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Using waveform information in nonlinear data assimilation
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Information in measurements of a nonlinear dynamical system can be transferred to a quantitative model of
the observed system to establish its fixed parameters and unobserved state variables. After this learning period is
complete, one may predict the model response to new forces and, when successful, these predictions will match
additional observations. This adjustment process encounters problems when the model is nonlinear and chaotic
because dynamical instability impedes the transfer of information from the data to the model when the number
of measurements at each observation time is insufficient. We discuss the use of information in the waveform of
the data, realized through a time delayed collection of measurements, to provide additional stability and accuracy
to this search procedure. Several examples are explored, including a few familiar nonlinear dynamical systems
and small networks of Colpitts oscillators.
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I. INTRODUCTION

In constructing models of complex systems, the dynamical
states and fixed parameters of the model are typically unknown
and must therefore be inferred through data generated by
observing the system. To test or validate a model requires an ac-
curate estimate of its fixed parameters and its unobserved state
variables, which then must be used to predict the outcome of
new measurements when the same system is subjected to forces
different from those that were used to construct the estimate.
This enterprise of incorporating information from measured
data into the properties of a predictive model is known as
data assimilation in geophysical sciences and is practiced in
a wide spectrum of scientific inquiries, including numerical
weather prediction [1], systems biology [2,3], biomedical
engineering [4], chemical engineering [5], biochemistry [6],
coastal and estuarine modeling [7,8], cardiac dynamics [9],
and nervous system networks [10,11], among many others.

We wish to emphasize throughout this paper that estimation
alone is not enough when seen through the measured state vari-
ables only. One can, and often does, estimate the observations
well, but this sheds little or no light on our knowledge of the
unobserved states and unknown parameters, both of which
must also be known in order to predict beyond the observation
window. Prediction then is the metric one must adopt to assess
the quality of a model’s consistency with given data.

Previous work has shown that when the system under con-
sideration yields chaotic trajectories the dynamical instability
associated with sensitivity to initial conditions impedes the
successful identification of the initial state and parameters of
the system [12,13]. In particular, it has been observed that
many data assimilation techniques require a minimum number
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of measurements to succeed, even when the noise levels are
low [13–16].

This paper expands on a method introduced in Ref. [17],
which can function successfully even when the available
measurements are fewer than what was previously shown to
be necessary. This is possible because, rather than comparing
the estimate to the observations at individual points in time,
we instead compare the waveforms of the data and model
output over some period. The idea is that the waveform
contains additional information, which can be used to improve
the accuracy of the estimate for the unmeasured states and
parameters.

The paper is organized as follows: Section II details the
structure of a data assimilation problem and introduces some
established approaches. We describe the problem in terms of
the probability distribution of possible trajectories conditioned
on the observations. We then illustrate the challenges posed by
chaotic instability and present our solution to controlling these
instabilities by using the information in the waveform of the
observed data, via time delayed measurements. Section III
describes the central numerical obstacle in our technique,
inverting an ill-conditioned matrix, and discusses heuristics to
improve its stability. Section IV presents examples on a variety
of models from nonlinear dynamics with different dimensions
and degrees of instability. Section V discusses a method for
directly estimating the critical number of measurements, and
Section VI investigates the network properties of coupled
oscillators. We summarize our results in Sec. VII.

II. ASSIMILATING DATA INTO MODELS
OF OBSERVED PROCESSES

During an assimilation or measurement window [0,T ], data
from an observed system are presented to a system model.
Various methods are employed [12,13] to estimate the fixed
parameters and full state of the model (both observed and
unobserved state variables) at the end of the assimilation
window t = T . To validate the model and the estimates,
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predictions are compared with further observations in such
a way that information about these subsequent observations is
not utilized to further modify the estimates of the fixed model
parameters.

The model is stated in terms of differential equations
for fields φk(r,t) or point objects qα(t), so one must esti-
mate all of the φk(r,T ) or qα(T ) in order to predict the
dynamical behavior for t > T . We reduce the continuous set
of independent variables (r,t) to a finite grid in space and
time, arriving at a set of state variables xa(tn) = xa(n) where
a = {1,2, . . . ,D} and n = {0,1, . . . ,N}. The resulting state
x(n) = {x1(n),x2(n), . . . ,xD(n)} follows the rule

xa(n + 1) = fa(x(n)), (1)

constituting our model. In this discrete time formulation we
have treated the NP fixed parameters as state variables satisfy-
ing xj (n + 1) = xj (n) for j = {1,2, . . . ,NP }. For purposes of
our discussion, we will often use the continuous time version
of this discrete time map in the form

dxa(t)

dt
= Fa(x(t)), (2)

although all calculations are actually performed with Eq. (1).
The information we wish to transfer to this model re-

sides in the L measurements y(n) = {y1(n),y2(n), . . . ,yL(n)}
made at each time tn within an observation window
{t0,t1, . . . ,tn, . . . ,tm = T }. To connect the measurements yl(n)
with the solution of the dynamical equations described by
the model we must specify a “measurement function,” which
realizes the data in terms of the model output x(n) as
yl(n) = hl(x(n)). When yl(n) ≈ hl(x(n)) within the estimation
window, the model is said to be consistent with the data, while
validation of the model requires prediction of the observables
hl(x(t)) for t > T .

The method of estimating the states and parameters xa(n)
relies on systematic adjustment from some initial state x(0)

a (n)
through an iterative process that produces a sequence of
estimates

x(0)
a (n) → x(1)

a (n) → x(2)
a (n) → · · · → x(J )

a (n)

to a final estimate x(J )
a (n) using some numerical method

deemed to converge as J → ∞ to a “correct” answer:
hl(xJ (n)) ≈ yl(n). The adjustments to the x(j )(n) are perturba-
tions to the states and parameters to improve the relationship
yl(n) ≈ hl(x(j )(n)), taking the dynamical rules of the model
into account.

Our discussion will primarily focus on the case where
the model developed for understanding observational data is
perfect. That is, the data has no model errors and provides a
deterministic constraint on how estimations and predictions
are carried out. In this limit where the model dynamics are
known, a simple technique for the direct transfer of information
from observations to the dynamical model involves adding a
nonphysical control term associated with each measurement
to perturb the state of the model system x(t) toward the
observations y(t) as the model evolves in time. The equations
for these “coupled dynamics” are given by

dxl(t)

dt
= Fl(x(t)) +

L∑
l′=1

gl,l′(t)[yl′(t) − hl′(x(t))], (3)

for the l = {1,2, . . . ,L} measured states, and

dxk(t)

dt
= Fk(x(t)),

for the k = {L + 1,L + 2, . . . ,D} unmeasured states. The
control term g(t) is positive definite and has a narrow peak
centered at t = tn, so that it impacts the model trajectory only
at times when an observation is made.

This construction has been implemented in the meteoro-
logical literature for many years, where it is called “nudging,”
Newtonian relaxation, or 4DDA, and is rooted in the theory
of controls and dynamical systems [18,19]. From a dynamical
systems perspective, the control term g(t) transfers information
from the measured data to the model state by coupling the
estimated (model) system to the true (physical) system to
promote the synchronization of the model with the data [20].

This process is essentially a dynamical inverse, wherein
the model state and parameters are deduced from the measured
data. The model dynamics act as a filter that supplies additional
information about the unobserved states of the model, which
are required to construct an accurate estimate of the state of
the true system. This idea of using the model as a filter is
well established and is the core idea behind algorithms like
the Kalman–Bucy filter [21], as well as its various extensions.
In those algorithms, the coupling term g(t) is dynamical and
chosen to minimize an estimate of the error covariance [12].

For our purposes however, we focus on the simple case
where g(t) is constant and diagonal. Its value must be
chosen judiciously, to synchronize the model output with the
measured data without destabilizing the model. When this is
accomplished, accurate prediction follows.

A. The action A0(X) = − ln[P(X|Y)]

In practice, the model is almost never perfectly accurate.
When model errors are present or when the dynamics of the
model are stochastic, the iterative process taking x(j )(n) →
x(j+1)(n) may be formulated as [13]

(i) A numerical optimization procedure to estimate an
“optimal” path of the states

X = {x(0),x(1), . . . ,x(m)}.
(ii) A Monte Carlo algorithm seeking to make an accurate

estimate of a conditional probability density function P (X|Y)
for all states in the observation window, conditioned on the
collection of observations

Y = {y(0),y(1), . . . ,y(m)}.
Prediction beyond the measurement window, t > T , requires
all components of the state x(T ) and either the deterministic
dynamical rule (1) or a dynamical rule that includes stochastic
model errors.

Since the data are noisy and the model inevitably has
errors, most applications require us to estimate P (X|Y).
This distribution contains all information relevant to the data
assimilation problem. It allows one to decide whether the
best estimate for the state X is the mean, mode (i.e., the
maximum a posteriori estimate), or some other measure of the
distribution. Moreover, it allows us to quantify the uncertainty
in our estimate by computing statistical quantities as functions

062916-2



USING WAVEFORM INFORMATION IN NONLINEAR DATA . . . PHYSICAL REVIEW E 90, 062916 (2014)

G(X) of the path X with the form

E[G(X)|Y] =
∫

dXP (X|Y)G(X)∫
dXP (X|Y)

=
∫

dX exp[−A0(X)]G(X)∫
dX exp[−A0(X)]

. (4)

The action A0(X) in Eq. (4) is composed of
(i) Terms moving the model state from time tn to time tn+1

through the observation window.
(ii) Terms associated with the modification of the condi-

tional probability distribution at times when measurements are
made.

The general formulation, which incorporates noisy mea-
surements and model errors, is given by

A0(X) = −
m∑

n=0

CMI (x(n),y(n)|Y(n − 1))

−
m−1∑
n=0

ln[P (x(n + 1)|x(n))] − ln[P (x(0))].

The term P (x(0)) is the initial distribution of the states at
the beginning of the assimilation window t0. If no prior
information is available, this distribution is taken to be
uniform and can be ignored as an additive constant. The
term P (x(n + 1)|x(n)) is the transition probability for the state
x(n) → x(n + 1). For deterministic models, this term is a delta
function. The conditional mutual information term is

CMI (x(n),y(n)|Y(n − 1))

= ln

[
P (x(n),y(n)|Y(n − 1))

P (x(n)|Y(n − 1))P (y(n)|Y(n − 1))

]
, (5)

where Y(n) = {y(n),y(n − 1), . . . ,y(0)} is the collection of
measurements up to time tn. This term contains the additional
information transferred from the current measurement y(n)
to the model x(n), conditioned on the past measurements in
Y(n − 1).

If the measurement noise and model errors are Gaussian
distributed with respective inverse covariance matrices Rm and
Rf , the action becomes [13]

A0(X) =
m∑

n=0

L∑
l,l′=1

[
δml(n)

Rm
l,l′(n)

2
δml′ (n)

]

+
m−1∑
n=0

D∑
a,a′=1

[
δfa(n)

R
f

a,a′

2
δfa′ (n)

]
− ln[P (x(0))],

(6)

where

δf(n) := x(n + 1) − x(n) −
∫ tn+1

tn

f(x(t ′))dt ′,

δm(n) := y(n) − h(x(n))

are deviations from the model and measurements, with Rf and
Rm as their respective inverse covariances.

There is much discussion in the data assimilation litera-
ture [12] focused on the development of numerical methods

for evaluating the path integral in Eq. (4). Since these integrals
tend to be high dimensional, the methods can generally be
divided into two categories:

(i) stationary path methods, which seek the paths where
∂A0(X)/∂X = 0 and assumes they are the dominant contribu-
tion to the integral;

(ii) Monte Carlo methods, which directly sample the
distribution exp[−A0(X)].

The connection between the two approaches is given by the
fact that P (X) = exp[−A0(X)] is the limiting distribution for
a distribution P (X,s) of orbits X(s) satisfying the Langevin
equation

dXσ (s)

ds
= −∂A0(X(s))

∂Xσ (s)
+

√
2ησ (s),

where the parameter s denotes “algorithmic time.” Here, σ is
the collection of indices of the path X, and ησ (s) is a Gaussian
distributed random variable with mean zero, variance unity,
and independent at each algorithmic time s. The distribution
P (X,s) satisfies a Fokker–Planck equation whose distribution
as s → ∞ is P (X) = exp[−A0(X)]. The Langevin equation
shows the connection between the minima of A0(X) where
∂A0(X)/∂Xσ = 0 and the distribution of fluctuations P (X)
about those minima induced by ησ (s).

Our attention in this paper is on the ability to succeed
with these methods when multiple stationary paths or multiple
local minima of the action are present. These local minima
are due to chaotic instability in the dynamics and impede
the identification of the optimal path or the Monte Carlo
calculation of P (X|Y) [14]. Thus, even in an ideal situation
where the model is known exactly and the data have no noise,
estimating the unobserved states and parameters of the model
may still be difficult when the dynamics are chaotic.

B. Chaotic instability as an impediment to success and the
“critical” number of measurements Lc

When the system under consideration yields chaotic time
series yl(n) and xa(n), there arises a serious impediment to
many of the iterative processes used across multiple scientific
fields to search for the set of states and parameters that most
closely matches the observed data [14]. This impediment is
common to all of the approaches discussed thus far; namely,

(i) the dynamical synchronization (nudging) approach;
(ii) variational or optimization methods, which seek a

minimum of A0(X,Y) = − ln[P (X|Y)];
(iii) the Monte Carlo estimation framework, which directly

samples P (X|Y).
In both the variational and Monte Carlo frameworks, the

problem is manifested as multiple minima in the action
A0(X,Y) = − ln[P (X|Y)] caused by the instability associated
with the sensitivity to initial conditions characteristic of
chaotic motion. Since small perturbations in the initial values
of the path yield large deviations of the action, incoherence of
chaotic flows for slightly differing initial states or parameters
causes the search surface A0(X) to be riddled with local
minima. The presence of these local minima significantly
impedes the algorithmic search for the minimizers.

In the synchronization approach, the impediment arises
from instabilities on the L-dimensional synchronization
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manifold, where yl(n) = hl(x(n)) in the D-dimensional state
space. Such behavior may be characterized quantitatively by
the conditional Lyapunov exponents (CLEs) for motion on
the D-L dimensional submanifold governed by Eq. (1). A
necessary condition to achieve synchronization of chaotic
systems requires all Lyapunov exponents to be negative [22].
When any of the D-L CLEs are positive, the synchronization
manifold is unstable and we observe multiple minima in X for
A0(X).

While there does not yet exist a rigorous mathemati-
cal framework establishing these observations, there exists
substantial numerical evidence. For instance, the book by
Evensen [12] shows (in Fig. 6.1) multiple minima generated
by the Lorenz 1963 model [23] in the graph of the cost function
associated with the strong variational method (strong 4D-Var),
in which the dynamical equations are used as nonlinear
equality constraints, and only the initial conditions appear
as control variables in the optimization. Although he does
not connect this with the instability on the synchronization
manifold, this connection is made in Ref. [24].

Similarly, multiple local minima are also observed in
the weak version of 4D-Var, in which model errors are
incorporated into the cost function [15]. As the weak 4D-Var
method is directly related to the Monte Carlo method through
the Langevin equation (7), dynamical instability impacts these
techniques as well [15].

For each approach, the impediments to the search for
states (and parameters) are removed by increasing the number
of measurements L to a value Lc � D. This value Lc we
call the critical number of measurements, above which the
search surfaces become smooth in X. This smoothing of the
action is analogous to a phase transition in the number of
measurements L [14]. For instance, given a perfect dynamical
model and perfect measured data (no noise), either L < Lc

and the search space is riddled with numerous local minima, or
L � Lc and the space is smooth with a single, unique (global)
minimum. In the latter case, we observe that predictions made
by using one of the aforementioned approaches succeed with
high-probability, regardless of the choice of initial condition.
Whereas when L < Lc, the process is likely to be unsuccessful
unless additional knowledge about the initial state of the
system is available.

This transition is most evident in the context of synchroniza-
tion. When L � Lc the model output synchronizes with the
data, otherwise it does not. To understand this quantitatively,
recall how the coupling matrix g(t) modifies the Jacobian of
the dynamics (2),

∂F(x(tn))
∂x

→ ∂F(x(tn))
∂x

− g(tn).

With enough measurements L � Lc, a judicious choice of
coupling g(t) is capable of making all the positive CLEs
negative, thereby establishing the conditions necessary to
synchronize the model with the data. Since only the rows of
the Jacobian that correspond to measured state components are
altered, the number of measurements is crucial to the success
of this process.

Consider a singular value decomposition (SVD) of the
Jacobian ∂F(x(t))/∂x and denote the unstable subspace as
the space spanned by the singular vectors whose associated

singular values are greater than one [25]. In this unstable
subspace, perturbations from the true solution grow expo-
nentially regardless of how close the model estimate is to
the truth. The coupling term in Eq. (3) uses information
from the measurements to control this unstable subspace.
Consequently, one needs enough measurements to span the
unstable subspace so that a proper choice of coupling g(t)
may remove the dynamical instability and thereby establish
the conditions required to achieve synchronization.

We speak a bit loosely in this paper about the “number
of required measurements” Lc. The precise statement must
address: (i) the number of measurements, (ii) which states are
measured, (iii) the measurement “function” h(x(t)), as well as
(iv) the temporal resolution of the time series. For simplicity,
we make the assumption that the measurements are projections
hl(x(t)) = xl(t) and the time series is dense or near continuous,
such that a measurement is available at every time step �t of
the numerical integration. Since not all measurements carry the
same amount of information, we focus on finding a minimal
subset Lc that provides enough information to stabilize the
instabilities in the model. We shall see that focusing on Lc in
this way provides a good sense of how many measurements
are required to achieve reliable predictions.

C. Using time delayed measurements to further stabilize
the transfer of information

This has been a somewhat general introduction to the prob-
lem facing many scientists when seeking to create quantitative
models of complex systems. The main issue addressed in
this paper arises in the typical situation where the set of
measurements L remains smaller than Lc. One must estimate
D state variables x(T ) at the end of the measurement window
in order to predict. When L < Lc the estimation process is
seriously hindered and predictions for t > T will be unreliable.

We are concerned in this paper with removing these
impediments in a manner that places the smallest burden
on the experiment. That is, we wish to develop techniques
to reduce L as much as possible while maintaining the
same successful prediction rate obtained when L > Lc and
no prior knowledge of the state is known. Our goal is to
extract as much information as possible from a given set
of measurements, since in most applications the number of
measurements is tightly constrained, perhaps by cost, time, or
other technological considerations.

Our suggestion is to use information stored in the waveform
of the measurements in addition to the values of these
quantities at the measurement times to augment the number of
observations and, more precisely, to pass more information
about the observed system to the model. This idea was
previously discussed in Ref. [17], but here we give a more
detailed explanation of the method and provide additional
numerical results.

In particular, we use the measurements y(tn) as well as a
collection of the time delayed versions of those measurements
as our observations. For this task, we collect all of the
measurements at time tn along with DM − 1 time delayed
versions of y(tn) into a LDM -dimensional vector, which we call

Y(tn) := {y(tn),y(tn + τ ), . . . ,y(tn + (DM − 1)τ )}. (7)

062916-4



USING WAVEFORM INFORMATION IN NONLINEAR DATA . . . PHYSICAL REVIEW E 90, 062916 (2014)

In component form, it may be written as

Yk:l(tn) = yl(tn + (k − 1)τ ),

where l = {1,2, . . . ,L} and k = {1,2, . . . ,DM}.
The use of time delays of observed data to provide a

setting for representing information in nonlinear systems is
quite mature and very well tested in the analysis of chaotic
behavior [26–32]. In phase space reconstruction, they provide
a proxy state space for analyzing properties of the source
of chaotic motions. Here, the number of required delays
is dictated by geometric considerations, provided the time
delay τ yields components for the equivalent of y(tn) that
are independent in some, usually heuristic, sense.

The usual practice is to use each measurement y(tn)
independently of measurements at different times. Of course,
these measurements are not totally independent of each other,
as they come from a dynamical system that describes the
physical processes underlying the system’s time evolution.
The dependence comes from the idea that proceeding from an
observation y(t) (using L = 1 for illustration) to a time delayed
observation y(t + τ ) utilizes some dynamical rule involving all
of the degrees of freedom of the observed system, not just those
that are observed. So if τ is long enough for the unobserved
states of the system to have acted in sufficient magnitude to
influence y(t + τ ), then y(t + τ ) possesses information about
the overall dynamics not available in y(t) alone. The utility
and mathematical value of the time delay construction we
develop rests precisely on the information residing in those
connections.

Suppose we are able for some physical reason to observe
only L = 1 variable, z0(t), in a K + 1 dimensional dynamical
system with other variables zk(t); k = {1,2, . . . ,K} satisfying
the differential equations

dz0(t)

dt
= G0(z0(t),z(t)),

dzk(t)

dt
= Gk(z0(t),z(t)),

then

z0(t + τ ) = z0(t) +
∫ t+τ

t

dt ′G0(z0(t ′),z(t ′)),

and additional information about the time course of the other
variables z(t) for [t,t + τ ] resides in z0(t + τ ) while it is absent
in z0(t).

If τ is too short relative to the natural times of the z(t),
effectively nothing new will be usable in z0(t + τ ) about the
z(t). Similarly, if τ is too long compared to the timescale
of chaotic behavior, the values of z0(t) and z0(t + τ ) will be
incoherent with respect to each other. So a balanced choice of
τ , perhaps as given by the first minimum of the average mutual
information between them, is appropriate [30,31,33]. This line
of reasoning regarding the selection of time delays applies here
for the purposes of extracting additional information from our
measurements.

However, it is important to recognize that our use of time
delays is quite distinct from its role in nonlinear dynamics,
in which one seeks independent coordinates that construct
a proxy phase space to the underlying physical space using
the measured variables. By contrast, our goal here is to use

the information in the time delayed observations to inform a
model about the state of the physical system representing the
processes yielding the observations.

The argument regarding the number of components DM is
different as well. For phase-space reconstruction, the sufficient
number of time delays needed to reconstruct the entire phase
space can be determined geometrically. By contrast, in our
application the time delays are used to control the unstable
subspace of the dynamics, so the number of required time
delays is a dynamical quantity, which should be less than or
equal to the number of delays required to reconstruct the entire
phase space.

Furthermore, our numerical examples will show that the
number of required time delays is approximately equivalent
to the dimension of the unstable subspace, averaged over a
long trajectory. Next, however, we propose an extension of the
synchronization or nudging technique described in Eq. (3) that
incorporates information from time delayed measurements.

D. Synchronization using information from time
delayed measurements

Following our definition of y(tn) in Eq. (7), we construct
the corresponding time delayed model state:

S(x(t)) := {h(x(t)),h(x(t + τ )), . . . ,h(x(t + (DM − 1)τ ))}.
Its components may be written as

Sk:l(x(t)) = hl(x(t + (k − 1)τ )),

where l = {1,2, . . . ,L} and k = {1,2, . . . ,DM}. In the frame-
work we have described, we want the model output S(x(t))
to be equal to the data vector Y(t) as an indicator of
synchronization between the data and the model output.

The time delay vector S(x(t)) is constructed from a map
x(t) → S(x(t)), and thus satisfies the dynamical equation,

dSk:l(x(t))
dt

=
D∑

a=1

∂Sk:l(x(t))
∂xa(t)

Fa(x(t)).

Setting aside for now worries about the details of the inverse
map S(x(t)) → x(t), this expression gives us a dynamical
equation in S space:

dSk:l(x(t))
dt

= Fk:l(S(x(t))). (8)

Following the idea in Eq. (3), we introduce a control term
in S space whose role is to stabilize the chaotic motion using
information expressed in S space:

dSk:l(x(t))
dt

= Fk:l(S(x(t))) (9)

+
L∑

l′=1

DM∑
k′=1

g′
k:l,k′:l′(t)[Yk′:l′ (t) − Sk′:l′(x(t))],

where g′(t) is a coupling gain matrix defined in S space.
Mapping back to the physical space x(t) we arrive at

dxa(t)

dt
= Fa(x(t)) +

D∑
a′=1

ga,a′ (t)δxa′(t), (10)

062916-5



DANIEL REY et al. PHYSICAL REVIEW E 90, 062916 (2014)

where, in matrix notation,

δx(t) := ∂x(t)

∂S(x(t))
· g′(t) · [Y(t) − S(x(t))],

and g(t) is an additional coupling matrix, defined in x space. As
before, these coupling terms g(t) and g′(t) are localized pulses
so their contribution is only active at times when measurements
occur.

This equation displays the manner in which information
from Y(t) is transferred to the model x(t) via the dynamical
equations. This form of the dynamics is utilized throughout
the measurement window to estimate the model output states
and parameters x(t) required to match the data Y(t). When
measurements are completed, we set the coupling matrices
g(t), g′(t) = 0 to predict for t > T using the uncoupled
dynamics (1).

The term ∂x/∂S(x) is a generalized inverse of the
Jacobian ∂S(x)/∂x of the forward map to time delay space
x(t) → S(x(t)). This Jacobian is constructed by integrating
the variational equation [30] for the uncoupled dynamics (1):

d
ab(t ′,tn)

dt
=

D∑
c=1

∂Fa(x(t ′))
∂xc(t ′)


cb(t ′,tn),


ab(t ′,tn) := ∂xa(t ′)
∂xb(tn)

, 
ab(tn,tn) = δab,

in the interval [tn,tn + (DM − 1)τ ]. This allows us to construct
the Jacobian of the time delay model vector,

∂Sk:l(x(tn))
∂xa(tn)

= ∂xl(tn + (k − 1)τ )
∂xa(tn)

= 
la(tn + (k − 1)τ,tn).

Since ∂S(x)/∂x has dimensions LDM × D, it is not uniquely
invertible and a generalized inverse must be used. For this
paper, we use the pseudoinverse of this matrix; the details of
its calculation will be given in the next section.

Also note that, for notational simplicity, here we have
assumed that the measurements are projections of the state,
yl(tn) = hl(x(tn)) = xl(tn). To derive the more general expres-
sion, one would simply have to include the Jacobian of the
measurement function h(x) in the definition of ∂S(x)/∂x.

ALGORITHEM 1. TIME DELAY SYNCHRONIZATION

for n = {0,1, . . . ,N} do
1. COMPUTE S(x(tn)) AND ∂S(x(tn))/∂x(tn) VIA THE UNCOU-

PLED DYNAMICS.
2. COMPUTE THE COUPLING PERTURBATION δx(tn),

∂S(x(tn))/∂x(tn) · δx(tn) = g′(tn) · [Y(tn) − S(tn)].

3. TAKE A SMALL STEP VIA THE COUPLED DYNAMICS,

x(tn+1) ← x(tn) + �t[F(x(tn)) + g(tn) · δx(tn)].

end for
The algorithm for determining the state x(t) within the

observation window 0 � t � T is outlined in Alg. (I). At each
time step tn, we compute the model time delay vector S(x(tn))
and the Jacobian ∂S(x(tn))/∂x(tn). The results are then used
to evaluate the coupling perturbation δx(tn). The process is
repeated in this way, mapping back and forth between the
physical and time delay spaces until the end of the observation
window is reached.

Note that the integration time step �t can be chosen
much smaller than τ or the typical size of tn+1 − tn over the
assimilation window. This may be desirable to achieve stability
of the numerical scheme used for advancing the dynamics from
a measurement time to the next measurement time.

It is also worth noting that, in the limit DM = 1, the time
delay formulation (10) reduces to the standard nudging con-
trol (3). Several important differences, however, are realized
when DM > 1:

(i) Information from the time delays of the observations is
presented to the physical model equations.

(ii) The framework is easily extended to incorporate
nonlinear measurement functions h(x).

(iii) The impact of the coupling terms is not limited to
measurement times when t = tn. All measurements within
the current time delay window [t,t + (DM − 1)τ ] can be
incorporated, regardless of the current time step.

(iv) All components of the model state x(t) are influenced
by the control term, not just the observed components.
Consequently, the fixed parameters of the model may be
estimated as a natural result of the synchronization process
by including them as additional state variables, satisfying
Fa(x(t)) = 0.

(v) The time delay technique allows one to extract addi-
tional information from existing measurements.

The latter point is extremely important, as in many applica-
tions additional measurements may be prohibitively expensive,
time consuming, or not technologically feasible. The benefits
of using time delays will be displayed in further detail in the
context of the numerical examples presented later in the paper.
For the moment however, we divert our attention to a technical
matter that is of crucial importance. Namely, the calculation
of control term ∂x/∂S(x) as a regularized local inverse.

III. COMPUTING THE PSEUDOINVERSE OF ∂S(x)/∂x

We now discuss some of the details regarding the computa-
tion of the pseudoinverse ∂x/∂S(x) := [∂S(x)/∂x]+. We wish
to solve the linear system of equations for δx:

∂S(x)

∂x
· δx = δS(x) := g′ · [Y − S(x)], (11)

where the explicit time dependence has been suppressed. We
wish to determine the perturbation in physical space δx that
produces the perturbation δS(x) in time delay space. This task
may be formulated as an optimization problem that seeks to
minimize a least squared objective function:[

∂S(x)

∂x
· δx − δS(x)

]2

.

In general, ∂S(x)/∂x is a LDM × D rectangular matrix
and therefore its inverse is not unique; the system may be
underdetermined or overdetermined depending on the choice
of DM .

The common solution for such ill-posed problems such
as this is to include a regularization term in the objective
function [34,35],[

∂S(x)

∂x
· δx − δS(x)

]2

+ [� · δx]2. (12)
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This process, known as Tikhonov regularization, allows us
to choose � to give preference for particular solutions with
desirable properties. Here we choose � = αI where I is a
D × D dimensional identity matrix, which in the limit α → 0
recovers the expression for the Moore–Penrose pseudoinverse.
In addition to being arguably the simplest choice for �, this
form selects for solutions to Eq. (11) that minimizes the least
squares norm of δx. The regularization in Eq. (12) leads to the
expression for δx of

δx =
[
� + ∂S(x)

∂x
· ∂S(x)

∂x

]−1

· ∂S(x)

∂x
· δS(x),

where only a square D × D matrix needs to be inverted. This
choice agrees intuitively with the interpretation of δx as a
perturbation control.

We do not imply that this choice is optimal. Indeed,
optimality must depend on the specific problem and, more
specifically, on the form of noise in the measurement vector
δS(x). For instance, it is known that certain choices of �(t)
can implement low-pass filter properties which can be used to
enforce smoothness of the solution. However, for the purposes
of this paper and the numerical experiments herein, we focus
on one approach: the pseudoinverse.

A. Computing the pseudoinverse with singular value
decomposition

There are many numerical approaches available for con-
structing the pseudoinverse of an m × n matrix M. The sim-
plest choice involves the direct inversion of the matrix product,

M+ = (MT · M)−1MT . (13)

This technique is known to incur numerical stability
problems, which become especially problematic when M is
ill conditioned. The reason is that if M has condition number
κ then the product MT · M has condition number κ2, and will
be considerably more ill conditioned than M.

An alternative approach that does not suffer from such insta-
bility involves a SVD of the matrix M [36]. A generalization of
eigenvalue decomposition from square to nonsquare matrices,
the SVD decomposes an n × m matrix M into a product of
three matrices,

M = UV† (14)

where U and V are unitary matrices of size n × n and m × m,
respectively,  is an m × n rectangular diagonal matrix of
singular values σi , and V† denotes the conjugate transpose
of the matrix V. The SVD is unique up to permutations and
sign exchanges of the singular values. Most algorithms choose
the singular values to be positive and ordered such that σ1 >

σ2 · · · > σrmax where rmax = min(m,n).
Once the SVD is known, the pseudoinverse can be con-

structed as

M+ = V+U†. (15)

where + is defined by taking the reciprocal of each nonzero
element along the diagonal, leaving the zeros in place. In
practice however, only elements larger than some small
tolerance are taken to be nonzero, while the others are
replaced by zeros. This choice of tolerance determines the

rank of the inverse, which we will show plays a crucial role
in the numerical stability of the algorithm and governs its
overall performance. To this end, we now discuss methods for
choosing the rank of the inverse.

B. Rank considerations

The default tolerance used in most linear algebra routines
to compute the pseudoinverse, which is on the order of
the machine precision, has proven to be insufficient for
our purposes, as evidenced by our numerical experiments.
Choosing such a small tolerance will lead to the inversion of
very small singular values, which in turn produces excessively
large control perturbations δx, and these will quickly push the
model system into an unstable regime, resulting in numerical
overflow.

By significantly raising this tolerance [e.g., from O(10−16)
to O(10−3)] the calculations can be stabilized but its perfor-
mance is markedly degraded, presumably because information
about the unobserved states is being discarded. In practice, a
smaller rank corresponds directly to a smaller control δx. The
balance, therefore, is between a large enough δx to synchronize
the model states with the data and a small enough δx to keep
the numerical methods stable.

We now explore some ideas for choosing the rank of the
inverse. One option is to choose the inverse to have constant
rank throughout the entire estimation process. This has several
attractive features:

(i) If the rank is chosen conservatively small, the calcula-
tions are numerically stable.

(ii) It provides insight into its role in stabilizing the
synchronization manifold. The rank of the inverse appears to
be roughly equivalent to the number of measurements needed
to achieve synchronization in twin experiments.

(iii) The pseudoinverse, which in general is a discontinu-
ous operation, can be made continuous by specifying a constant
rank. This is important because it allows the derivative of the
inverse to be properly defined. This is necessary, for instance,
to calculate the Lyapunov exponents of the error propagation,
which are often used to prove convergence of optimal control
techniques [37].

The main drawback with this choice is that it must be
made conservatively enough to avoid numerical instability
along the entire trajectory. While this global choice is not an
issue in many circumstances, nonetheless, it discards useful
information in areas of state space where numerical instability
is less of a concern.

Through numerical experiments we have observed that the
∂S(x)/∂x matrix is more well conditioned in regions with
higher local Lyapunov exponents. This makes some intuitive
sense, as the degeneracy of ∂S(x)/∂x is due to the lack of
independence among the various components of S(x), which
in turn is related to the rate of information flow among the
various state variables x(t). Larger local Lyapunov exponents
indicate increased dynamical mixing among the physical states
as well as improved conditioning of the ∂S(x)/∂x matrix. In
other words, the optimal rank of the inverse fluctuates along
the trajectory and the SVD method actually appears to perform
better in regions where the dynamics are more locally chaotic.
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We have considered algorithms for adaptively choosing the
rank of the Jacobian to maximize the amount of information
transferred by the control coupling, without causing numerical
instabilities. One idea that has proved effective for this task
imposes a continuity constraint on the solution x(t) by ensuring
that some measure of magnitude of the control coupling δx is
not too large relative to the corresponding magnitude of the
unperturbed vector field F(x). This can be implemented in
several ways depending on the choice of norm. For instance,
selecting the L2 norm and choosing a tolerance ε, we have

||δx||2 � ε||F(x)||2 = ε

(
D∑

a=1

Fa(x)2

)1/2

.

Given positive singular values of ∂S(x)/∂x ordered as σ1 �
σ2 � · · · � σrmax , where rmax = min(DML,D), the choice of
rank r can be expressed via the inequality

||δx||2 =
∣∣∣∣
∣∣∣∣
(

∂S(x)

∂x

)−1

δS

∣∣∣∣
∣∣∣∣
2

�
∣∣∣∣
∣∣∣∣
(

∂S(x)

∂x

)−1∣∣∣∣
∣∣∣∣
2

||δS||2

� ||δS||2
σr

.

In this case, select the largest r such that

||δS||2
σr

� ε||F(x)||2,

to guarantee that ||δx||2 does not grow too large with respect
to the magnitude of the vector field ||F(x(t))||2.

Another useful choice involves the L∞ norm,∣∣∣∣
∣∣∣∣ δx
F(x)

∣∣∣∣
∣∣∣∣
∞

:= max
1�a�D

∣∣∣∣ δxa

Fa(x)

∣∣∣∣ � ε, (16)

where the vector division is performed by component. This can
be implemented by explicit calculation of the inverse and the
corresponding control coupling. Starting with the rank r = 1,
construct the control coupling using only the largest singular
value σ1, and check whether the expression in Eq. (16) holds.
If this condition is true, increase the rank by one and perform
the check again by using the inverse constructed from the two
largest singular values. The process is then iterated until full
rank is reached or the condition fails. In the latter case, the
result from the previous iteration is used. Thus, the choice for
r can be written compactly as follows:

r = argmax
1�r�rmax

[∣∣∣∣
∣∣∣∣ δxr

F(x)

∣∣∣∣
∣∣∣∣
∞

� ε

]
,

where δxr is the control coupling constructed from the inverse
of ∂S(x)/∂x containing the r largest singular values.

There are several advantages for choosing r based on the
size of the perturbation relative to the dynamics. For instance,
assuming the dynamics inherently stable it is reasonable to
think that maintaining the modified derivatives on the same
scale will keep the trajectory in a stable regime. Moreover,
the L∞ approach normalizes the effective threshold to account
for the different state variables. This is important because the

choice of rank should not depend on the units in which the
dynamical equations are expressed.

We reiterate that these techniques are heuristic choices
that, in the following numerical examples, have demonstrated
improved performance over the constant rank approach. For
these experiments, selecting ε ≈ 10 appeared to consistently
stabilize the calculations, while selecting a high rank in regions
of phase space where the time delay construction is better
conditioned and its inverse is less unstable. We make no claims
to the optimality of these suggestions.

Certainly, other good choices are available. For instance,
selecting a low-pass operator (e.g., a difference operator or a
weighted Fourier operator) for the Tikhonov matrix in Eq. (12)
is known to enforce smoothness and may help combat the
effects of measurement noise [35]. Another idea is to use L1

norm for the regularization term in Eq. (12), so that(
∂S(x)

∂x
· δx − δS

)2

+ ||� · δx||1.

This formulation may be useful when the optimal control
perturbation is sparse, as this choice of norm optimizes for
sparsity and is related to recent developments in the theory of
compressed sensing [38]. We have also yet to investigate using
a nonuniform time delay. For instance, it may be possible to
choose the delays adaptively to generate vectors via x → S(x)
that are in some way “optimally” well conditioned.

Although interesting, these considerations are beyond the
scope of this paper, which seeks to give a general introduction
to the use of time delayed measurements in data assimilation.
Thus, we turn now to some concrete numerical examples
that illustrate the capability of the time delay synchronization
technique.

IV. USING TIME DELAY INFORMATION IN EXAMPLES

We now illustrate these ideas and developments with
examples that address the applicability of the time delay
technique for state and parameter estimation of chaotic
dynamical systems. Along the way we discover strengths and
weaknesses, and we try to point out both.

We examine four model dynamical systems as test beds for
our ideas. Three of these systems are small, well-investigated
dynamical models: the Lorenz 1963, the Rössler 1979, and
the Lorenz 1996 models [23,39,40]. In addition, we extend the
analysis to network models with chaotic Colpitts oscillators
at the nodes [41]. For each example, we demonstrate that
the time delay control scheme extracts enough information
from a single measured variable (i.e., a scalar time series) to
achieve accurate estimates and predictions for the unobserved
states and parameters of the system. This is a significant
improvement over the standard DM = 1 coupling procedure
in Eq. (3), for which it will be shown that a single measured
state component is in fact insufficient for most of the examples
presented here.

To evaluate our technique we perform “twin” experiments,
in which the data xdata(t) are generated from the same model
used to perform the state and parameter estimation. This
allows us to directly compare our estimates and predictions
for all state components, not just those that are observed.
In this case, we are able to calculate the physical or x-space
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synchronization error,

SE2
x(t) := 1

D

D∑
a=1

[
xmodel

a (t) − xdata
a (t)

]2
, (17)

as a metric of the error between the model and data trajectories.
Since our models are deterministic, as SEx(t) → 0, the model
will exactly reproduce the unobserved as well as the observed
data.

In real experiments however, the unobserved states are
unknown. In this situation, we instead use the synchronization
error in S space:

SE2
s (t) := 1

DML

L∑
l=1

DM∑
k=1

[Yk:l(t) − Sk:l(x(t))]2, (18)

and we argue that—for large enough DM—it serves as a
suitable indicator of convergence.

To illustrate the general applicability of our technique we
present these examples as a series of “real” experiments by
performing the assimilation as though the data had been
collected from a partially observable system. No information
from the unobserved variables was used to produce the state
estimates. We only supplement the predictions, when needed
for comparison, with data from the unobserved variables. In
this way, we hope to convey the capability of our method in
the context of actual experiments.

Before reporting the results of our numerical investigations,
recall that we are solving the controlled or regularized model
differential equations given in Eq. (10). Parameters are esti-
mated by treating them as state variables with trivial dynamics
Fa(x(t)) = 0. All numerical integration was performed by
using an explicit fourth-order Runge–Kutta algorithm. During
an the assimilation window, measurements are available at
every time step �t . Unless otherwise specified, the coupling
matrices g(t) and g′(t) are taken to be identity matrices
when 0 � t � T . For t > T , we predict by removing the
control or coupling terms, so g(t), g′(t) → 0 and no additional
information is utilized from the measurements.

Since we are working with deterministic models, without
model error, we do not require any of the probabilistic
machinery discussed earlier. Although one may place the
time delay method fully within the general path integral
formulation [13], we do not do so here. Instead, we simply
modify the dynamical equations with the control terms
Eq. (10). After long enough time evolution, the states in the
model will match the states of system and we take these as
our initial conditions for prediction.

A. Lorenz 1963 model

We begin with the Lorenz 1963 [23] model whose equations
of motion are given by

dx1(t)

dt
= p1[x2(t) − x1(t)],

dx2(t)

dt
= x1(t)[p2 − x3(t)] − x2(t), (19)

dx3(t)

dt
= x1(t)x2(t) − p3x3(t),

where the parameters are chosen to be p1 = 10,p2 =
60,andp3 = 8/3.

To produce the data, we integrate these equations with a
time step �t = 0.01 for t = [0,T ] where T = 10 = 1000�t

and select a measurement function y(t) = h(x(t)) = x1(t); so
L = 1. The initial conditions for both the physical system
xdata(0) and the model system xmodel(0) are chosen at random
from a uniform distribution that roughly spans the size of
the attractor. However, the initial condition for the observed
component x1(0) was chosen to match the data.

1. Estimating states only

Fixing the parameters p1, p2, p3 at the values used to
generate the data, we perform our calculations using a constant,
uniform coupling g = 10 so that g�t = 0.1. The matrix g′(t)
is taken to be unity and the pseudoinverse is constructed using
full rank r = rmax = min(DM,D). The time delay is chosen
to be τ = 0.1 = 10�t , which is consistent with the average
mutual information criterion [30,31,33].

The estimation proceeds by numerically integrating the
coupled equations Eq. (10) throughout the assimilation win-
dow t = [0,10]. Then, setting g(t), g′(t) → 0, we continue the
integration to predict for t = [10,20].

The trajectory of the experimental synchronization error
SEs(t) throughout the assimilation window is shown in the top
panel of Fig. 1 for DM = {1,2,3}. Note in particular how the
DM = 1 coupling is insufficient to achieve synchronization.
This result however, is not at odds with the work of Pecora and
Carroll, whose synchronization scheme replaces x1(t) by y(t)
in the dynamical equations, corresponding to the limit g →
∞ [22]. By increasing the coupling to g = 100 we provide
enough control strength to synchronize the systems with no
time delays, DM = 1.

This result does, however, suggest that the addition of time
delays provides stronger coupling with lower values of g. This
can be seen by noting how choosing DM > 1 generates rapid
convergence of the experimental synchronization error, and
that the system converges to a synchronized state considerably
faster with DM = 3 compared with DM = 2. Furthermore, we
have checked that selecting DM > 3 does not further improve
the convergence rate, which we suspect is due to the fact that
choosing DM > 3 does not increase the rank of the inverse.
In this case, the system is observable enough so that DM = 3
provides a basis of measurements that spans the entire D = 3
state space. These results provide a simple demonstration of
how effectively the time delays transfer additional information
from the unobserved states to stabilize the synchronization
manifold.

The true test however, of any data assimilation scheme is its
ability to predict the behavior beyond the assimilation window.
To this end, the bottom panel of Fig. 1 shows the estimates
and predictions for the observed state component x1(t) for
each DM = {1,2,3}. As expected, the predictions for DM =
1 are poor whereas for DM = {2,3} they are exceptionally
accurate throughout the entire prediction window. The fact that
DM = {2,3} produced excellent predictions but DM = 1 did
not supports use of the S-space synchronization error (18) as an
experimentally viable indicator of convergence. Since this is a
twin experiment, we actually know all the “unobserved” data
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FIG. 1. (Color online) (top) Synchronization error SEs(t) for
state estimation in the Lorenz 1963 system with DM = {1,2,3}
and parameters fixed to their true values. One time delay does
not synchronize the systems because the coupling is too small.
However, selecting DM = 2 or 3 generates rapid convergence to
synchronization of the model output x1(t) to y(t). (bottom) Data,
estimates, and predictions for the observed x1(t) component of the
Lorenz 1963 model with DM = {1,2} (top subpanel) and DM = 3
(bottom subpanel). In agreement with the top panel the estimates and
predictions made with DM = 1 are poor whereas with DM = {2,3}
they are accurate.

time series, so we may verify the predictions of the unobserved
state components directly. We have done this, and the results
(not shown) confirm our comments.

2. Estimating states and parameters

Next, we estimate the parameters for this system by
extending Eq. (19) to include the parameters as state
variables. We now have six dynamical equations p(t) =
{p1(t),p2(t),p3(t)} = {x4(t),x5(t),x6(t)} with dp(t)/dt = 0.
Only the time delay control appears in the vector field of the
pk . The initial values of the parameters are chosen to be 50%
of their known values, and the coupling matrix is selected as

FIG. 2. (Color online) (top) SEs(t) with DM = {1,2,3} for the
extended Lorenz 1963 system where the parameters are treated
as additional states. Three time delays are needed to synchronize.
Including parameters can increase Lc. (bottom) Data, estimates, and
predictions of the observed x1(t) for DM = {1,2,3} when parameters
are included as state variables. Predictions made with DM = {1,2} are
poor, but accurate with DM = 3. Estimates for DM = 2 match the data
well but the predictions are not accurate, indicating the importance
of using predictions (rather than “data fits”) to validate the model.

g(t) = diag({10,10,10,100,100,100}). That is, the parameters
are subject to ten-fold larger coupling than the states. The
assimilation proceeds as before, except over an extended
observation window T = 100 = 104�t . The coupling is then
turned off to predict for [100,110].

Trajectories of SEs(t) are shown in the top panel of Fig. 2
for DM = {1,2,3}. Synchronization proceeds more slowly

than in the previous example where parameters are fixed.
Notably however, for the extended system, DM = 2 is no
longer sufficient. This can be further established by examining
the parameters at the end of the assimilation window (see
Table I). As expected, for DM = 1 the parameters have not
changed from their initial values, because DM = 1 coupling
only perturbs the measured state components [here x1(t)]
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TABLE I. Estimated parameter values for the (extended, param-
eters treated as state variables) Lorenz 1963 model. The true values
are p = {10.0,60.0,2.667}.

DM Estimated p1 Estimated p2 Estimated p3

1 5.0000 30.0000 1.3333
2 33.8313 25.2357 3.4764
3 10.0000 59.9999 2.6667

and is therefore unable to perform parameter estimation. For
DM = 2, the parameter estimates are poor and for DM = 3
they are very accurate. In the latter case, the relative errors
εrel
i := (pmodel

i − pdata
i )/pdata

i are all O(10−6) or smaller.
Forecasts for the observed state variable x1(t) are shown in

the bottom panel of Fig. 2. The estimates and predictions for
DM = 1 are not acceptable. Selecting DM = 2 on the other
hand, generates a very reasonable “fit” to the data during the
assimilation window, but it results in poor prediction. This
raises two important points:

(i) It illustrates our statement that the merit of any data
assimilation scheme must be judged by its capability to predict,
not just fit, the data.

(ii) For the extended system (with parameters included),
selecting DM = 2 is no longer sufficient to achieve synchro-
nization. This suggests that promoting parameters into states
with trivial dynamics can increase Lc.

Thus, we have demonstrated the capability of our method
to successfully estimate the state and parameters of a simple
Lorenz 1963 system. These results notwithstanding, this sys-
tem is not so interesting from the standpoint of demonstrating
the true power of this technique, since we know one measured
state component is sufficient to synchronize the systems by
using the DM = 1 coupling method, provided the coupling
gain is chosen high enough. The rest of our examples do not
share this property and are thus more suitable for investigating
the problem of assimilating data with an insufficient number
of measurements.

B. Rössler hyperchaos

We now investigate the four-dimensional (4D) Rössler
system described by [39]

dx1(t)

dt
= −x2(t) − x3(t),

dx2(t)

dt
= x1(t) + p1x2(t) + x4(t),

dx3(t)

dt
= p2 + x1(t)x3(t),

dx4(t)

dt
= p3x3(t) + p4x4(t).

We generate a time series xdata(t) by using a time step
of �t = 0.025 starting from the initial condition xdata(0) =
{−20,0,0,15} with a parameter set pdata = {0.25,3.0, −
0.5,0.05}, for an observation window T = 20 = 800�t . As
in the previous example, we choose a measurement function
y(t) = h(x(t)) = x1(t), so L = 1.

To initiate our time delay algorithm, the three unobserved
initial model conditions are selected randomly from a uni-
form distribution that spans the attractor, so that xmodel(0) =
{−20,−18.6,25.7,122.4}.

Parameters are estimated by treating them as four ad-
ditional state variables p(t) = {x5(t),x6(t),x7(t),x8(t)} with
dp(t)/dt = 0. The initial parameter estimates are selected to
be pmodel(0) = {0.125,1.5, − 0.25,0.025}; namely, 50% of the
known values.

We encountered some initial problems with numerical
stability, which we attribute to the fact that the 4D Rössler
attractor is rather inhomogeneous. That is, the x3(t) state
spends most of its time near zero but is punctuated by short
excursions to relatively large values. To increase the stability
of the computations we used the L2 rank selection procedure
described above, with ε = 10, and imposed constraints on all
parameters to keep them within the window [−10,10].

The calculations are carried out by using τ = 4�t and a
uniform coupling g = 10 so g�t = 0.25. As before, g′(t) is
taken to be unity. At the end of the observation window, the
model parameters are fixed at their estimated values, and we
then predict for a subsequent 200 = 8000�t time units.

In the top panel of Fig. 3 we plot SEs(t) for DM = {6,8,13}.
For DM = 6 synchronization does not occur whereas for
DM = {8,13} it does. The middle panel of Fig. 3 displays
SEs(t) for DM = 8 beyond the observation window. After
the coupling is switched off the error grows at a rate that
is roughly consistent with the maximum Lyapunov exponent
of the system. The bottom panel displays the estimate (red)
and prediction (blue) of the observed x1(t) along with the
known data. Excellent predictions indicate good estimates of
the unobserved states and parameters. The eventual deviation
of the predictions from the known data is due to the chaotic
behavior of the system.

Since this is a twin experiment, we may directly investigate
the behavior of the unobserved states of the system. In the
top panel of Fig. 4 we display the unobserved state x4(t).
As expected, the estimates and predictions are quite good. A
similar comparison for the parameter estimates is shown in the
bottom panel. While the estimates may vary initially, they soon
settle on the correct values. Numerical results for the parameter
estimates are compiled in Table II. The values reported are the
relative errors at the end of the observation window.

C. Lorenz 1996 model

We now turn to the example of the Lorenz 1996 model [40],
which is studied widely in the geophysical literature [42]. The
model describes a ring of D > 3 coupled oscillators, which
obey the differential equations

dxa(t)

dt
= xa−1(t)[xa+1(t) − xa−2(t)] − xa(t) + p1, (20)

where a = {1,2, . . . ,D} and the indices are permuted
cyclically i.e., x0(t) = xD(t),xD+1(t) = x1(t) and x−1(t) =
xD−1(t).

When the forcing parameter p1 is large enough, this
model exhibits extensive chaos so that the number of positive
Lyapunov exponents scales with the number of spatial dimen-
sions D [43]. Similarly, the number of measurements required
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FIG. 3. (Color online) (top) SEs(t) for DM = {6,8,13} for the
Rössler system including parameters as state variables. (middle)
Long SEs(t) trajectory for DM = 8. Trajectories begin to diverge
immediately after the coupling is removed at T = 20. The rate of
error growth is consistent with the largest Lyapunov exponent of
the system. (bottom) Known (black), estimated (red), and predicted
(blue) trajectories of the observed component x1(t). The prediction
deviates from the data around t ≈ 160 in agreement with the SEs(t)
results.

FIG. 4. (Color online) (top) Known (black), estimated (red), and
predicted (blue) time series for an unobserved state variable x4(t) of
the Rössler system with DM = 8. The prediction fails near t = 140
due to the chaotic behavior of this system. Only in a twin experiment
are we able to compare an unobserved state variable with known
data. The initial condition for x4(0) in the model, as noted in the text,
was 122.5. This was reduced to about 17 after about 100 time steps
of �t = 0.025. In the figure we started the time axis at t = 2.5 so
the display was not compressed by the need to display the very large
initial guess of x4. (bottom) Estimates of the four unknown parameters
of the Rössler system within the observation window. All parameters
are bounded with a window [−10,10] to improve numerical stability.
All parameters converge to their known values.

to stabilize the synchronization manifold is also proportional
to D. Previous work [14,24] has shown that, with a global
forcing parameter p1 = 8.17, the standard coupling scheme (3)
involving one control term in the differential equations of each
measured state requires approximately Lc ≈ 0.4D to achieve
synchronization. Since the dimension D may be chosen freely,
this makes the Lorenz 1996 system an excellent testing ground
for investigating the behavior of data assimilation techniques
in the context insufficient measurements. For our purposes, it
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TABLE II. Relative error of the four parameter estimates for the Rössler system.

DM εrel
1 εrel

2 εrel
3 εrel

4

6 29.7088 0.4368 1.1004 46.0390
8 1.8877 × 10−11 4.1588 × 10−9 4.1174 × 10−8 4.7842 × 10−10

13 1.3742 × 10−12 4.9737 × 10−12 3.8792 × 10−10 9.8734 × 10−12

will further demonstrate how the time delay dimensions serve
as additional measurements.

1. D = 20 with a single global forcing parameter

First, we look at a system of size D = 20 and extend
it to include the single global parameter p1 as a 21st state
variable x21(t) with dynamics dx21/dt = 0. We observe only
the first state component h(x(t)) = x1(t), so L = 1. Data is
generated by using a time-step of �t = 0.01. We select a
constant coupling g = 10, so that g�t = 0.1 and time delay
τ = 0.1 = 10�t . The inverse, ∂x/∂S(x) is taken to have full
rank r = DM and the parameters are not subject to any
constraints.

This example also includes additive white noise in the
measurement y(t) → y1(t) + η(t). The noise is generated
by choosing η(t) from a uniform distribution centered
around zero U (−α,α). The amplitudes α = {0.0,6.34 ×
10−5,0.0011,0.020} (arbitrary units) are chosen so that
the signal-to-noise ratios (SNRs) are, respectively, SNR =
{∞,100,75,50} dB, where for a uniform distribution,

SNR := 10 log10

( 〈y(t)2〉 − 〈y(t)〉2

|α|2/3

)
,

〈x〉 := 1

T

T∑
n=1

x(tn).

The estimate is performed by using the same data trajectory
y(t) for each of the noise amplitudes. Trajectories of the
experimental synchronization error SEs(t) are shown in the
top and bottom panels of Fig. 5 for SNR = ∞ and SNR =
100 dB, respectively. Each plot includes traces for DM =
{1,8,9,10,12,14}.

When no noise is present, a clear transition to synchroniza-
tion is evident between DM = 8 and DM = 9 for the extended
system with 21 degrees of freedom. This allows us to identify
Lc ≈ 9, which is in agreement with previous work [24].
This rule also holds when the SNR = 100 dB. In this case,
our results show the synchronization error quickly converges
down to the approximate level of the noise. However, as
the SNR is further decreased, this transition becomes less
apparent. For SNR = {75,50} (not shown), the fluctuations of
the synchronization error are roughly the order of magnitude
of the noise.

Estimates and predictions for the observed variable x1(t)
are shown in Fig. 6 for no added noise and in Fig. 7 for
SNR = 100 dB. Here again, we see a clear distinction between
the accuracy of the predictions between DM = 8 and DM = 9
when the noise levels are low, SNR � 100 dB. However, for
higher noise levels SNR � 75 dB (not shown), the estimates
are good but the predictions are poor regardless of DM ,
indicating poor parameter estimates.

Since this is a twin experiment, we may check the parameter
estimates directly. These results are shown in Table III. As
expected the estimates for SNR � 100 are accurate when
DM � 9. However, as noise levels are further increased, the
accuracy of the estimates deteriorates markedly. In this regime,
increasing DM seems detrimental to the parameter estimates.

FIG. 5. (Color online) (top) SEs(t) for the Lorenz 1996 system
with D = 20, and augmented with a single forcing parameter. No
noise is added to the measured state x1(t) so that SNR = ∞. Traces
are shown for various DM = {1,8,9,10,12,14}. Synchronization is
achieved with DM > 8 allowing us to identify Lc = 9. (bottom)
SEs(t) for the Lorenz 1996 system with D = 20 and augmented
with a single forcing parameter. Uniformly distributed white noise is
added to the measured state x1(t) so that SNR = 100 dB. Selecting
DM > 8 allows the systems to synchronize to within the level of the
noise.
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FIG. 6. (Color online) Estimates and predictions for the observed
x1(t) for the Lorenz 1996 model with no additive noise (SNR = ∞).
Traces are shown for (top) DM = 8 and (bottom) DM = 9. Note
that, while DM = 8 generates excellent estimates, the predictions are
poor, indicating that unobserved states are not correctly determined.
Selecting DM = 9 however, produces quality predictions implying
that the states and parameters are well estimated.

This sensitivity may indicate instability in the pseudoinverse.
Indeed, we have checked that further decreasing the SNR
causes the calculations to become unstable with DM > 10.

Reducing the rank of the inverse stabilizes the calculations
but does not improve the estimates in this case. However, we
have seen evidence that results may be improved by choosing
a larger DM while fixing the inverse rank at a lower value to
ensure stable calculations (e.g., r = 10). Increasing the time

FIG. 7. (Color online) Estimates and predictions for the observed
x1(t) for the Lorenz 1996 model with additive noise (SNR = 100 dB).
Traces are shown for (top) DM = 8 and (bottom) DM = 9. As
expected, selecting DM = 9 produces good predictions, although not
as good as the case with no noise.

TABLE III. Parameter estimates for the Lorenz 1996 model with
D = 20 and a single, global parameter for various SNRs. The actual
parameter value is p1 = 8.17.

DM SNR = ∞ SNR = 100 dB SNR = 75 dB SNR = 50 dB

1 8.9259 8.9259 8.9259 8.9259
8 4.6297 10.4429 9.4413 10.4346
9 8.1700 8.1702 2.1007 −8.7913
10 8.1700 8.1718 2.3666 5.4988
12 8.1700 8.1707 9.6669 2.2544
14 8.1700 8.1701 12.3476 684.1818

delay τ has also been observed to improve robustness against
noise as the addition of time delay coordinates tends to act as a
low-pass filter. However, there is a tradeoff with this tactic. As
the length of the time delay vector gets long with respect to the
Lyapunov time, the inverse of the largest Lyapunov exponent,
the ∂S(x)/∂x matrix becomes more ill conditioned and small
errors in the data are amplified. Consequently, a good method
for choosing the rank of the matrix is especially crucial when
noise is involved and when the maximum time delay time
DMτ is long. Furthermore, we expect the noise robustness to
be further improved by adapting the coupling terms g(t), g′(t)
in some optimal manner that incorporates estimates for the
error covariance, such as what is done for the Kalman–Bucy
filter.

2. D = 10 with different forcing for each oscillator

Our next example uses the Lorenz 1996 model Eq. (20) with
D = 10 and different values for the forcing parameters for each
dimension (p1 → pi for i = {1, . . . ,D}). The values of these
parameters are given in Table IV and are selected in this way
to break the symmetry of the original model. Proceeding as
usual, we construct the extended system consisting of D +
D = 20 states and parameters to perform the estimates. All
other parameters remain the same as the previous example.
Also, no additional measurement noise was included in this
simulation so SNR = ∞.

Figure 8 shows the temporal evolution of the synchro-
nization error SEs(t) for different delay dimensions DM .
While DM � 5 is not sufficient for achieving synchronization,

TABLE IV. Estimated and known values for ten forcing parame-
ters fa in the Lorenz 1996 model with D = 10 and DM = 1, 5, 6, 10.

Actual Estimated Estimated Estimated Estimated
value fa DM = 1 DM = 5 DM = 6 DM = 10

5.7 6.198 5.349 5.700 5.699
7.1 8.059 7.100 7.100 7.100
9.6 9.940 3.879 9.597 9.599
6.2 6.785 −2.439 6.204 6.200
7.5 7.723 4.569 7.495 7.499
8.4 9.151 13.463 8.403 8.400
5.3 5.555 −0.003 5.295 5.300
9.7 10.205 −0.261 9.702 9.699
8.5 9.199 −12.887 8.499 8.500
6.3 7.190 8.955 6.299 6.300
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FIG. 8. (Color online) Experimental synchronization error
SEs(t) for the Lorenz 1996 model with D = 10 and different forcing
pa in each component for DM = {1,5,6,10}. This shows that, in
addition to the state variables, ten parameters may be estimated when
DM = 10.

the simulation with DM = 6 shows a slow convergence to
zero and DM = 10 exhibits a clear and fast transition to
synchronization. This allows us to identify Lc ≈ 6 for the
extended system. This is confirmed in Fig. 9 where in the
top panel the predictions fail for DM = 1 and DM = 5, but
succeed for DM = 10 as shown in the bottom panel.

FIG. 9. (Color online) Estimate (t < 100) and prediction (t >

100) for x1(t) of the Lorenz 1996 model with D = 10 and different
forcing pa in each component during the synchronization shown
in Fig. (8). (top) For DM = 1 and DM = 5 the estimation and the
prediction is not good nor is the model output synchronized to the data.
(bottom) For DM = 10, we have excellent estimation and prediction.

V. DIRECT ESTIMATION OF Lc

We have now examined several examples of chaotic
oscillators in which the use of additional information from
the waveform of the data permits estimation of parameters
and states when only L = 1 measurement is made at each
observation time. In particular, we have seen that the time
delays act in some sense as additional measurements and
are able to reduce the number of measurements L required
to achieve accurate estimates and reliable predictions. For
instance, previous work with the Lorenz 1996 system showed
that success in this endeavor requires L � Lc ≈ 0.4D mea-
surements without time delays [14,24]. However, the results
here show that success can be achieved using only L = 1
measurement as long as roughly DM � Lc time delays are
used.

The fact that the critical number of time delays is approx-
imately the same as the Lc is no accident. As we mentioned
above, Lc is related to the number of unstable dimensions of
the dynamics. We now give a technique for directly estimating
this critical value.

Consider a long trajectory x(tn) generated by Eq. (2) and
sampled at discrete times n = {0,1, . . . ,N}. At each point tn,
evaluate ∂F(x(tn))/∂x and construct its SVD,

∂F(x(tn))
∂x

= U(tn)S(tn)V†(tn).

Let {σ1(tn),σ2(tn), . . . ,σD(tn)} be the collection of singular
values along the path. The local dimension of the unstable
subspace is given by counting the number of singular values
whose value is greater than unity. Consequently, a direct
estimate for Lc can be obtained by averaging these values
over the entire path. Specifically, the estimate is given by

Lc ≈ 1

m + 1

m∑
n=0

D∑
a=1

�[ln (σa(tn))], (21)

where �[·] is the usual Heaviside theta function.
When this numerical technique is applied to the noiseless

Lorenz 1996 system with a fixed, global parameter p1 =
8.17 the Lc ≈ 0.4D scaling rule is reproduced. Applying
this technique to the Lorenz 1996 system with D = 10 and
10 distinct parameters yields an estimate of Lc ≈ D. This
estimate, while not at odds with the above results, is a bit high,
as we have observed synchronization with as low as DM = 6.
The transition with DM = 6, however, takes much longer, as
can be seen in Fig. 8.

The reason for this, we argue, is related to the fact that
incorporating parameters into the model modifies the spectrum
of the Jacobian ∂F(x(t))/∂x to have singular values that are
close to zero. These “slightly” unstable dimensions tend to
get “averaged out” so to speak, when the assimilation window
is long, allowing synchronization to occur with fewer than D

measurements. Similar behavior was observed for the Lorenz
1963 and Rössler systems.

These results further strengthen our argument that Lc is
closely related to the number of locally unstable directions
in phase space, or more precisely, the ergodic average of this
quantity. Also, the fact that the critical number of time delays is
approximately equal to Lc supports the idea that to successfully
synchronize the model with the observed data, one requires the
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set of measurements (either physical or time delayed) to span
the unstable subspace of the dynamics.

This idea of incorporating information from time delayed
measurements to regularize the search for the correct model
states and parameters is not new by any means. In particular, we
have recently discovered that the method discussed here and in
Ref. [17] (also proposed earlier in Ref. [25]) is fundamentally
equivalent to a control theoretic construct known as a Newton
observer, which was first introduced by Moraal and Grizzle in
Refs. [44,45]. The idea is that by using time delays in this way,
the perturbation δx(t) is essentially the Newton step associated
with the observability equation. We elaborate this point in more
detail below.

We begin with the standard definition of the nonlinear
observability matrix ∂
(x)/∂x, in which


(x) :=

⎡
⎢⎢⎢⎣

h(x)
LF h(x)

...
LD−1

F h(x)

⎤
⎥⎥⎥⎦ (22)

is the collection of repeated Lie derivatives LF h(x) = F(x) ·
∇h(x) of the measurement function h(x) with respect to the
vector field F [37,46]. Note that the use of 
 here differs from
its use in section 2D to represent the variational matrix, though
the two are related. The system is said to be locally observable
at a point x0 if and only if

rank
[
∂
(x0)

∂x0

]
= D.

When the system is locally observable at a point x0, there
exists a neighborhood � such that for every z ∈ � the point
z �= x0 is distinguishable from x0, in the sense that h(z) �=
h(x0). Intuitively, this means that, at the point x0, there is
enough information from the measurement and the dynamics
to infer the entire state of the true, physical system.

In principle one can perform this inversion locally, without
having to use a dynamical process, by solving the following
nonlinear system of equations for x:

Y :=

⎛
⎜⎜⎜⎝

y

y1

...
yD−1

⎞
⎟⎟⎟⎠ = 
(x), (23)

where yi := diy/dt i are higher-order time derivatives of the
measured data. This can be done for instance, with a Newton’s
method approach, which involves a series of iterates xi :

xi+1 − xi =
(

∂
(xi)

∂xi

)−1

· [Y − 
(xi)].

For this process to succeed, the system must be locally
observable so that the Jacobian ∂
(x)/∂x has full rank [37,46].

The vector-valued functions 
(x) and S(x) are similar in
that they both contain information about the time evolution of
the states. In particular, S(x) can be considered a time delayed
version of 
(x). While 
(x) is easier to work with analytically,
performing the inversion of Eq. (23) is rarely useful in practice,
because it requires one to measure high-order derivatives of
the data or approximate them with finite differences. The latter

approach is numerically unstable when measurement noise
is present, as the finite difference approximation acts as a
high-pass filter [46].

The time delay formulation on the other hand, does not
have this problem since the derivatives on the left-hand
side of Eq. (23) are replaced with time delayed values of
the measurements. As Takens noted [28], time delays carry
the same information as the derivatives but are far less sensitive
to measurement noise. The same Newton’s method approach
can be performed using time delays,

xi+1 − xi =
(

∂S(xi)

∂xi

)−1

· [Y − S(xi)]. (24)

Note that this process is static. That is, it is carried out at
a single time t . Compare this with the dynamic process in
Eq. (10), for which the control perturbation is essentially the
right-hand side of Eq. (24). The immediate connection between
the “observation space” 
(x) and the time delay space S(x)
suggests that the static process (24) can only converge to the
correct solution when ∂S(x)/∂x has full rank.

In terms of the dynamical process Eq. (10), the observability
criterion ensures that one can modify all of the eigenvalues of
the error system

e(t) := xmodel(t) − xdata(t)

to converge at a desired rate [37,46]. In our numerical exper-
iments, we observe precipitous drops in the synchronization
error in regions where ∂S(x)/∂x is well-conditioned enough
to construct the full-rank inverse. We consider this empirical
evidence for the correspondence between our time delay
approach and observability.

In addition, the connection with observability provides a
different perspective on the time delay approach. Namely, at
each time step we are solving a time delayed version of the
observability (23) to estimate the error between the model
and the data, which is then fed back into the model system
after being modified by an appropriately chosen coupling
(gain) g(t). When DM = 1 the estimate uses only information
available at the current time and when the inverse ∂x/∂S(x) is
full rank the estimate provides full state feedback.

When the observability condition is not satisfied the static
process fails. There is however, a weaker condition known as
“detectability,” which requires all of the unobservable modes
of the system to decay asymptotically [37,46]. If this condition
holds, the dynamical process will still succeed as we are able
to control all of the locally unstable directions associated with
error growth.

This is essentially what we mean by the suggestion that
the set of measurements must span the unstable dynamical
subspace. In nonlinear systems, however, the analysis is more
difficult as this subspace changes dynamically in time, so that
we may not always have a spanning set of measurements
at each point along the trajectory. For our purposes, we
are interested in an ergodic or “infinite horizon” estimation
process where, although we may not be able to control all of
the instabilities at every point, we nonetheless have enough
measurements to initiate the transition to synchronization
given a “long enough” time series of measurements, i.e.,
T → ∞.
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The purpose of this discussion has been to introduce a
direct estimate Eq. (21) for Lc in terms of the average number
of unstable directions in the dynamics and to acknowledge
the apparent connection with observability. These ideas have
had some mention in the data assimilation literature. For
instance, the unstable dynamical subspace has been used
for selecting ensemble members in ensemble forecasts and
for identifying sensitive regions to target for further obser-
vation [42]. Also, optimization-based approaches such as
moving horizon estimation seek to incorporate a moving time
window of observations [47,48]. However, the true value of
the Newton observer (time delay synchronization) technique
lies in its ability to deal with poorly observable system in
a systematic way [45]. It was with such systems in mind
that we independently rediscovered the work of Moraal and
Grizzle some two decades later, because these systems are
altogether common in applications where the number of
degrees of freedom in the model far exceeds the number of
observations. With that said, we now turn to our final example,
which involves the estimation of a small network of chaotic
oscillators.

VI. NETWORKS OF CHAOTIC OSCILLATORS

One particular goal for our time delay method is to provide
a means to analyze networks of oscillators, such as those found
in nervous systems. As in practical geophysical dynamics (for
example, numerical weather prediction) sparse measurements
of the network behavior under selected forcing is to be
expected. One strategy [11] for understanding the underlying
physical properties of such problems is to analyze carefully
the properties of the nodes; namely, the specific oscillators
such as the ones we have covered here, and then use the same
approach to analyze the nature and strengths of the couplings
among the oscillators at the nodes to complete a model for the
network as a whole.

In the case of nervous system networks, we have many
neurons (nodes) connected by a variety of links (e.g., synaptic
and gap junction). In practice, we cannot measure the detailed
intracellular properties of more than one or a few of the nodes.
If we, however, have determined the biophysics of each node
from the analysis of isolated neurons, we require a tool to allow
the estimate of the connectivity so the functional behavior of
the network can be quantified.

A. A small network of chaotic Colpitts oscillators

Pursuing this goal, we examine a small network of well-
studied chaotic oscillators. Each of the M = 3 nodes shown in
Fig. 10 is a Colpitts oscillator that is forced by a voltage across
a known circuit. A chaotic regime of behavior is reached from
a fixed point for each oscillator through a bifurcation sequence
including a limit cycle.

In particular, we investigate a ring of oscillators with
connected with unidirectional coupling. The state of each
oscillator is given by xi

a(t), where i = {1,2,3} is the node
index and a = {1,2,3} denotes three internal state variables

FIG. 10. (Color online) Diagram of a unidirectionally coupled
network of three Colpitts oscillators.

for each node. The dynamical equations are given by

dx
(i)
1 (t)

dt
= p

(i)
1 x

(i)
2 (t) + c(i+1,i)

(
x

(i+1)
1 (t) − x

(i)
1 (t)

)
,

dx
(i)
2 (t)

dt
= −p

(i)
2

(
x

(i)
1 (t) + x

(i)
3 (t)

) − p
(i)
3 x

(i)
2 (t), (25)

dx
(i)
3 (t)

dt
= p

(i)
4

(
x

(i)
2 (t) + 1 − exp

[ − x
(i)
1 (t)

])
,

where the indices are permuted cyclically so that x(M+1)(t) =
x(1)(t). The parameters c(i+1,i) � 0 are constant coupling
constants that serve as connections among the individual
oscillators.

The Colpitts oscillator is comprised of standard R, L, C
components together with a single bipolar transistor. The
only nonlinearity is the exponential function exp[−x

(i)
1 (t)]

coming from the transistor dynamics. These equations are a
rescaled representation of the physical equations of state. The
derivation of these dynamical equations from Kirchoff’s laws
is given in Refs. [14,49]. The states x1,x2, and x3, respectively
correspond to the voltage between the transistor emitter and
its base, the current through the inductor and the voltage at the
transistor collector and its base.

When p1 � 3.5 or so, the oscillator expresses chaotic
behavior. Following Ref. [14], we select p

(i)
1 = 5.0, p

(i)
2 =

0.0797, and p
(i)
4 = 0.6898 for all three oscillators. To break

the ring symmetry, we select p
(1)
3 = 3, p

(2)
3 = 3.5, p

(3)
3 =

4 as well as c(2,1) = 0.8, c(3,2) = 0.9, c(1,3) = 1.0. Direct
integration of Eq. (25) confirms that the individual oscillators
do not synchronize with each other. This is important, because
a synchronized network may require fewer measurements
than an unsynchronized network. Indeed, synchronization of
oscillators in a network may allow population behaviors by
effectively reduce the degrees of freedom of the network in a
functional manner.
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B. Estimating the states of the network

To begin we fix all parameters and the couplings among
oscillators to their known values, and use the time delay
method to estimate the state of the network system given
only the scalar time-series y(t) = h(x(t)) = x

(1)
1 (t), so L = 1.

A constant time delay τ = 0.2 = 20�t and coupling gain
g�t = 0.1 were selected. To improve numerical stability
during the transient period, the L2 adaptive rank algorithm
was used with a tolerance ε = 10. Initial conditions for the
model were chosen at random from an arbitrary trajectory on
the attractor.

Results for the state estimation procedure are shown in the
top panel of Fig. 11. The experimental synchronization error is
plotted as a function of time for DM = {1,3,5,9}. DM = {1,2}
is insufficient; one needs DM = 3 to achieve synchronization.
Our analysis of estimates and predictions for individual states
verified that DM = 3 indeed produces excellent predictions,
whereas DM = {1,2} does not. This result gives an estimate of
Lc ≈ 3 for the case under consideration, where only the states
are to be determined.

Furthermore, the rate of convergence does not increase
monotonically with the number of measurements. That is,
DM = {4,5} have a slower convergence rate than DM = 3, and
DM = 6 does not appear to converge at all. This illustrates
the importance of the proper choice of DM , as there is a
tradeoff between the rate of convergence and the stability of
the procedure. Note that the adaptive rank algorithm did not
impact this result because, apart from about 100 time steps at
the beginning of the assimilation window, full rank was used,
i.e., r = min(D,DM ).

In addition, note that the fastest rate of convergence is
achieved with DM = 9. This choice is a special case where
DM = D and so the ∂S(x)/∂x matrix is square and may
be inverted exactly. While, theoretically, such an embedding
allows the entire state to be reconstructed instantaneously at a
single time t , in practice the matrix is often too ill conditioned
for this technique to be of use. The adaptive rank algorithm
counteracts this numerical instability by selecting the largest
rank r that produces a stable perturbation. In this case however,
we observe that, as the estimated state approaches the true
value, the adaptive rank algorithm selects a full-rank inverse
r = DM = D. This indicates that the time delay construction
is well-conditioned enough so that the exact inverse can be
used to generate a perturbation δx that is small relative to
the dynamics. When this happens, the estimate converges
remarkably quickly to the true result, as evidenced by the
steep dive for the DM = 9 trace in the top panel of Fig. 11.

We argue that this accelerated convergence brought about
by the full-rank inverse of ∂S(x)/∂x is intrinsically related to
the observability condition familiar from control theory. As
we suggested earlier, the ∂S(x)/∂x can be considered a time
delayed version of the observability matrix. When a well-
conditioned, full-rank inverse exists, the error between the
true and estimated states is well approximated by δx and the
estimate converges quickly to its true value. Thus, while DM =
3 time delays appears to be necessary to stabilize the chaotic
subspace of the dynamics to provide asymptotically stable
convergence, selecting DM = 9 provides rapid convergence
that is less numerically stable.

FIG. 11. (Color online) (top) SEs(t) for state estimates of a net-
work of three Colpitts oscillators. All model and coupling parameters
are fixed to their true values and the network topology is known.
(middle) SEs(t) for state and ring coupling parameter estimates.
Model parameters are not estimated and the network topology
is known. (bottom) SEs(t) for state and ring coupling parameter
estimates. The model has been expanded to include backwards
couplings, so the network topology is estimated as well.
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FIG. 12. (Color online) Ring of three Colpitts oscillators. (top)
Known (black), estimated (red), and predicted (blue) trajectories for
the observed x

(1)
1 (t) state component with DM = 4. Although the

estimate is quite good, poor predictions confirm that DM = 4 time
delays do not provide enough information to successfully estimate the
state of the system as well as the ring coupling parameters. (bottom)
Estimated and predicted trajectory for the observed x

(1)
1 (t) state

component with DM = 5. As anticipated from the synchronization
error results, the estimates and predictions are quite accurate,
indicating that the estimation procedure was successful.

Furthermore, depending on the system being studied it
appears that it is not always possible to construct such a
well-conditioned full-rank time delay space. In particular when
parameters are being estimated, different parameters only may
be observable within disparate regions of phase space and thus
our localized time delay vector will not be able to capture the
behavior of all parameters at a given point on the attractor.

C. Estimating the states and the couplings between nodes

Next, we fix the parameters p(i) to their known values
and include the internode couplings c(i+1,i) in the estimation
procedure. This is directly relevant to analyses of neuron

networks where we may have some knowledge of the cells
individually, but we wish to explore the connectivity which
underlies the function of the network.

We proceed as before, using the same time delay τ = 0.2 =
20�t and coupling gain g�t = 0.1 as well as the adaptive
rank selection with ε = 10. The initial conditions for the ring
coupling parameters are chosen to be one half of their correct
values, i.e., c(2,1) = 0.4, c(3,2) = 0.45, c(1,3) = 0.5.

In the middle panel of Fig. 11, the experimental syn-
chronization error is plotted as a function of time for
DM = {4,5,9,12}. Results show that DM = 5 time delays
are required to achieve synchronization. The DM = 1 case
was not computed here, because the ring coupling parameter
estimates are guaranteed to be incorrect without the use of
time delays. Trajectories with DM = 3 and DM = 6 were
also computed, but not shown as the results proved to be
numerically unstable. Also, here again we see that a full-rank
r = DM = D = 12 inverse is available, because the DM = 12
trajectory synchronizes very rapidly.

As in previous sections, we validate the results as if this
were an actual experiment. In the top and bottom panels of
Fig. 12, we plot the estimate and predicted trajectories of the
observed x

(1)
1 (t) state component for DM = 4 and DM = 5,

respectively. As expected, the prediction for DM = 4 is poor
despite that its estimate looks quite accurate. This once again
demonstrates the necessity of using predictions to validate the
quality of a model’s consistency with experimental results.
On the other hand, the DM = 5 estimate produces accurate
predictions that do not diverge for a considerable time after the
end of the assimilation window [largest Lyapunov exponent is
O(10−1)]. Similar results are obtained for DM = 9 and DM =
12, although these trajectories are not shown.

Estimated values for the ring coupling parameters are
shown in Table V. As expected, the estimates are accurate
only when DM � 5. This result demonstrates the potential of
the time delay procedure for performing state and parameter
estimation on a network of coupled chaotic oscillators.
Specifically, it shows that the waveform of a scalar signal
from a state of a single oscillator carries enough information
to determine both the states of the neighboring nodes in the
network as well as the coupling parameters that determine
the interaction between the neighbors. This of course assumes
that the network topology is known. In the next section, we
dispense with this assumption and investigate whether the
algorithm is capable of determining the functional connectivity
of this simple network.

TABLE V. Estimated ring coupling parameters for a network of
three Colpitts oscillators with known topology. True parameter values
are c(2,1) = 0.8, c(3,2) = 0.9, c(1,3) = 1.0.

Estimated Estimated Estimated
DM c(2,1) c(3,2) c(1,3)

4 4.7370 2.5639 1.4645
5 0.8000 0.9000 1.0000
9 0.8000 0.9000 1.0000
12 0.8000 0.9000 1.0000
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D. Estimating the functional connectivity of the network

Until this point, our model has been constructed by
assuming that the connectivity of the network is known, but
the strength of the connections is not. In many practical
applications however, this information is not available. For
instance, when modeling small neurobiological networks, one
often has some idea of the number of nodes in the network,
and perhaps even some notion of their physical connectivity.
The functional connectivity of the network however (i.e.,
the relative synaptic strengths) is generally unknown and
therefore must be determined from experimental data. We
now investigate this prospect of network topology estimation,
within the context of our simple Colpitts network.

To this end, we expand our network model (25) to include
coupling in both directions so that the dynamical equations for
the x

(i)
1 states are now, with c(j,i) � 0,

dx
(i)
1 (t)

dt
= p

(i)
1 x

(i)
2 (t) +

3∑
j=1

c(j,i)
(
x

(j )
1 (t) − x

(i)
1 (t)

)
.

The twin experiment data is generated as before, so that
the true values of the additional coupling parameters are
c(1,2) = c(2,3) = c(3,1) = 0. The initial conditions for these
couplings are chosen to be symmetric, so that c(2,1) = c(1,2) =
0.4, c(3,2) = c(2,3) = 0.45, c(1,3) = c(3,1) = 0.5. All other pa-
rameters are the same as before.

Also, note that all self-couplings c(i,i) are implicitly zero.
This however, is just a consequence of how the network
coupling model was defined; the procedure may be easily
generalized to estimate self-coupling parameters as well.

In the bottom panel of Fig. 11, we display experimental
synchronization error trajectories for DM = {5,6,8,10,12,15}.
Results are similar to those shown in the previous section.
Synchronization requires DM � 8 time delays and the full-
rank r = DM = D = 15 inverse synchronizes rapidly. Results
with DM = 7 were numerically unstable and are not shown.
Known, estimated, and predicted trajectories for the observed
x

(1)
1 (t) are shown in the top and bottom panels of Fig. 13 for

DM = 6 and DM = 8, respectively. As anticipated from the
synchronization error results, the prediction for DM = 8 is
quite accurate whereas for DM = 6 it is not. The estimated
coupling parameters shown in Table VI further confirm this
result. Only the estimates made with DM � 8 time delays
are accurate, allowing us to identify Lc ≈ 8 for this extended
model, in which the connectivity of the network is unknown.

The main point of this calculation was to demonstrate that
the time delay method is capable of determining the function
connectivity of a network of chaotic oscillators, within the
assumption that the model is known: both for the internal
dynamics within a node and the coupling between nodes.
In particular, we have shown that knowing x

(1)
1 (t) alone is

enough to determine the functional connectivity of this small
network of three Colpitts oscillators. That is, we are able to
correctly estimate the values of both the forward and backward
couplings, the latter of which are zero. Furthermore, we have
learned that expanding the model in this way (i.e., to include
coupling in both directions) increases the number of required
time delays from DM = 5 to DM = 8.

FIG. 13. (Color online) (top) Estimated and predicted trajectory
for the observed x

(1)
1 (t) state component with DM = 6 using the

expanded network model that includes backwards coupling (unknown
network topology). Although the estimate is quite good, poor
predictions confirm that DM = 6 time delays do not provide enough
information to successfully estimate the state of the system as well
as the ring coupling parameters. (bottom) Estimated and predicted
trajectory for the observed x

(1)
1 (t) state component with DM = 8. As

anticipated from the synchronization error results, the estimates and
predictions are quite accurate, indicating that the estimation procedure
was successful.

We remark however, that this case of M = 3 is exceedingly
simple, requiring estimation of only three additional param-
eters (the backwards couplings). For a general network, the
number of coupling terms to be estimated grows as M2 and
thus we expect that, at some M , a single, scalar measurement
will not be enough.

Nonetheless, the twin experiment framework presented
here, together with the time delay algorithm, supplies crucial
information about the observability of the system being
studied. It provides, for instance, a lower bound estimate on
the number of required measurements and also offers a way
to determine which nodes should be targeted for observation:
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TABLE VI. Estimated ring coupling parameters for a network of
three Colpitts oscillators in which the network topology is unknown.
True values are c(2,1) = 0.8, c(3,2) = 0.9, c(1,3) = 1.0, and c(1,2) =
c(2,3) = c(3,1) = 0. Results show that with DM � 8, the connectivity
of the network is successfully predicted because the backwards
couplings are estimated to be zero.

Estimated Estimated Estimated
DM c(2,1) c(3,2) c(1,3)

5 7.3325 0.5190 2.3770
6 0.8968 3.0695 1.3499
8 0.8000 0.9000 1.0000
10 0.8000 0.9000 1.0000
12 0.8000 0.8999 1.0000
15 0.8000 0.9000 1.0000
DM c(1,2) c(2,3) c(3,1)

5 2.3385 −2.8119 × 10−1 3.6094
6 −1.9911 5.2784 × 10−1 3.9568 × 10−1

8 3.8706 × 10−11 −3.3491 × 10−11 2.1787 × 10−12

10 −8.3628 × 10−10 1.0565 × 10−9 2.0178 × 10−10

12 1.0308 × 10−5 −9.8415 × 10−6 −1.4026 × 10−7

15 −3.5215 × 10−10 3.0340 × 10−10 2.9756 × 10−12

since some nodes may provide more data than others. Such
information would be highly beneficial for experimental
design purposes, as it allows one to directly investigate the
constraints imposed by one’s limited measurement capability.
In other words, our framework allows one to determine,
in principle, whether enough measurements are available to
successfully determine the connectivity of the network, and
predict its subsequent behavior.

VII. DISCUSSION AND SUMMARY

The idea of using the waveform of measurements—that
is, the measurement at time t and its time delays—has been
investigated in the context of synchronization-based state
and parameter estimation for chaotic dynamical systems as
a means to transfer additional information from observed
data to a model. An algorithm has been presented that uses
this additional information to generate dynamical coupling
between the data and model systems and its capability has
been demonstrated by using the Lorenz 1963 and 1996 models,
the four-dimensional “hyperchaotic” Rössler model, as well as
recurrent networks of chaotic oscillators.

These examples demonstrate that when only one state
variable is observed, utilizing DM � Lc time delays stabilizes
the synchronization manifold enough to enable accurate
estimation of unknown states and parameters, and permit
accurate predictions beyond the observation window. In this
way, the time delays are capable of significantly reducing
the number of measurements required to achieve accurate
estimates and reliable predictions.

In practice, the number of available measurements is often
tightly constrained (e.g., by cost or technological considera-
tions) and are typically sparse compared with the number of
degrees of freedom of the model. For instance, in the analysis
of a shallow water model of geophysical flow, it was shown
that Lc ≈ 0.7D [16], while in operational weather prediction

systems (such as the European Centre for Medium Range
Weather Forecasts) only about 107 measurements are typical
for models with 108 or 109 degrees of freedom [50].

When additional measurements are unavailable, time delays
offer another means to further stabilize the search space.
Regarding the shallow water model for instance, recent work
has shown that, by using time delays in this way, enough
information is extracted from the height field alone to permit
synchronization between the data and the model [51]. These
results demonstrate a proof of concept that time delays may be
used to effectively reduce the total number of measurements
required to achieve this goal.

The form of the time delayed coupling has some desirable
properties as well. For instance, in the case where DM = 1
it reduces to the classical form (3). Also, when DM > 1,
it generates control perturbations on all state components,
and our results have shown that, by including the param-
eters as state variables augmented with trivial dynamics
dp/dt = 0, parameter estimation occurs as a natural result
of the synchronization process. This is an improvement over
the classical (i.e., DM = 1) form, which typically requires
nonlinear optimization techniques to estimate the parameters.
Additionally, one could use this method in conjunction with
other nonlinear estimation procedures as a means to improve
the estimate when L < Lc.

There also appears to be a direct correspondence between
the sufficient number of measurements Lc and the number of
time delays required to stabilize the synchronization manifold.
This is interesting for a number of reasons. For one, although
it is reasonable that in each case there should exist such a
sufficient condition, there is no reason to assume a priori
that they should be the same. The fact that they appear to
be (roughly) equal indicates that this condition may be an
invariant property of the dynamics. Indeed, we have observed
the same phenomenon by using other approaches (e.g., varia-
tional optimization and Markov chain Monte Carlo [49,52]),
which suggests these other methods may also benefit from the
inclusion of time delays.

This result also highlights clearly the distinction between
the use of time delays here, for the purpose of state and
parameter estimation, and its familiar application in nonlinear
dynamics for reconstructing the phase space of a partially
observable dynamical system. For instance, the Kaplan–Yorke
dimension [53] for the D = 20 Lorenz 1996 system is DA ≈
12, so the sufficient dimension for phase space reconstruction
is [29] 2DA ≈ 24, whereas the required number of time delays
is DM ≈ 9. The time delays stabilize the synchronization
manifold using a fraction of the sufficient number of delays
needed for full attractor reconstruction.

We also wish to note that, in practice, there is a finite limit
to the amount of information available from the time delays of
a single scalar time series. For instance, with the Lorenz 1996
system we observed that, regardless of the chosen dimension
D, a threshold occurs around DM ≈ 12. Continuing to increase
DM beyond this threshold causes the ∂S(x)/∂x matrix to
become highly ill conditioned, and therefore requires a lower
choice of rank to maintain stable computations. We suspect that
restricting the rank in this way effectively limits the number
of stable dimensions transferred from the control coupling.
In other words, we have seen evidence that there exists a
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correspondence between the required number of measured
states Lc, the number of time delays DM , and the rank r of
the inverse. Given the threshold DM ≈ 12 and the empirical
scaling rule Lc ≈ 0.4D, this suggests that we should not be
able to synchronize a system with D > 25 by using only a
single measurement, which is indeed the limit observed in our
numerical experiments (although these results are not shown
here).

We further suggest that this threshold is due to a limited
amount of information available in a time-series that is locally
bounded by the characteristic timescale of the chaos. That
is, holding τ fixed and increasing DM to extend the time
delay vector far beyond the Lyapunov time should not provide
any additional information, as the later points are too far
de-correlated to be of any use. Likewise, increasing DM by
decreasing τ and holding the total length fixed should in
principle provide enough information. However, in this case
we are restricted by the noise level of the system (or if no
noise is present, by finite numerical precision). Both cases are
indicated by ill conditioning of ∂S(x)/∂x, and the threshold on
DM likely a manifestation of both effects.

Thus, it is crucial to the success of the algorithm that the
parameters DM and τ are chosen appropriately. They must
be large enough to provide additional information about the
unobserved states, yet not so large as to induce numerical
instability in the calculation of the inverse. There exist many
techniques for choosing τ that have been developed for the
purposes of attractor reconstruction, such as the first minimum
of average mutual information between measurements. These
methods are likely to be applicable here as well, although for
the examples shown here changing τ by a few dt did not
noticeably impact the results.

Also, whereas here we have only considered forward
time delays, recent work [54,55] has shown that a mixture
of forward and backward delays can further improve the
conditioning of ∂S(x)/∂x. Whether or not mixed delays
provides superior results for synchronization is currently under
investigation.

Moreover, although these examples have been limited to
the case where the number of measurements L = 1, our
formulation generalizes easily to the case where L > 1. In
particular, given DMi

time delays available in each of i =
{1, . . . ,L} measurements, the number of time delays required
to stabilize the estimation should satisfy

∑L
i=1 DMi

> Lc. Note
that this is only a rough approximation because it is quite
clear that the amount of information contained in each state
component is different in general, and not additive, in the
sense that measuring two mutually dependent variables may

not provide as much information as each variable contributes
individually. We remark however, that the twin experiment
framework is a useful tool for determining the relative
value of a given measurement. Such information is essential
for analyzing the costs and benefits of obtaining further
measurements.

The inclusion of time delays comes of course with an
additional computational cost, mainly associated with the
integration steps required to construct the time delay vectors
and its Jacobian, as well as solving for the perturbation
itself. The baseline for comparison is the simple nudging
algorithm (3), which is recovered in the limit DM = 1.
Certainly, clever algorithmic improvements are required in
order to reduce this overhead as much as possible. For instance,
one idea is to reduce the resolution of the model, initialize it
with existing measurements, run the assimilation, and then
interpolate to recapture the desired resolution for forward
prediction. It may also be possible to update S(x) directly with
the perturbation, so that it does not need to be recomputed
in its entirety at each time step. Other such ideas will surely
emerge as well, while the technique is scaled up to larger
problems.

Finally, extension of this method to more complex models,
or high-dimensional models representing numerical approxi-
mations to partial differential equations appears possible. In
particular, applications of this approach for numerical weather
prediction or the analysis of biological neural networks are
currently under investigation. These applications typically
permit too few measurements than are required to stabilize the
estimation procedure and the results presented here suggest
that the incorporation of time delays will allow us to extract
more information from existing measurements to improve our
state and parameter estimates and generate more accurate
predictions.
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