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Nonlinear dynamics of atoms in a crossed optical dipole trap
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We explore the classical dynamics of atoms in an optical dipole trap formed by two identical Gaussian
beams propagating in perpendicular directions. The phase space is a mixture of regular and chaotic orbits, the
latter becoming dominant as the energy of the atoms increases. The trapping capabilities of these perpendicular
Gaussian beams are investigated by considering an atomic ensemble in free motion. After a sudden turn on of the
dipole trap, a certain fraction of atoms in the ensemble remains trapped. The majority of these trapped atoms has
energies larger than the escape channels, which can be explained by the existence of regular and chaotic orbits
with very long escape times.
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I. INTRODUCTION

Since the 1970s, it has been well known that the interaction
between the induced atomic dipole moment and the intensity
gradient of a nonresonant light enables the optical confinement
of neutral atoms [1–5]. Nowadays, these optical dipole traps
are routinely used to confine neutral atoms in the cold
and ultracold regime where quantum-engineering is required.
These confined atomic ensembles allow for a wide range
of applications such as single-atom manipulation [6], Bose-
Einstein condensation [7], optical atomic clocks [8], or the
observation of classical and quantum chaos [9,10].

The simplest optical trap providing confinement of neutral
atoms consists of a single strongly focused Gaussian laser
beam [1,3]. In this case, the confinement is one-dimensional
and perpendicular to the propagation of the beam axis. For
a tight confinement in the three spatial dimensions, the so-
called crossed-beam trap is commonly used, which consists
of two Gaussian laser beams with orthogonal polarizations
propagating along perpendicular directions [4,5,11]. With this
trap, it is possible to obtain highly isotropic atomic ensembles
tightly confined in all dimensions [4,5,11].

Opposite to a Bose-Einstein condensate, for a thermal
atomic cloud, quantum effects can be neglected and it is
appropriate to describe the optical trapping mechanism via
the corresponding classical dynamics of the atoms in the
electromagnetic fields. Indeed, the nonlinear nature of the
optical trapping renders these systems very attractive for
classical studies. At the same time, such classical dynamics
studies are scarce in the literature. In this sense, Barker and
coworkers [12] used a classical one-dimensional model to
explain the Stark deceleration of a cold molecular beam by
a single focused laser beam. The main goal of this paper
is to perform a systematic study of the classical dynamics
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of optically trapped neutral atoms. We also investigate the
phase space of an atomic ensemble in free motion that is
exposed to a suddenly switched-on crossed optical dipole trap.
Moreover, we also show that a certain fraction of the atoms
are indeed trapped. The standard procedure of trapping neutral
atoms relies on adiabatic processes, meaning that one first
slows or even stops a particle beam and consequently traps it.
The sudden trapping mechanism investigated here represents
a highly nonadiabatic and instantaneous process. However,
due to its particular experimental simplicity (there is no need
of cooling techniques), this trapping procedure could be of
interest.

The paper is organized as follows: In Sec. II we establish the
three degree of freedom Hamiltonian governing the dynamics
of an atom in a crossed-beam trap. The study of the critical
points of this system and the description of the fundamental
families of periodic orbits are also provided in this section. We
explore the nonlinear dynamics of the system by means of a
fast chaos indicator in Sec. III. In Sec. IV, we investigate the
dynamics of an atomic beam in free motion, which is suddenly
exposed to a crossed-beam trap. The conclusions are provided
in Sec. V.

II. CLASSICAL HAMILTONIAN OF A SINGLE ATOM
IN AN OPTICAL DIPOLE TRAP

When an atom is exposed to laser light, the electric field �E of
the laser induces a dipole moment �d in the atom given by �d =
α(ω) �E, where α(ω) is the atomic polarizability, which depends
on the laser driving frequency ω [4]. For the nonresonant case,
the frequency of the nonresonant light is assumed to be far
detuned from any atomic transitions. Using the rotating wave
approximation [13], the interaction potential U of the dipole
�d in the field �E reads as [4]

U = − 1
2 〈 �d · �E〉, (1)

where the brackets denote the time average of the terms
depending on the frequency ω [13]. Here, we consider an
atom exposed to two identical focused Gaussian laser beams,
which propagate along the perpendicular axes X and Y , and
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that are polarized along the (perpendicular) directions Z and
X, respectively. The total electric field of the two beams is

�E(X,Y,Z) = Eo exp

[
−Y 2 + Z2

ω2
o

]
cos(ωt)X̂

+Eo exp

[
−X2 + Z2

ω2
o

]
cos(ωt)Ŷ , (2)

where Eo and ωo are the electric field strength and the waist
of the beams, respectively. Then the dipole potential Eq. (1)
becomes

U (X,Y,Z) = −Uo

2
exp

[
−2 (Y 2 + Z2)

ω2
o

]

− Uo

2
exp

[
−2 (X2 + Z2)

ω2
o

]
, (3)

where Uo = αoE
2
o/2, with αo being the average atomic

polarizability. In Eqs. (2) and (3) we are assuming that the beam
waist ωo of the laser field is much larger than its wavelength
ωo � λ [4]. The dipole potential Eq. (3) has a critical point at
the origin with a minimum energy −Uo, its effective depth is
Uo/2 along the X and Y axes, and Uo along the Z direction.
This is illustrated in Fig. 1, where the characteristic exchange
symmetry between the coordinates X and Y is observed.

The classical Hamiltonian describing the motion of an atom
of mass m in this cross-beam trap is given by

H = P 2
X + P 2

Y + P 2
Z

2m
+ U (X,Y,Z), (4)

FIG. 1. (Color online) Upper panel: Interaction potential
U/U0 = u(x,y,z) along the z = 0 plane. Lower panel: Interaction
potential U/U0 = u(x,y,z) along the y = 0 plane. Dimensionless
coordinates (x = X/ωo,y = Y/ωo,z = Z/ωo) are used.

where Vi = Pi/m, i = X,Y,Z, are the Cartesian components
of the velocity of the atom. For this study, it is useful to
introduce a dimensionless version of the Hamiltonian Eq. (4).
To do so, we define the dimensionless coordinates x = X/ωo,
y = Y/ωo, and z = Z/ωo and the dimensionless unit of
time t ′ = t ν with the frequency ν = (Uo/ω

2
om)1/2. Applying

these transformations to the Hamiltonian Eq. (4), we get the
following dimensionless Hamiltonian

E = H = v2
x + v2

y + v2
z

2
+ u(x,y,z), (5)

where vi = dxi/dt ′ are the corresponding velocity compo-
nents of the atom and the (dimensionless) dipole potential
u(x,y,z) takes the form

u(x,y,z) = − 1
2 exp[−2 (y2 + z2)] − 1

2 exp[−2 (x2 + z2)].

(6)

The coordinates and the energy E are given in units of ωo

and Uo, respectively. Then the energy of the dipole trap at its
minimum is −1 and its effective depth is −1/2 (see Fig. 1).

The classical equations of motion read

ẋ = vx, ẏ = vy, ż = vz,

v̇x = −2 x exp[−2(x2 + z2)],

v̇y = −2 y exp[−2(y2 + z2)],

v̇z = −2 z {exp[−2(y2 + z2)] + exp[−2(x2 + z2)]}. (7)

In this system of coupled equations, there are several analytical
families of periodic orbits. The rectilinear orbits, Ix , Iy , and
Iz, along the x, y, and z axes, which are always particular
solutions of Eq. (7). Orbits Ix and Iy are plotted in Fig. 2.
For z = vz = 0, we find the rectilinear orbits, I±

xy , with initial
conditions x = ±y and vx = ±vy , i.e., the two bisectors of
the xy plane, and the elliptic-shaped trajectories, I±

E , for the
initial conditions x = ±y and vx = ∓vy (see Fig. 2).

In the invariant plane z = vz = 0, i.e., the trajectories
with initial conditions z(0) = vz(0) = 0 always satisfy z(t) =
vz(t) = 0. The degrees of freedom (x,vx) and (y,vy) are
decoupled in the Hamiltonian Eq. (5) and the system is
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FIG. 2. (Color online) Examples of the periodic orbits Ix , Iy , I+
xy ,

I−
xy , I+

E , and I−
E in the xy plane for the energy E = −0.9.
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integrable. There are two more invariant planes given by
x = vx = 0 and y = vy = 0, which present an equivalent
dynamics with two degrees of freedom due to the symmetry
between the coordinates x and y, and between their corre-
sponding velocities. If the motion of the atom is confined
close to the trap minimum, the dipole potential Eq. (6) could
be approximated by the harmonic one u(x,y,z) ≈ x2 + y2 +
2z2 − 1, and the system becomes a harmonic oscillator in 3D,
which is integrable and separable.

III. NONLINEAR DYNAMICS OF THE TRAPPED ATOM

Here, we focus on the phase space structure of an atom
confined in the optical dipole trap governed by the Hamiltonian
Eq. (5). The latter involves three degrees of freedom, and
the corresponding phase space is six-dimensional leading
to a five-dimensional energy shell. Thus, Poincaré surfaces
of section [14,15] are not useful to investigate the phase
space structures. The so-called chaos indicators represent an
alternative to perform such a study [16,17]. One of the most
popular is the orthogonal fast Lyapunov indicator (OFLI)
[18–20], defined as

OFLI(r0,δr0,tf ) = sup
0�t�tf

log ||δr⊥(t)||, (8)

where r(t) = (x(t),y(t),z(t)), ro = r(0), δr⊥ is the component
of the variational vector δr orthogonal to the flow dr/dt , and tf
is the stopping time. The OFLI provides a fast way to determine
if an orbit is chaotic and it is able to distinguish between
periodic and resonant orbits. In this way, the variational
vector δr⊥ behaves linearly for regular resonant orbits and
for orbits on a KAM torus; it tends to constant values for
periodic ones, and it increases exponentially for chaotic ones
[19–21]. Examples of this behavior are shown in Fig. 4 and
Fig. 5.2 of Refs. [16] and [22], respectively. Note that the
Lyapunov exponents are defined in the long-time limit (see,
e.g., Ref. [23]), in contrast to the OFLI definition Eq. (8).
The main disadvantage is that the OFLI results depend on

the initial conditions of the variational vector δro. Here, we
use the so-called OFLITT

2 extension of OFLI [16,17], which
removes the drawback of choosing δro by incorporating the
second-order variational equations in the computation of the
indicator.

In the six-dimensional system Eq. (5), a two-dimensional
OFLITT

2 map is obtained by imposing three restrictions in
addition of fixing the energy E. To implement the latter,
we have to choose two proper two-dimensional sub-
spaces of initial conditions. Since the x and y coordi-
nates are dynamically equivalent, we choose the two planar
subspaces S1 = {(y,z), x = vy = vz = 0} and S2 = {(x,y),
z = vx = vy = 0}, which are perpendicular to the x and z

axes, respectively. For a fixed energy E, the energy condition
Eq. (5) provides the initial value for the velocities,

vx = ±
√

2E + exp[−2(y2 + z2)] + exp[−2z2], (9)

vz = ±
√

2E + exp[−2x2] + exp[−2y2], (10)

in S1 and S2, respectively. For vx = 0 and vz = 0, these
equations give the available regions (y,z) and (x,y) in the
planar subspaces S1 and S2, respectively.

We have calculated the OFLITT
2 by the numerical integration

of the Hamiltonian equations of motion Eq. (7) using an
explicit Runge-Kutta algorithm of eighth order with step size
control and dense output [24]. In our calculations, we stop
the time evolution if the OFLITT

2 reaches the value nine that
characterizes a chaotic orbit or if t becomes larger than the
stopping time tf = 2 000. Our numerical tests have shown that
this value for the stopping time is appropriate for the correct
characterization of any orbit. In Fig. 3 we present the short-
and the long-time evolution of the OFLITT

2 for a quasiperiodic
and a chaotic trajectories and for the periodic orbit Iz. The
energy of these orbits is E = −0.6 and their initial conditions
have been taken from the OFLITT

2 map of Fig. 5(b). These time
evolutions show that with a stopping time of tf = 2 000 the
main features of these orbits are correctly captured.
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FIG. 3. (Color online) Short (left panel) and long (right panel) time evolution of the OFLITT
2 indicator for a quasiperiodic and a chaotic

trajectories and for the periodic orbit Iz. Note that in the right panel a logarithmic scale has been used for the abscissa axis. Their energy is
E = −0.6 and their initial conditions have been taken from the OFLITT

2 map of Fig. 5(b). The vertical and horizontal dashed lines indicate the
stopping time tf = 2 000 and the cutoff value nine of the OFLITT

2 for chaotic orbits, respectively.
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FIG. 4. (Color online) OFLITT
2 indicator color maps for initial

conditions in the plane S1 = {(y,z),x = vy = vz = 0} (upper panel)
and in the plane S2 = {(x,y),z = vx = vy = 0} (lower panel) and
energy E = −0.8. The pink color stands for energetically not allowed
initial conditions.

In the OFLITT
2 maps, we have used a red green blue (RGB)

color code: blue and red are associated to regular and chaotic
orbits, respectively; intermediate colors from dark blue to red
indicate the evolution from regular to chaotic motion; finally,
pink and white stand for not allowed initial conditions and
escape orbits, respectively.

If the energy of the atom is close to the potential well min-
imum, the phase space is populated with highly regular orbits
having small OFLITT

2 values. This is illustrated in Fig. 4 by
the OFLITT

2 maps for E = −0.8. The dark-blue points in these
maps correspond to several stable periodic orbits surrounded
by a set of KAM tori. The positions of the analytical periodic
orbits Ix , Iy , and Iz are shown. For these OFLITT

2 maps, we have
computed seven nontrivial periodic orbits, Ii, i = 1, . . . ,7,
which are indicated in the corresponding panel of Fig. 4. They
are also listed in Table I with the resonance order m : n : k,
which means that wx/wy = m/n and wy/wz = n/k, with wx ,
wy , and wz being the frequencies of each mode, and m,n, and
k integers.

For E = −0.6, the phase space still presents a predomi-
nantly regular behavior; see Fig. 5. Compared to the E = −0.8
case, the OFLITT

2 maps are dominated by a lighter green color
due to the existence of quasiperiodic orbits with larger values
of OFLITT

2 . The evolution of the OFLITT
2 along the z = 0 and

y = 0 axes is presented in Figs. 6(a) and 6(b), respectively.

FIG. 5. (Color online) Same as described in the legend of Fig. 4
but for energy E = −0.6.

These one-dimensional plots clearly show that larger values
of OFLITT

2 are achieved for E = −0.6. Moreover, we observe
along the z = 0 axis the major impact of the presence of the
periodic orbits Ix , Iy , and I1 (see Table I). In Fig. 6(b), we detect
the OFLITT

2 signature of the Ix , Iz, I4, and I6 periodic orbits
(see Table I). For E = −0.6, Fig. 6(b) shows the presence of
three new periodic orbits (resonances), namely I8 (2:0:1), I9

(5:0:3), and I10 (11:0:7), which are also depicted in Table I.
The dynamics is more complex for E = −0.6. For instance, the
inset of Fig. 6(b) shows that the periodic orbit I9 is embedded
between two quasiperiodic orbits with high values of OFLITT

2 .
The phase space in Fig. 5(b) presents small regions of chaotic
motion (in red) along the direction x = ±y, in which OFLITT

2
surpasses the chaotic limit during its evolution, cf. Fig. 6(c).
Obviously, for E < −0.5, all orbits are bounded.

For E > −0.5, the x and y directions become escape
channels by which the atoms could leave the optical trap. Thus,
the available region of the OFLITT

2 map in the planar subspaces
S1 and S2 are open along the x and y axes, respectively;
whereas the channel along z remains closed for negative
energies. Due to these escape channels, the computation of
the OFLITT

2 indicator is stopped if, for t < tf , the distance of
the atom from the trap center reaches a certain fixed threshold
rt = 5.

For E = −0.4, the dynamics is more complex and the phase
space is a mixture of chaotic and regular motion around KAM
tori; see Fig. 7. Note that the initial conditions in the wide
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TABLE I. (Color online) Nontrivial periodic orbits appearing in the OFLITT
2 maps in Fig. 4. These

orbits are illustrated by using the projections on the zx or yx planes. We provide the m : n : k order of the
resonance. The I1 to I7 orbits and the I8 to I10 orbits correspond to the energies E = −0.8 and E = −0.6,
respectively.

Name Projections Resonance Name Projections Resonance

Type m : n : k Type m : n : k

I1

2D
x-0.3 0 0.3

-0.3

0

0.3

y 1:1:0
I2

2D
-0.2 0 0.2

-0.3

0z

x

0.3

10:0:7

I3

3D

y
-0.2

0

0.2

-0.2 0 0.2x -0.2 0 0.2
-0.15

0

0.15

z

y

10:10:7
I4

2D
-0.2 0 0.2

-0.2

0

0.2

z

x

13:0:9

I5

2D
-0.2 0 0.2

-0.2

0

0.2

z

y

0:26:17
I6

2D
-0.3 0 0.3

0z
-0.2

0.2

x

10:0:7

I7

3D
-0.2 0 0.2

-0.2

0

0.2

y

x -0.2 0 0.2y
-0.2

0

0.2

z 7:7:5
I8

2D
x-0.5 0 0.5

z
-0.15

0

0.15

2:0:1

I9

2D
x-0.6 0 0.6

z
-0.3

0

0.3

5:0:3
I10

2D
x-0.4 0 0.4

z
-0.3

0

0.3

11:0:7

red regions of Fig. 7 give rise to chaotic orbits (in a nonstrict
sense) that after being trapped for some time finally escape
[25]. These orbits have a transient chaotic regime while the
atom remains confined in the trap. Once the atom leaves the
trap through one of the escape channels, it becomes a free
particle and its regular motion is not affected by the potential
well. In many cases, the elapsed time before the atom leaves
the trap is much larger than the stopping time tf = 2 000 used
in this work. This is illustrated in Fig. 8 with the evolution of
the escape time of orbits in Fig. 7(a) along the z = 0.2 direction
for E = −0.4. It is important to note that the stopping time
used in the computation of Fig. 8 is tf = 106.

For more than two degrees of freedom, KAM tori do not
partition phase space. As a consequence, and due to diffusion
through the Arnold’s web [26], chaotic orbits can explore all
the phase space regions not occupied by the bounded KAM
orbits, in such a way that, sooner or later, the atoms leave the
trap. As an example, we show in Fig. 9(a) the long-lived escape
chaotic orbit O1 with initial conditions in Fig. 7(a). In the maps
of Fig. 7 the white zones correspond to initial conditions of
orbits that escape “quickly” from the trap, i.e., the elapsed
time when the atom leaves the trap is much smaller than tf .
Actually, these quick-escape orbits have a regular behavior. In
the white central region of the OFLITT

2 maps in Fig. 7(a), the
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FIG. 6. (Color online) Evolution of the OFLITT
2 indicator along:

(a) the z = 0 direction (x = py = pz = 0) for energies E = −0.8
(blue dashed line) and E = −0.6 (red solid line); (b) the y = 0
direction (z = px = py = 0) for E = −0.8 (blue dashed line) and
E = −0.6 (red solid line); (c) the x = y direction (z = px = py = 0)
for E = −0.6.

regular trajectories escape along the x axis, such as, e.g., the
orbit O2 plotted in Fig. 9(b). Whereas, in the regular white
areas surrounded by chaotic motion in the left and right sides
of Fig. 7(a), the atoms quickly leave the trap along the y axis,
e.g., the orbit O3 depicted in Fig. 9(c). The central region of
the OFLITT

2 maps in Fig. 7(b) corresponds to the region around
the Iz rectilinear periodic orbit, which has no accessible escape
channel for negative energies. In the right and left (upper and
lower) white areas embedded between chaotic motion regions
in Fig. 7(b) there are regular trajectories that quickly leave
the trap along the x (y) axis, these orbits are similar to those
presented in Fig. 9. The orbits with initial conditions in the
white regions of Figs. 7(a) and 7(b) have confinement times
in the trap being very short compared to the orbits within the
red regions. It is worth noticing that, for a fixed energy E, the

FIG. 7. (Color online) Same as described in the legend of Fig. 4
but for energy E = −0.4.

size of these white regions does not increase if the integration
stopping time tf is increased.

By further increasing the atomic energy, the size of the cen-
tral gap increases because the number of orbits having access to
the x axis escape channels is enhanced; see Figs. 10(a), 10(c),
and 10(e) for E = −0.3, −0.2, and −0.1, respectively. Analo-
gously, the escape regions along the x and y axes become also
larger. At the same time, the red chaotic escape regions increase

FIG. 8. (Color online) Evolution of the escape time of the orbits
in Fig. 7(a) along the z = 0.2 direction for E = −0.4. The stopping
time used to obtain these chaotic orbits is tf = 106.
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FIG. 9. (Color online) Examples of the time evolution of a chaotic escape orbit (O1, left panel) and two regular escape orbits (O2 and O3,
central and right panels). In the insets of the panels are shown the x-y and the y-z projections of each orbit. The three orbits have the same
energy E = −0.4, and their positions are indicated in Fig. 7 (a).

in size, whereas the green regular bounded regions shrink; see
Figs. 10(b), 10(d), and 10(f). Indeed, bounded regular motion
can only be found in small regions entirely surrounded by a
chaotic sea. However, even for E = −0.1, where most of the
orbits are unbounded (whether regular or chaotic), it is still
possible to find regions of trapped regular motion.

IV. CLASSICAL SUDDEN TRAPPING MECHANISM

In the cold (and ultracold) regime, the availability of
confined atomic ensembles provides major advantages as

compared to atomic beams. The trapped ensemble allows us to
perform a wealth of interesting controlled experiments, such
as high-precision spectroscopy or single atom manipulation
[6]. Experimentally, the trapping of atoms requires the ma-
nipulation of their collective motion by slowing them down
and requires sophisticated techniques for cooling. While the
standard procedure of trapping and cooling neutral atoms and
ions relies on adiabatic processes, meaning that one first slows
or even stops a particle beam before one traps it, we explore
here the problem of the trapping of a (finite velocity) beam
of particles by a sudden switch on of a trap. Obviously, this

FIG. 10. (Color online) Same as described in the legend of Fig. 4 but for energies E = −0.3 [(a) and (b) panels], E = −0.2 [(c) and (d)
panels], and E = −0.1 [(e) and (f) panels]. The black points in panels (a), (b), (c), and (d) indicate the initial conditions of the atomic beam
propagating along the x and z axes, which are confined when the optical trap is switched on; see Sec. IV for more details.
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FIG. 11. (Color online) Energy distribution histograms of the trapped orbits for three different mean kinetic energies Krms of the atomic
beam. Ntrapped is the number of trapped atoms and n is the ratio of the number of trapped atoms with energy greater than E = −0.5 and Ntrapped.
Upper- and lower-row histograms correspond to the case of the atomic beam propagating along the x and z axes, respectively.

is a highly nonadiabatic and instantaneous process but still
quite interesting from an experimental point of view. Taking
particles suddenly out of an atomic beam is an immediate
and straightforward procedure, which would be a simple
alternative to the efficient adiabatic trapping because it could
be easily implemented in any experiment with cold atoms.
Here, we illustrate this sudden trapping mechanism in terms
of a classical phase-space analysis of the atomic ensemble.

To be specific, we consider an atomic ensemble of N =
1 240 000 atoms, initially in free motion, and investigate the
trapping features of a crossed optical dipole trap, which is
suddenly turned on. Based on the spatial dependence of
the optical potential Eq. (6), we restrict the atomic ensem-
ble spatial extension to the “prism” P = (−2.5 � x � 2.5,

−2.5 � y � 2.5,−1.5 � z � 1.5). The initial positions of the
atoms are uniformly distributed in this prism P . We assume
that this atomic beam is in thermal equilibrium propagating
along the x axis (vy = vz = 0), with a velocity distribution [5]

f (vx) = 4v3
x

v4
rms

exp

(
− 2v2

x

v2
rms

)
, (11)

where vrms is the root mean square beam velocity related
to the mean kinetic energy Krms = v2

rms/2, in reduced units.
For a given mean kinetic energy, and using the Monte Carlo
method, an initial positive velocity vx is assigned to each atom
according to the velocity distribution Eq. (11).

Initially the optical trap is off, and the atoms move
freely with only kinetic energy E = v2

x/2. The optical trap
is instantaneously switched on at t = 0, and the free atomic
motion is perturbed by the dipole potential. The initial energy
E = v2

x/2 decreases by u(x,y,z), which depends on the atom
position. Due to the shape of the potential, atoms around the
origin should be strongly perturbed and likely trapped.

The trajectories of the atoms are computed by integrating
numerically the Hamiltonian equations of motion, Eq. (7). If

after a convenient propagation cutoff time tc, fixed here to
tc = 2×104, the distance of an atom from the trap center is
still below the threshold distance rt = 5, we consider that the
atom is trapped. To choose tc, we have taken into account that
for E > −0.5, the chaotic orbits are always escape orbits, see
the previous section, with an elapsed time before leaving the
trap being extremely long in many cases, i.e., the diffusion is
extremely slow compared to the trapping time. For instance, in
a typical dipole trap for Rb atoms with beam waist ωo = 25 μm
and well depth Uo = 1.5 mK [27], the frequency and time units
are ν = (Uo/ω

2
om)1/2 ≈ 1.5×104 s−1 and t ≈ 1/1.5×10−4 s,

respectively. Since in a conventional experiment, the trap is
filled in a few seconds, the cutoff time value tc = 2×104 seems
to be appropriate. Note that we are assuming as trapped orbits
the chaotic ones whose escape time is above tc = 2×104.

For three mean kinetic energies Krms of the atomic beam,
we present in Fig. 11 the energy distribution histograms of
the trapped orbits, indicating the number of trapped atoms
Ntrapped and the ratio n between the number of trapped atoms
with energy larger than the threshold energy (E > −0.5) and
Ntrapped. As it should be expected, by increasing the initial
mean kinetic energy Krms the amount of trapped atoms Ntrapped

decreases. For the fast beam with Krms = 0.5, only 1.4% of the
initial atoms remain trapped. However, the majority of these
atoms have an energy larger than the escape channels, indeed,
n is always larger than 0.65, i.e., for more than 65% of the
trapped atoms, E > −0.5. This is also observed in the large
tail of the histograms in Fig. 11.

Now, we compare the trapping ability of the optical trap
for atomic beams propagating along the x and z directions.
We consider that the atoms move in the z axis with velocity
vz given by the distribution Eq. (11) and vx = vy = 0. The
corresponding results are presented in the histograms of the
lower panels in Fig. 11, where we observe quantitatively
similar results. As Krms is increased, Ntrapped decreases whereas
n increases. In particular, for Krms = 0.10 and 0.5, the
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percentage of trapped atoms with E > −0.5 are 59% and
75%, respectively. Hence, we can conclude that the trapping
ability of the optical trap is very similar for an atomic beam
propagating along the z and x axes.

The explanation of why such a large amount of atoms
with E > −0.5 remains trapped can be found in the OFLITT

2
maps. In the E = −0.3 OFLITT

2 maps of Figs. 10(a) and
10(b), the black points indicate the initial conditions of the
atomic beam propagating along the x and z axes, respectively,
which are confined when the optical trap is switched on. In
both cases, most of the black points lay on green regions of
bounded regular motion. Thus, after switching on the lasers,
the confined atoms with energy E > −0.5 are in phase-space
regions where bounded motion is still possible due to the
existence of persistent KAM tori. Indeed, these dynamical
structures are responsible for the capture of atoms with an
energy larger than the trapping energy threshold. There are
also many black points in red chaotic regions, which are escape
chaotic orbits that remain trapped for long periods of time. For
E = −0.2, the initial conditions of the confined orbits are
also plotted in Figs. 10(c) and 10(d). In this case, most of the
bounded trajectories are confined in chaotic regions because
the regular KAM tori regions have shrunken.

V. CONCLUSIONS

We have investigated the nonlinear dynamics of an atom in
a crossed optical dipole trap formed by two identical Gaussian
laser beams propagating along perpendicular directions. The
evolution of the stability of the dynamics with increasing
energy has been shown by a detailed analysis of the phase space
in terms of two-dimensional OFLITT

2 maps. For small energies,
the phase space is populated with periodic and quasiperiodic
orbits, and chaotic motion appears as the energy is increased.
Above a certain threshold, escape in both spatial (x, y) degrees
of freedom becomes possible and the dynamics is of mixed
regular and chaotic character. Regular trajectories in which

the atom quickly leaves the trap and chaotic ones with very
long escape times exist in this case. For energies close to
zero, the threshold for escape in all three spatial directions, the
phase space still presents small areas of trapped regular motion,
which are surrounded by a sea of chaotic scattering [28].

Furthermore, we have explored the impact of an optical
dipole trap, which is suddenly turned on, on an atomic beam
that moves freely. Independently of the initial direction of the
atoms, we encounter that some of them remain within the trap,
and the amount of trapped atoms decreases, as expected, as
the initial atomic energy is increased. The majority of these
trapped atoms have an energy larger than the escape channels,
which can be understood in terms of the phase-space structures.
The OFLITT

2 maps show that these trapped atoms are either in
bounded orbits, which are possible due to the existence of
KAM tori, or in chaotic ones with very long escape times.

A natural extension of this work would be to investigate
the dynamics following a quench. For an atomic ensemble in
an optical dipole trap, a sudden change of the trap depth or
width would provoke significant changes in the phase space
structure. A classical study based on OFLITT

2 maps would then
characterize the escape dynamics and trapped population.
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