequency δt−1 is sufficiently high, the time interval

 = �δt is independent of the sampling time δt and thus of
the number of points �. Consequently, according to Eq. (8),
the uncertainty scales as �−1/2, in agreement with the results
of these authors. On the other hand, in the case of intermittent
systems, where correlations are long-lived, the length 
 is
expected to be dependent on the sampling frequency and
therefore on �. This dependence changes the power-law scaling
of uncertainty S(m,L) vs the number of points �, namely,
S(m,L) ∼ �−p, so the exponent p departs from the standard
value 0.5 [11,20].

The investigation of the scaling laws in combination with
the divergence rate method, e.g., by changing the sampling
frequency, could be exploited to provide new tools to identify
optimal embedding parameters.
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[13] M. Hénon, Commun. Math. Phys. 50, 69 (1976).
[14] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
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