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Turing pattern dynamics in an activator-inhibitor system with superdiffusion
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The fractional operator is introduced to an activator-inhibitor system to describe species anomalous
superdiffusion. The effects of the superdiffusive exponent on pattern formation and pattern selection are
studied. Our linear stability analysis shows that the wave number of the Turing pattern increases with the
superdiffusive exponent. A weakly nonlinear analysis yields a system of amplitude equations and the analysis of
these amplitude equations predicts parameter regimes where hexagons, stripes, and their coexistence are expected.
Numerical simulations of the activator-inhibitor model near the stability boundaries confirm our analytical results.
Since diffusion rate manifests in both diffusion constant and diffusion exponent, we numerically explore their
interactions on the emergence of Turing patterns. When the activator and inhibitor have different superdiffusive
exponents, we find that the critical ratio of the diffusion rate of the inhibitor to the activator, required for the
formation of the Turing pattern, increases monotonically with the superdiffusive exponent. We conclude that
small ratio (than unity) of anomalous diffusion exponent between the inhibitor and activator is more likely to
promote the emergence of the Turing pattern, relative to the normal diffusion.
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I. INTRODUCTION

Turingpattern formation describes the emergence of spa-
tially inhomogeneous distributions of species density as a
consequence of Turing instability or diffusion-driven insta-
bility. This scenario was first discovered by Turing [1] in a
two species reaction-diffusion chemical system and since then
Turing’s idea has been quickly spread to other fields such
as biology [2–4], physics [5,6], neuroscience [7], and optics
[8,9]. As an interesting application in biology, Turing pattern
formation in activator-inhibitor systems may be able to, from a
theoretical point of view, explain the formation of animal coat
patterns [10], and the occurrence of different clone patterns
[11]. The standard two species reaction-diffusion model reads
in the following form:

∂u

∂t
= ∇2u + f (u,v),

∂v

∂t
= d∇2v + g(u,v),

(1)

where u (activator) and v (inhibitor) represent the concen-
trations of two chemical species, respectively. f (u,v) and
g(u,v) are reaction terms, whose specified forms depend
on investigated systems. d is the diffusion ratio between
the inhibitor and activator. For Turing patterns to form it is
well known that the diffusion ratio must be sufficiently large
(greater than unity).

The diffusion in system (1) is a depiction of standard
Brownian motion, i.e., nearest jumps at the molecular level,
and characterized by the fact that both waiting time distribution
and jump size distribution must have finite moments. However,
the particles do not necessarily always execute the nearest
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jumps, but instead they can wait between successive jumps and
perform long jumps. When the conditions of finite moments
in the distributions of waiting time and jump size are not met,
particles undergo anomalous diffusion [12–17]. For conve-
nience we denote the former diffusion by “normal diffusion”.
There are two types of anomalous diffusion, superdiffusion
and subdiffusion. The superdiffusion, a diffusion process faster
than normal diffusion, corresponds to a jump size distribution
having infinite moments, or alternatively, Lévy flights [14].
It occurs in the processes of plasmas and turbulent flows
[18,19], surface diffusion [20], and motion of animals [21–23].
The subdiffusion, a diffusion process slower than normal
diffusion, corresponds to a waiting time distribution having
infinite moments. It often occurs in gels [24], porous media
[25], and polymers [26]. Both types of anomalous diffusion
have been recognized to play an important role in biological,
physical, and chemical processes.

Pattern formation in reaction-diffusion systems with
anomalous diffusion has received considerable attention
[16,17,27–31]. For instance, it was shown that subdiffusion
suppresses the formation of the Turing pattern [31]. It was
also found in one-dimensional systems that anomalous heat
conduction can happen as a consequence of the anomalous
diffusion [32]. Additionally, in systems with Lévy flights, the
emergence of spiral waves and chemical turbulence from the
nonlinear dynamics of oscillating reaction-diffusion patterns
was investigated in [33]. In [16] the authors explored the effects
of superdiffusion on pattern formation and pattern selection
in the substrate-depleted Brusselator model [34]. They found
that Turing instability can occur even when diffusion of the
inhibitor is slower than that of the initiator. However, results
on the nonlinear dynamics and Turing pattern selection in
activator-inhibitor systems with superdiffusion remain unclear.
To this end, we focus on pattern selection in the formation of
hexagons and stripes and compare the cases of normal and
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superdiffusion in the following activator-inhibitor model:

∂u

∂t
= ∇γ u + u − av + buv − u3,

∂v

∂t
= d∇γ v + u − cv,

(2)

where the superdiffusion is described by the Weyl fractional
operator ∇γ (1 < γ < 2). The fractional operator implies a
heavy tailed random walk model with infinite variance of the
particle jumps, where occasional large jumps dominate the
more common smaller jumps. The type of particle jumps
correspond to Lévy flights, which is observed in animals’
hunting patterns (especially for ocean predators and birds)
[35,36]. The fractional γ characterizes the heavy tail of particle
jumps, say Y , that is, P (|Y | > r) ≈ r−γ [37]. For γ = 2 the
classic random walks following the Gaussian distribution are
recovered.

In the case of 1 < γ < 2, an extended central limit theorem
due to Lévy [38] applies to show that the particle follows a
stable density curve (see, for example, [39–41]), the solution
to a fractional diffusion equation

∂v

∂t
= d∇γ v. (3)

In one dimension, the fractional operator is written in the form

∇γ v = − 1

2 cos(πγ/2)
(Dγ

+v + D
γ
−v),

D
γ
+v = 1

�(2 − γ )

d2

dx2

∫ x

−∞

v(ξ,t)

(x − ξ )γ−1
dξ,

D
γ
−v = 1

�(2 − γ )

d2

dx2

∫ ∞

x

v(ξ,t)

(ξ − x)γ−1
dξ,

where �(·) stands for the Gamma function. It is verified that
the Fourier transform of ∇γ v satisfies F(∇γ v) = −|k|γF(v).
In higher dimensions, the Laplacian is replaced by the operator
∇γ = −(−�)γ /2, defined by its action in Fourier space,
F(∇γ v) = −|k|γF(v).

The reaction term in system (2) was first given by Dufiet
and Boissonade to describe the chlorite-iodine-malonic acid
reaction [42]. Here a, b, and c are positive constants. The
quadratic term uv avoids the invariance in the transforma-
tion (u,v) → (−u,−v) while the cubic term −u3 limits the
exponential growth of the perturbation and allows for the
saturation of the instability. Dufiet and Boissonade [42] studied
the dynamics of Turing pattern monolayers in system (2) with
normal diffusion and found that monolayer Turing patterns
arise from a transverse instability with a delay when compared
to the genuine 2D systems.

The paper is structured as follows. In Sec. II by considering
the linear stability of the steady state, we give the Turing
parameter space to ensure that Turing bifurcation occurs prior
to Hopf bifurcation. In Sec. III we present a weakly nonlinear
analysis to derive a set of coupled amplitude equations.
By analyzing these equations, we describe hexagonal and
stripped patterns and their stability. Moveover, we find that the
quadratic term can tune the mode of steady state. In Sec. IV we
present the results of numerical computations. In addition to
verifying the results of our analysis by computing hexagonal

and striped patterns near the neutral stability boundaries,
we also numerically explore the effects of distinct diffusion
exponent between the two species on Turing pattern dynamics.
Our paper closes with a brief discussion.

II. LINEAR STABILITY ANALYSIS

In this section, we derive the conditions for Tur-
ing bifurcation by analyzing the linear stability of the
uniform equilibrium to the system (2). This system
has three spatially uniform stationary states (u0,v0) =
(0,0), (u1,v1)=(

b+
√

b2+4(c−a)c
2c

,
b+

√
b2+4(c−a)c

2c2 ), and (u2,v2) =
(
b−

√
b2+4(c−a)c

2c
,
b−

√
b2+4(c−a)c

2c2 ). When b is very small [i.e.,
b <

√
c(a − c)], the latter two equilibria exist only when the

first equilibrium far surpasses the Turing bifurcation point.
Thus we can ignore the existence of the latter two equilibria. In
this paper, we only analyze the stability of the first equilibrium
(u0,v0).

In the absence of diffusion, when a > 1 the spatially
homogeneous system corresponding to the system (2) exhibits
a Hopf bifurcation at c = 1. The equilibrium is stable to
any small spatially homogeneous perturbation for 1 < c < a.
When the diffusion terms are present, we seek the general
solution (

u

v

)
=

(
c1

c2

)
exp(σ t + ik · r) (4)

to the linearization of system (2) as a superposition of normal
modes. Here σ is the growth rate of the perturbation in time
t . i is the imaginary unit and i2 = −1. k is its wave vector,
and r is the spatial vector. According to the definition of Weyl
fractional operator ∇γ , we can consider the time integration
in Fourier space. Substituting Eq. (4) into the linearization of
system (2), we obtain the following matrix equation:(

σ − 1 + kγ a

−1 σ + c + dkγ

) (
c1

c2

)
=

(
0

0

)
,

where the Euclidean norm k = |k| is the wave number of
the perturbation. Therefore, we have to obtain the dispersion
relation

σ 2 + g(k)σ + h(k) = 0, (5)

where g(k) = (1 + d)kγ − 1 + c and h(k) = dk2γ + (c −
d)kγ − c + a.

The equilibrium can lose its stability both via Hopf and
Turing bifurcation. Hopf instability occurs when g(k) = 0 for
k = 0 and h(k) > 0. Then we can get the critical value of the
Hopf bifurcation parameter cH ,

cH = 1.

The system (2) undergoes Turing bifurcation if and only if
h(k) � 0. h(k) has a single minimum at (kc,ac), where

kc =
(

d − c

2d

) 1
γ

, ac = (d + c)2

4d
. (6)

In conclusion, we obtain the Turing instability threshold ac and
the critical value of the wave number kc. Moreover, in order
for Turing bifurcation to occur prior to oscillatory instability
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FIG. 1. (Color online) Dispersion relation of the system (2) for
three different γ = 1,1.5,2. γ = 2 represents the normal diffusion.
Other parameters are a = 7.45, b = 2.5, c = 5, and d = 20.

as a decreases, we need the following Turing instability’s
parameter space:

1 < c < a < ac, d > 1, b <
√

c(a − c), (7)

such that the system is stable to any small spatially homoge-
neous perturbation.

In Fig. 1 we show the real part of the eigenvalue corre-
sponding to three different sets of parameters as a function
of the wave number. The superdiffusive exponent γ plays an
important role in the active wave number, which increases
with γ .

III. WEAKLY NONLINEAR ANALYSIS
AND PATTERN SELECTION

In this section we confine the system (2) into the two-
dimensional spatial domainR2 to study the dynamics of Turing
pattern by performing a weakly nonlinear analysis of the
system (2) near the Turing instability threshold. In particular,
we aim to study the pattern selection of hexagons and stripes.
The weakly nonlinear analysis is based on the fact that Turing
bifurcation destabilizes the homogeneous equilibrium only in
regard to perturbation with wave numbers close to the critical
value kc. Close to Turing onset a = ac, the solutions can
be described by a system of three active resonant pairs of
modes (kj ,−kj ) (j = 1,2,3). Here each mode makes angles
of 2π/3 and kj = kc. Thus the solutions of the system (2) can
be expanded as

(
u

v

)
=

3∑
j=1

[Aj exp(ikj · r) + Āj exp(−ikj · r)], (8)

where Aj and the conjugate Āj are, respectively, the am-
plitudes associated with the modes kj and −kj , and Aj ≡
(Au

j ,A
v
j )T .

We introduce the slow time T = ε2t and expand both u and
v as well as the bifurcation parameter a as(

u

v

)
= ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ · · · ,

ac − a = μ2ε
2 + O(ε3). (9)

As the amplitude A is a variable that changes slowly, then we
have

∂A
∂t

= ε2 ∂A
∂T

+ O(ε3). (10)

Substituting Eqs. (9) into the system (2) and collecting like
powers of ε, we obtain, at orders εj (j = 1,2,3), the sequences
of equations as follows:

O(ε) : Lc

(
u1

v1

)
= 0,

O(ε2) : Lc

(
u2

v2

)
=

(−bu1v1

0

)
,

O(ε3) : Lc

(
u3

v3

)
= ∂

∂T

(
u1

v1

)

+
(−μ2v1 − b(u1v2 + u2v1) + u3

1

0

)
,

(11)

where

Lc =
(

1 + ∇γ −ac

1 −c + d∇γ

)
. (12)

We wish to describe the appearance of both hexagons and
stripes as well as their interactions. Since Lc is the linear oper-
ator of the system at the Turing instability threshold, (u1,v1)T

is the linear combination of the eigenvectors corresponding to
the eigenvalue 0. Therefore, at O(ε) the solution is given in
the form

(
u1

v1

)
=

(
(c + d)/2

1

) 3∑
j=1

Wj exp(ikj · r) + c.c.,

where Wj is the amplitude of the mode exp(ikj · r) when
the system is under the first-order perturbation. Its form is
determined by the perturbational term of the higher order.

Next, we turn to the O(ε2) problem. Since the right-hand
side does not have the resonance, the solution is given by the
form

(
u2

v2

)
=

(
U0

V0

)
+

(
Uj

Vj

) 3∑
j=1

exp(ikj · r) + c.c

Substituting the above equation into the second equation of
the problem (11), we have

(
U0

V0

)
= 4bd(c + d)
3

j=3|Wj |2
(c − d)2

(
c

1

)
,

(13)

Uj = c + d

2
Vj .
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We now turn to the O(ε3) problem. According to the
Fredholm solubility condition, the vector function of the
right-hand side must be orthogonal with the zero eigenvalues
of the operator L+

c to ensure the existence of the nontrivial
solution to this equation, where L+

c is the adjoint operator of
Lc. The nontrivial kernel of the operator L+

c is(
1

−(c + d)/2d

)
exp(−ikj · r), j = 1,2,3. (14)

Substituting the solution (u1,v1)T and (u2,v2)T into the O(ε3)
problem and using the Fredholm solubility condition, we have

(d − 1)(c + d)

2d

∂W1

∂T

= μ2W1 + b(c + d)(W̄2V̄3 + V̄2W̄3)

−
[

3(c + d)3

8
|W1|2 + 3(c + d)3

4
(|W2|2 + |W3|2)

]
W1.

(15)

The other two equations of W2 and W3 can be obtained through
the transformation of the subscript of W . In view of Eqs. (8)
and (9), the amplitude Au

j = c+d
2 Av

j can be expanded as

Au
j = c + d

2
[εWj + ε2Vj + O(ε3)], (j = 1,2,3),

(16)
∂Au

j

∂t
= ε3 c + d

2

∂Wj

∂T
+ O(ε4).

Multiplying Eq. (15) by ε3, we get

d − 1

d

∂Au
1

∂t
= 2(ac − a)

c + d
Au

1 + 4b

c + d
Āu

2Ā
u
3

−m
[
3
∣∣Au

1

∣∣2 + 6
(∣∣Au

2

∣∣2 + ∣∣Au
3

∣∣2)]
Au

1 . (17)

Multiplying Eq. (17) by 2d
c+d

and using ac = (d+c)2

4d
, we have

the amplitude equation

τ0
∂Au

1

∂t
= μAu

1 + hĀu
2Ā

u
3

− [
g1

∣∣Au
1

∣∣2 + g2
(∣∣Au

2

∣∣2 + ∣∣Au
3

∣∣2)]
Au

1, (18)

where μ = ac−a

ac
is a normalized distance to the Turing

instability threshold, and τ0 = 2(d−1)
c+d

is a typical relaxation
time. Moreover,

h = 8bd

(c + d)2
, g1 = 6d

c + d
, g2 = 12d

c + d
. (19)

Similar equations for Au
2 and Au

3 are obtained by circular
permutation of indices.

From the amplitude equation (18), the coefficient of second
order is far smaller than that of third order for d > 1. Since
the coefficients of third order are negative, the saturation of the
instability is achieved at third order. Therefore, these amplitude
equations are valid, and Turing bifurcation is supercritical.

In order to study the pattern selection, we need to further
analyze the amplitude equation (18). Since the supercritical
Turing bifurcation implies that the solutions to the amplitude
equation (18) are stable, the dynamics of Turing patterns are
asymptotically stable. In Eq. (18), each amplitude can be

decomposed to mode ρj = |Au
j | and a corresponding phase

angle ϕj . We rewrite Eq. (18) and the associated other two
amplitude equations by Au

j = ρj exp(iϕj ) in the form

τ0
∂�

∂t
= −h

ρ2
1ρ

2
2 + ρ2

1ρ2
3 + ρ2

2ρ
2
3

ρ1ρ2ρ3
sin �,

τ0
∂ρ1

∂t
= μρ1 + hρ2ρ3 cos � − g1ρ3 − g2

(
ρ2

2 + ρ2
3

)
ρ1,

(20)

τ0
∂ρ2

∂t
= μρ2 + hρ1ρ3 cos � − g1ρ2 − g2

(
ρ2

1 + ρ2
3

)
ρ2,

τ0
∂ρ3

∂t
= μρ3 + hρ1ρ2 cos � − g1ρ3 − g2

(
ρ2

1 + ρ2
2

)
ρ3,

where � = φ1 + φ2 + φ3.
After a standard stability analysis of Eqs. (20) as in [43–46],

we obtain that the steady state possibly possesses five kinds of
solutions: homogeneous steady state [O(1)], striped pattern
B (ρ1 �= 0,ρ2 = ρ3 = 0) (e.g., Fig. 4), hexagonal patterns
H0 (e.g., Fig. 3) or Hπ (ρ1 = ρ2 = ρ3 �= 0, with � = 0 or
π , respectively), and a mixed state (e.g., Fig. 5). Patterns
H0 (positive hexagon) and Hπ (negative hexagon) differ in
whether the minima or maxima are disposed on the hexagonal
lattice. Their existence and stability limits, as a function of the
scaled bifurcation parameter μ, are ordered according to the
general bifurcation diagram as in [42], where μi are given by

μ1 = − 8b2d

15(c + d)3
, μ2 = 0,

μ3 = 32b2d

3(c + d)3
, μ4 = 128b2d

3(c + d)3
.

(21)

According to the pattern selection theory of [42], the system
exists in the bistable state between the hexagon and the stripe
only if the control parameter μ lies in the range μ3 < μ < μ4,
or equivalently the quadratic coefficient b locates in b2 < b <

b3, where

b2 =
√

6

16

(c + d)3 − 4ad(c + d)

d
, b3 = 2b2. (22)

When b = 0, the nongeneric symmetry (u,v) → (−u, − v)
is restored. In this case, the striped pattern bifurcates super-
critically whereas the stability range of the hexagonal pattern
vanishes. Therefore, when Turing bifurcation emerges, we can
choose b as the control parameter to tune the type of steady
state.

Figure 2 demonstrates a schematic diagram of pattern
selection. When the control parameter b lies in 0 < b < b2,
stripped pattern is stable, and both the positive and negative
hexagonal pattern are unstable. In the range b2 < b < b3,
the system (2) exists in a bistable state between positive
hexagonal and striped patterns; for b > b3, striped pattern loses
its stability and the positive hexagon is stable.

IV. NUMERICAL SIMULATIONS

For numerical study of pattern formation in the system (2),
we only need consider the dynamics of the perturbation to the
spatially homogeneous steady state. Hence we use the periodic
boundary conditions and the small-amplitude random initial
data to the system (2). We can use the pseudospectral method

062915-4



TURING PATTERN DYNAMICS IN AN ACTIVATOR- . . . PHYSICAL REVIEW E 90, 062915 (2014)

FIG. 2. (Color online) Bifurcation diagram of Turing patterns, in
the (b,ρ) plane, of the system (2). H0 is the positive hexagonal patterns
with � = 0; Hπ is the negative hexagonal patterns with � = π ;
B is the striped patterns. The other parameters are a = 7.45, c =
5, d = 20, and γ = 1.5. Here the critical values b2 = 0.9217 and
b3 = 1.8435. The solid lines represent stable states. The dashed lines
represent unstable states.

[47] to perform numerical computations with time integration
in Fourier space. Moreover, we use a Crank-Nicolson scheme
for the linear operator and an Adams-Bashforth scheme for the
nonlinear operator [48].

Our numerical computations first confirm the effects of the
order γ of Weyl fractional operator on the wave number of
Turing patterns. Figure 3 shows that when γ decreases from 2
to 1, the wave number of Fig. 3(a) is more than that of Fig. 3(b),
which is also in accordance with Fig. 1.

We now verify the Turing bifurcation diagram (Fig. 2),
which is obtained by means of the weakly nonlinear analysis.
In Fig. 4, we take the control parameter as b = 0.5, which
satisfies b < b2 = 0.9217. The steady state first breaks up into
the hexagons due to initially introduced small perturbation
[Fig. 4(a)]. The emergent hexagons are not stable and replaced
gradually by stripes [Figs. 4(b) and 4(c)]. Eventually, the
stripes prevail over the whole domain, and the dynamics of the
system does not undergo any further changes. Interestingly,
we notice that the directions of the stripes is sensitive to initial
values and horizontal strips can also be possible with other
appropriate initial conditions.

(a) (b)

FIG. 3. (Color online) Turing patterns for different orders of
Weyl fractional operator. (a) γ = 2 (i.e., normal diffusion), (b) γ = 1
(superdiffusion). The other parameters are a = 7.45, b = 2.5, c = 5,
d = 20.

(a) (b)

(c) (d)

FIG. 4. (Color online) Snapshots of stable stripes at different
time (control parameter b = 0.5). (a) t = 150, (b) t = 300, (c)
t = 450, (d) t = 1000. The other parameters are a = 7.45, c = 5,
d = 20, and γ = 1.5.

When the control parameter b = 1.5 locates in the range
(b2,b3), the hexagons first occur [Fig. 5(a)]. Then some
hexagons are gradually replaced by stripes, while the re-
maining do not change [Figs. 5(b) and 5(c)]. Ultimately,
both the hexagonal patterns and the striped patterns coexist
[Fig. 5(d)], which exhibits a bistable regime. When the
control parameter b = 2.5 lies in the range b > b3 = 1.8435,
the pattern dynamics converges to stable hexagonal patterns
(Fig. 6).

So far we have considered spatial patterns in system (2) for
the case where the activator and inhibitor have the same su-
perdiffusive exponent (i.e., γ ). An interesting question is how
different superdiffusive exponents impact the emergent spatial
patterns. To this end, we take Fig. 5 as a reference (i.e., control
parameter b = 1.5) and explore this question numerically.
Figure 7 clearly demonstrates that there is a qualitative change
when the activator and inhibitor have different superdiffusive
exponents. When the activator has a larger superdiffusive

(a) (b)

(c) (d)

FIG. 5. (Color online) Snapshots of the coexistence of strips and
hexagons at different time (control parameter b = 1.5). (a) t = 150,
(b) t = 350, (c) t = 600, (d) t = 1000. Other parameters are the same
as in Fig. 4.
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(a) (b)

(c) (d)

FIG. 6. (Color online) Snapshots of stable hexagonal patterns at
different time (control parameter b = 2.5). (a) t = 50, (b) t = 100,
(c) t = 150, (d) t = 1000. Other parameters are the same as in Fig. 4.

exponent than the inhibitor, a striped pattern appears, and
when the opposite is true, hexagons coexist with stripes. All
emergent spatial patterns are stationary. Furthermore, in each
region, there is only quantitative change in the emergent spatial
patterns due to the decreased wave number with increased γ

(Fig. 1).
As the diffusion rates manifest in both a diffusion constant

and a diffusion exponent, we now explore how the diffusion
ratio interacts with the diffusion exponent to govern the
formation of spatial patterns. Figure 8 shows that for a given
diffusion exponent of the activator, the critical ratio of diffusion
constant (i.e., d) required for Turing patterns to occur increases
with the diffusion exponent of the inhibitor. This explains why
the patterns displayed in the upper left corner of Fig. 7 occur
with high diffusion ratio.

FIG. 7. (Color online) Pattern diagram for different combina-
tions of the superdiffusive exponents of activator and inhibitor,
denoted by γ1 and γ2, respectively. Blue squares indicate striped
patterns [e.g., Fig. 4(d)], while cycles indicate mixed patterns of
stripes and hexagons [e.g., Fig. 5(d)]. Parameters are a = 7.45,
b = 1.5, c = 5, and d = 20. The diffusion ratio (i.e., d) for the grey
circles is greater than 20 to drive the emergence of spatial patterns.

FIG. 8. (Color online) The minimum diffusion constant ratio
(i.e., d) for the formation of Turing patterns varies with the ratio
of the superdiffusive exponent of the inhibitor to the activator (solid
line). Spatial pattern arises above the solid line. To the left (right)
of the dashed line, the inhibitor has smaller (lager) superdiffusive
exponent than the activator. Parameters are a = 7.45, b = 1.5, c = 5,
d = 20, and γ1 = 1.5.

V. DISCUSSION

We have introduced the Lévy flights type of superdiffu-
sion into an activator-inhibitor system to describe species’
anomalous diffusion. Linear stability analysis showed that the
superdiffusive exponent (i.e., γ ) has an important effect on
the wave number of Turing patterns. Our weakly nonlinear
analysis revealed that the coefficient of the quadratic term can
tune the modes of the steady state, which is in accordance
with the observations in the normal diffusion model [42].
Moreover, we found that different superdiffusive exponents
of the activator and inhibitor lead to both qualitative and
quantitative changes in emergent spatial patterns. Finally, we
showed that the critical value of the diffusion ratio (i.e., d)
for Turing instability to occur increases with the diffusion
exponent ratio of inhibitor to activator, and this finding is
robust, independent of the specified diffusion exponent of the
activator that was used in Fig. 8. In addition, if the activator
experiences superdiffusion while the inhibitor has normal
diffusion, we found that a larger diffusion ratio is required
to trigger the emergence of the Turing pattern, compared to
the case where both species have normal diffusion.

Lévy flights are stochastic process characterized by the
occurrence of extremely long jumps such that the same
sites are revisited much less frequently than in a normal
diffusion process. The length of these jumps is distributed
according to Lévy stable statistics with a power-law tail and
divergence of the second moment, which strongly contradicts
the ordinary Brownian motion for which all moments of
the particle coordinate are finite. The power-law tail is also
termed as “fat-tailed distribution” because the tail falls off
much more gently than for a Gaussian distribution. It is the
property that lies at the heart of the interesting and unusual
behavior of Lévy flights. Realization of the Lévy flights in
physical phenomena are very diverse such as in fluid dynamics,
dynamical systems, and micelles [49,50]. Recent field study
in ecology provided convincing evidence for the existence of
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Lévy flights among the foraging of marine predators ranging
across natural landscapes [51,52]. It was found that Lévy
flights are expected in places where prey is scare (e.g., less
productive waters such as the open ocean) while Brownian
strategy is more likely to occur where prey is abundant (e.g.,
the productive shelf or convergence-front habitats). These
two foraging strategies can be alternately performed by some
individuals and which is the ongoing strategy depends on the
gradients of environment that the individuals are involved in.

Here we considered a very basic but generic chemical
problem, and how the achieved results can be used to
understand population dynamics and foraging strategies in
ecology remains unclear. An interesting ecological question
is if Lévy flights can promote the survival of populations
through optimizing random search in the period of food

scarcity. Another interesting and promising future work is how
to experimentally control the anomalous diffusion exponent
in superdiffusive reaction-diffusion systems such that we can
understand if animals will evolve to exploit a Lévy foraging
strategy. In a chemical system where superdiffusion is caused
by turbulent mixing, a possible way to control the anomalous
exponents would be to vary the mixing intensity [53].
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