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Thermodynamic characterization of synchronization-optimized oscillator networks
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We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external
noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the
inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than
1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery
structure depends on the connectivity of the network, and is characterized by the node degree variance of
the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show
anomalies for sparse networks.
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I. INTRODUCTION

In the past decade, studies of complex networks con-
sisting of dynamical elements involved in a set of inter-
actions [1,2] have attracted considerable interest. Particular
attention has been paid to problems of synchronization in
network-organized oscillator systems [3,4]. Synchronization
phenomena are ubiquitous in various fields of science and
play an especially important role in the functioning of living
systems [5]. In this research, emphasis has been placed
on understanding the relationship between the topological
structure of a network and its collective synchronous behav-
ior [2], and these studies have revealed the synchronization
properties of systems formed by phase oscillators on static
complex networks, such as small-world [6] and scale-free
networks [7,8]. In addition, this research has also shown
that the ability of a network to give rise to synchronous
behavior can be greatly enhanced by exploiting the topological
structure emerging from the growth processes [9,10]. However,
a full understanding of how network topology affects the
synchronization of specific dynamical units is still lacking.

Application of evolutionary learning is one possible ap-
proach to constructing networks with prescribed dynamical
properties. On this issue, several methods have been explored,
where network structure has been modified in response to
selection pressure via learning algorithms in such a way
that the system evolved toward a specified goal [11–14]. In
previous studies, we have applied the Markov chain Monte
Carlo (MCMC) method with replica exchange to design
synchronization-optimized networks [13,14]. In these studies,
we constructed large ensembles of optimal networks for
synchronization, which was evaluated by the Kuramoto order
parameter, and analyzed their common statistical properties.
For a network of heterogeneous phase oscillators, we found
the transition from the linear to bipartitelike networks by
increasing the number of links [13]. For a network of identical
phase oscillators under uncommon noise, the most optimal
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network is a starlike structure when the number of links is
small, while an interlaced structure is preferable when the
number of links is large. Unfortunately, in these studies we
succeeded in achieving an optimized network only when the
network size was small, and we also failed to analyze the
thermodynamic properties of the network ensemble in detail,
due to the computational cost of calculating the Kuramoto
order parameter.

In this paper, we consider a large network consisting of
identical oscillators with uncommon noise and present the
structure and statistical properties of the optimized network. To
reduce the computational cost of evaluating synchronization
performance, we employ the sum of the inverse eigenvalues
of the Laplacian matrix as the synchronization performance
index. It is easily shown that this value indicates the synchro-
nization strength, under the assumption that the connection is
nondirectional and that the noise acting on each oscillator is
sufficiently small. The computational cost of obtaining the
eigenvalues of the Laplacian is much smaller than that of
calculating the Kuramoto order parameter, and we can perform
MCMC to optimize the large oscillator network.

To be precise, the MCMC method used here is not an
optimization, but rather samples networks from a given prob-
ability distribution. In this approach, we create an ensemble
of networks that obey the canonical distribution, in which
the “energy” is defined by the synchronization performance.
Therefore, MCMC enables us to study the thermodynamic
properties of this ensemble of optimized networks. The
investigation of the thermodynamic properties will give us
information not only on the most optimized network, but
also on the second, third, or subsequent “most optimized”
configurations. In addition, thermal properties are used to
characterize constraint-satisfaction problems such as N queens
and Latin problems [15,16]. Therefore, we investigate the
thermodynamic properties of these ensembles in this paper.

The paper is organized as follows. In Sec. II, we introduce
a model of identical phase oscillators occupying the nodes of a
symmetrically coupled network and define the synchronization
measure as the sum of the inverse of the eigenvalues of the
Laplacian matrix. The sampling method is also introduced
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in this section. Then, construction of the optimized networks
and their thermodynamic characterization are performed in
Sec. III, while, finally, the results are discussed in Sec. IV.

II. THE MODEL AND THE METHOD

In this paper, we consider the effect of uncommon noise
on the synchronization of identical oscillators. The model
equations are

dθi

dt
= ω0 + ε

N

N∑
j=1

wi,j sin(θj − θi) + ξi(t), (1)

where ε is coupling strength and ξi(t) represents indepen-
dent white noise, such that 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 =
Dδi,j δ(t − t ′). N and ω0 are the number of oscillators and the
natural frequency, respectively. θi , the phase of the oscillator
at node i, is between 0 and 2π . Interactions between the
oscillators are specified by the adjacent matrix w, defined
as wi,j = 1 if there is a connection between node i and j ,
and wi,j = 0 otherwise. In the following, we only investigate
nondirectional networks, for which wi,j = wj,i .

Because the rotation frequencies of all the oscillators are
the same, we can always go into the rotational frame θi �→
θi − ω0t and, thus, eliminate the term with ω0. Hence, without
any loss of generality, we can set ω0 = 0 in Eq. (1). It is known
that the model shows the transition between the synchronized
and desynchronized state by changing the ratio of the coupling
strength to the noise intensity [17].

In a previous study [13,14], in order to measure the degree of
synchronization, we numerically integrated differential equa-
tions and calculated the long time average of the Kuramoto
order parameter,

R = lim
T →∞

∫ T

0

1

N

∣∣∣∣∣
N∑

i=1

exp(iθi)

∣∣∣∣∣ dt. (2)

However, this numerical integration has a large computational
cost, which makes estimation of the synchronization perfor-
mance of a large network difficult. In order to overcome
this difficulty, we estimate the synchronization performance
theoretically by assuming that the connection is symmetric and
the noise intensity is sufficiently small [18]. If there is no noise,
all oscillators are completely synchronized, i.e., θi = � for all
i. If the noise is sufficiently small, however, we can linearize
the interaction term, sin(θj − θi), as θj − θi , and Eq. (1) is
approximated by

dθi

dt
= ε

N

N∑
j=1

Li,j θj + ξi(t), (3)

Li,j =
{
wi,j , (i �= j )
− ∑N

k=1 wi,k (i = j ).
(4)

The static distribution of Eq. (3) is given by the multivariate
Gaussian distribution. Using the eigenvalues of the Laplacian
matrix,

0 = λ0 � λ1 � λ2 � · · · � λN−1,

the Kuramoto order parameter of the system is given by

R = 1 + ε

4N

N−1∑
i=1

1

λi

. (5)

Therefore, the sum of the inverse of the eigenvalues, 
, where


 = −
N−1∑
i=1

1

λi

, (6)

determines the synchronization performance. Hence, a net-
work having a smaller 
 value shows better synchronization
performance. We note that 
 is related to the Kirchhoff index,
which is a structure-descriptor of a molecular graph, and is
also related to the effective electrical resistance in a resistive
electrical network [19,20] and the global mean first-passage
time for a random walk on a network [21]. We employ 
 as
the synchronization performance indicator in this paper.

Next, we describe the MCMC method applied in the
numerical simulations. In this method, we randomly gener-
ate a connection network and estimate the synchronization
performance as indicated by 
 [defined by Eq. (6)]. It should
be noted that estimation of the synchronization performance
based on 
 is only valid for connected networks. In a case
in which the network is disconnected, λ1 = 0 and 
 diverges.
However, allowing disconnected networks as stepping stones
will enhance the performance of the MC sampling. In order to
include disconnected states in the form of stepping stones, we
define the energy, E(w), as

E(w) =
{

, (λ1 �= 0)

max + ∑N

i=1 δ0,λi
(λ1 = 0),

(7)

where δi,j is the Kronecker δ. When λ1 �= 0, the network
is connected, and we use 
 itself as a synchronization
indicator, in which smaller E(w) shows better synchronization
performance. If a network is disconnected, we introduce
synchronization performance with a “penalty,” as shown in the
second line of Eq. (7). The first term, 
max, is the maximum of

 among the connected networks and is given by 
 when the
network is a chain, i.e., 
max = 
chain = (N2 − 1)/6, where
N is the number of nodes. The penalty term defines the energy
difference between networks having a different number of
fragments and enhances the relaxation of the MCMC, for
smaller connectivity in particular.

Through the function E(w), we sample networks from the
canonical ensemble, i.e.,

p(w) = exp[−βE(w)]∑
w exp[−βE(w)]

, (8)

borrowed from statistical mechanics. This sampling is carried
out by the MCMC method, which has previously been applied
to several dynamical systems [13,14,22–29]. The application
of the canonical ensemble to a network is also considered in
Refs. [30,31], in which E is called the graph Hamiltonian. In
this work, we use the replica exchange Monte Carlo (REMC)
algorithm [32–34] to sample synchronization-optimized net-
works. It should be noted that disconnected networks are
sampled using the graph Hamiltonian defined above, although
we discard these networks for the calculation of the statistical
properties discussed below. Such a sampling enhances the
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mixing in the REMC through bridges (or paths) between
networks with higher synchronization performance, for which
disconnected networks are used as stepping stones [35]. We
can calculate the thermodynamic average of any function of
the graph, X(w), from

〈X〉β = 1

L

L∑
i=1

X(wi) exp[−βE(wi)], (9)

where the sum is taken over L sampled, connected networks.
Since the synchronization performance can be easily

improved by increasing the number of links, we consider the
synchronization performance for given networks with a fixed
number of links.

In this work, we also investigate the density of states and
other thermodynamic properties. Here, we briefly describe the
method used to obtain these properties. The density of states,
g(E), and the thermodynamic quantities can be calculated
using the weighted histogram analysis method (WHAM) [36].
First, g(E) satisfies the equation

exp(−βFβ) =
∑
E

g(E) exp(−βE), (10)

where Fβ is the free energy, defined by

exp(−βFβ ) = Z(β) =
∑

w

exp[−βE(w)]. (11)

The density of states can be estimated as

g(E) = Hβ(E)

exp[Fβ − βE]
, (12)

by using the histogram of E, i.e., Hβ(E). In REMC, since
we have many histograms, Hβm

(m = 0, · · · ,M), obtained
from many replicas with different inverse temperatures, βm,
a precise density estimate can be made by as follows, where

g(E) =
∑M

m=1 Hβm
(E)∑M

m=1 exp
[
Fβm

− βmE
] , (13)

exp
( − Fβm

) =
∑
E

g(E) exp(−βmE). (14)

Here, g(E) and Fβm
can be obtained by satisfying the above

equations as self-consistent solutions. These solutions can be
easily obtained by iteration.

Using the density of states, the “heat capacity,” c(β), can
be expressed as a fluctuation of E with finite temperature, i.e.,

c(β) = β2
(〈E2〉β − 〈E〉2

β

)
, (15)

where

〈E〉β =
∑
E

g(E)E exp(−βE), (16)

is calculated through g(E).

III. NUMERICAL ANALYSIS

To determine the synchronization degree of a given network
at each iteration step of the MCMC procedure, we calculated
the eigenvalues of the Laplacian matrix using the linear
algebra package, LAPACK [37]. Oscillator ensembles of sizes

13.067 12.4 11.625 10.633 9.2

8.256 7.471 6.856 6.22 5.729

5.437 5.096 4.842 4.625 4.369

4.198 4.007 3.837 3.683 3.549

FIG. 1. (Color online) Most synchronization-optimized net-
works in order of increasing number of links. The number of links
of the network increases from K = N − 1, N, N + 1, · · · , N + 18,
from the top left to the bottom right. The nodes are colored
according to their degree, and the lighter nodes indicate oscillators
with a relatively higher degree in the network. The parameters are
N = 15, M = 24, and κ = 1.15.

N = 10,15,20,25,30, and 100 were considered. Using the
sum of the inverse eigenvalues, 
, graphs were sampled using
the REMC method. In parallel, evolution of M + 1 replicas
with inverse temperatures, βm = κm − 1 (m = 0,1, . . . ,M),
was performed mainly with M = 23 and κ = 1.2. After each
10 Monte Carlo steps (mcs), the performances of a randomly
chosen pair of replicas were compared and exchanged [13,14].
For display and statistical analysis, sampling at every 10 000
mcs, after a transient of 5 000 mcs, was undertaken.

For convenience in the later discussion, we introduce the
connectivity of a network with N nodes and K links as p =
2(K−N+1)

(N−1)(N−2) . When the number of links is the minimum for a
connected network, i.e., K = N − 1, then p = 0 and, when
the network is fully connected, p = 1.

A. Architectures of synchronization-optimized networks

When p equals zero, the most synchronization-optimized
network has a star structure (the star exhibits the best syn-
chronization performance for K = N − 1), as shown by the
top-left graph in Fig. 1. In this figure, the most synchronization-
optimized networks are listed in order of increasing link
number (connectivity). The nodes are colored according to
their degree, and the brighter nodes have relatively higher
degrees. The value of 
 is shown at the top of the each graph,
and it is clear that the synchronization performance increases
(i.e., 
 decreases) with an increase in the number of links.
The star, which shows the best synchronization performance
in networks with N − 1 links, is inhomogeneous in the sense
that the degree of the center node is N − 1 and the degree of
the other nodes is one. The most optimized network transforms
to a homogeneous network with an increase in the number
of links. For example, all of the synchronization-optimized
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13.067 13.867 14.533 14.667 15.333

15.467 15.867 16.133 16.267 16.667

16.667 16.933 17.333 17.467 17.6

17.733 17.733 17.867 18.133 18.267

FIG. 2. (Color online) Series of graphs in order of increasing 


with N = 15, K = 14, and p = 0.0. The other parameters are the
same as described in the legend of Fig. 1.

networks in the second row only have nodes with degrees
between 2 and 4. In particular, the graph in the second row
(the second from the right in Fig. 1), is the network in which
all but one node have degree three. When the connectivity is
further increased, the core oscillators emerge and the network
develops a more complex organization, forming a shallow tree
(see the bottom-right graph in Fig. 1).

To investigate the structure of a highly optimized network,
we investigate the structure of a network with small 
. In
Figs. 2–4, the series of graphs are listed in order of increasing

 for K = 14,19, and 25, respectively, with N = 15. Since
the graph only develops a tree structure for p = 0, as shown
in Fig. 2, the most synchronization-optimized network, i.e.,
the star (top-left graph), becomes a complicated tree as

 increases, and finally becomes a chain with the worst
synchronization performance. When the number of links is
slightly larger than N − 1, the most optimized network has a
mesh structure, as shown in the top-left of Fig. 3. In this case,
the degree is almost homogeneous. As the synchronization
performance decreases, longer loops are more evident in
the network, while the degree distribution does not show a
significant difference to that of the most optimized network.
For higher connectivity, the synchronization performance
depends only slightly on the structure of the network (see
the value of 
 in Fig. 4), and significant differences in the
network structures are not apparent.

In Fig. 5, the synchronization-optimized networks with
the lowest 
 values are shown for N = 100. Although the
number of oscillator elements is larger, we find the best
synchronization-performance network is achieved for p =
0.0, i.e., a star structure, using the REMC method [as shown
in Fig. 5(a)]. When the connectivity, p, becomes slightly
larger than zero, many loops appear, as shown in Fig. 5(b). At
p = 0.015, the synchronization-optimized network becomes
homogeneous and all nodes are degree two or three [Fig. 5(c)]
and, as the connectivity increases, “small hubs” start to appear
and cores are formed, as shown in Figs. 5(d) and 5(e). If p

8.256 8.276 8.277 8.279 8.28

8.293 8.297 8.314 8.314 8.321

8.322 8.324 8.324 8.326 8.329

8.336 8.341 8.348 8.35 8.352

FIG. 3. (Color online) Series of graphs in order of increasing 


with N = 15, K = 19, and p = 0.0549451. The other parameters are
the same as described in the legend of Fig. 1.

converges to one, the network will be homogeneous again,
because it approaches the complete graph. These results are
consistent with the results obtained for a smaller system.

B. Density of states and the number of connected labeled graphs

Before analyzing the statistical properties of the
synchronization-optimized networks, we check whether
REMC with WHAM can estimate the density of states
accurately. Although the number of combinations of labeled
graphs with a given 
 is difficult to calculate in general, we
can obtain the exact value for some 
 when K = N − 1. In
this case, we can obtain gexact(
0), gexact(
1), and gexact(
2);
the density of states for the smallest, second-smallest, and

5.06 5.085 5.087 5.093 5.093

5.096 5.096 5.096 5.099 5.101

5.101 5.11 5.115 5.118 5.118

5.123 5.124 5.126 5.13 5.138

FIG. 4. (Color online) Series of graphs in order of increasing 


with N = 15, K = 25, and p = 0.120879. The other parameters are
the same as described in the legend of Fig. 1.
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p 0., 98.01 p 0.005, 80.865 p 0.015, 45.432

p 0.03, 26.295 p 0.055, 15.969 p 0.1, 9.329

FIG. 5. (Color online) Synchronization-optimized networks with minimum 
 values and N = 100, for (a) p = 0.0, (b) p = 0.005,
(c) p = 0.015, (d) p = 0.03, (e) p = 0.055, and (f) p = 0.1. The nodes are colored according to degree, and their sizes are proportional
to their degree. The parameters are M = 8 and κ = 1.0.

third-smallest 
 values, exactly. We can also calculate Z,
the total number of connected networks, exactly. Using these
values, we verify the performance of REMC with WHAM.

When the number of links is K = N − 1, the graph ex-
hibits a tree structure, the expected synchronization-optimized
network is star shaped [38], and it has 
0 = ming 
 =
(N − 1)2/N . The number of possible combinations in the
labeled star is gexact(
0) = N , which corresponds to the
number of ground states. The graph with the second-smallest

 value, 
1, can be constructed by removing one of the
periphery nodes in the star and attaching it to another periphery
node. Hence, the number of combinations of such labeled
graphs is gexact(
1) = N (N − 1)(N − 2). The graph having
the third-smallest 
 value, 
2, can be constructed by removing
two periphery nodes from the star and attaching them to other
periphery nodes. Thus, the number of such combinations is
gexact(
2) = N (N − 1)(N − 2)(N − 3)/2. The exact value of
Z, the combinatorial of connected labeled graphs with a fixed
number of links, is also known [39]. We can estimate the
number of combinations for the labeled connected networks,
Z, with a fixed number of nodes and links through

Z = Z(∞) −
∑


>
max

g(
), (17)

where

Z(∞) = N !

(N − K)!K!
(18)

is the total number of labeled graphs with N nodes and K

links. We check the accuracy of our method by comparing
g(
0), g(
1), g(
2), and Z as obtained by MCMC with
the exact values. In Table I, we compare these exact values
with the results estimated using REMC with WHAM. These
estimated values are in good agreement with the exact values,
e.g., Z = 2.28(0.03) × 1041 for N = 30,K = 29, where the
number in parentheses represents the error estimated by the
standard deviation of 15 REMC trials.

In Fig. 6, we show the density (number) of states (graphs)
for N = 30, K = 29 and N = 30, K = 110. Using the
density of states, we calculate the statistical average of the
synchronization-optimized networks, as will be discussed in
later subsections.

To investigate the difference in synchronization perfor-
mance between the optimized and nonoptimized networks,
we calculate the thermal averages of 
 for random (β = 0)
and optimized (β = βM ) networks. The result is shown in
Fig. 7. For p = 0.0, there exists a large difference between the

 values of the random and optimized networks. 
 increases
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TABLE I. The number of networks (states), g(
), for a given
synchronization performance, 
, is estimated by WHAM. The
results are in good agreement with the exact values, gexact(
). The
standard deviation errors estimated from 15 REMC trials are shown
in parentheses and the parameters are K = N − 1, M = 23, and
κ = 1.1.

N 
 g(
) gexact(
)


0 	 8.1 9.96(0.06) × 100 10

1 	 8.8 7.18(0.02) × 102 7.20 × 102

10 
2 	 9.3 2.516(0.006) × 103 2.520 × 103

Z 1.0001(0.0003) × 108 1.000000 × 108


0 	 13.067 1.50(0.06) × 101 15

1 	 13.867 2.730(0.011) × 103 2.730 × 103

15 
2 	 14.533 1.638(0.007) × 104 1.6380 × 104

Z 1.946(0.001) × 1015 1.9462 × 1015


0 	 18.05 2.00(0.02) × 101 20

1 	 18.90 6.82(0.07) × 103 6.840 × 103

20 
2 	 19.65 5.80(0.05) × 104 5.8140 × 104

Z 2.622(0.007) × 1023 2.62144 × 1023


0 	 23.04 2.51(0.07) × 101 25

1 	 23.92 1.39(0.03) × 104 1.3800 × 104

25 
2 	 24.72 1.53(0.03) × 105 1.51800 × 105

Z 1.42(0.01) × 1032 1.42109 × 1032


0 	 28.03 2.98(0.11) × 101 30

1 	 28.93 2.42(0.07) × 104 2.4360 × 104

30 
2 	 29.76 3.29(0.01) × 105 3.28860 × 105

Z 2.28(0.03) × 1041 2.28768 × 1041

28 30 32 34 36 38 40
1

105

1010

1015

1020

1025

g

4.4 4.6 4.8 5.0 5.2
1091

1093

1095

1097

1099

10101

10103

g

(a)

(b)

FIG. 6. (Color online) Density of states estimated by WHAM for
lower energy levels. (a) K = 29 (p = 0.0). The density of the lowest
200 energy levels is shown. (b) K = 110 (p ∼ 0.2). The density of
the lowest 1 000 energy levels for every five levels is shown. The
parameters are N = 30, M = 23, and κ = 1.2.

1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

lo
g 1

0
β

1.0 1.5 2.0 2.5 3.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

log10 N

lo
g 1

0
β

(a)

(b)

FIG. 7. (Color online) Thermal averages of 
 as a function of
system size, N , for (a) p = 0.0 and (b) p = 0.1. The blue solid and red
broken curves represent the random and synchronization-optimized
networks, respectively, while the error bars represent the standard
deviations of the samples. The parameters are M = 12 and κ = 1.3.

with N in both cases, and the difference in 
 also increases. On
the other hand, the difference between the various 
 values
is small for p = 0.1. In this case, 
 converges to the same
constant value and the difference becomes zero as N increases.
This result implies that a random network is reasonably well
optimized for synchronization for large p.

C. Statistical characteristics of the synchronization-optimized
ensemble

In this subsection, we analyze the statistical characteristics
of the synchronization-optimized ensemble, where the net-
works are sampled from the canonical distribution defined in
Eq. (8). In previous work, we analyzed the degree distribution
while, in this paper, we investigate other properties of the
synchronization-optimized ensemble. In the following, we
present the results obtained from the ensemble at the highest
inverse temperature, i.e., β = βM = κM − 1.

First, we investigate the relationship between the graph
diameter and the synchronization performance. In Fig. 8,
box-and-whisker charts for the distribution of 
 against
a given diameter are shown. 
 is determined by all the
eigenvalues of the Laplacian matrix, and a small diameter
does not always imply good synchronization performance.
This is easily seen from the fact that the 
 values of a given
network with the same diameter are widely distributed, and
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FIG. 8. (Color online) Distributions of 
 for a fixed diameter,
represented by a box-and-whisker chart. The crosses indicate outliers,
and the parameters are p = 0.005, N = 100, M = 8, and κ = 2.0.

there are overlaps in the 
 distributions for different diameters.
Nevertheless, Fig. 8 demonstrates that there is a statistical
tendency that the synchronization performance increases as
the diameter decreases in network ensembles that show good
synchronization performance.

Second, in Fig. 9, we plot the degree distribution variance
for synchronization-optimized networks as a function of p. In
this figure, we also show the variance obtained for random
networks in the interest of comparison. The dashed line
shows the degree distribution variance for the synchronization-
optimized network ensemble, i.e., the average taken from the
many realizations, while the solid line represents the variance
for random networks, which are sampled by the replica with
β0 = 0. We note that most of the networks created by the
standard random network generator are disconnected for small
p. Replica sampling is useful in avoiding this difficulty. When
p = 0, the most synchronization-optimized network has a star
structure, the degree of center is N , and that of the other
nodes is one. Thus, the node degree variance of such starlike
networks is approximately N . Note that the synchronization-
optimized ensemble is sampled at a finite temperature (in
the case of Fig. 9, β = 255), and thus the variance is the
average over many optimized networks, almost all of which
have starlike structures for p = 0.0. As the connectivity is

β

FIG. 9. (Color online) Degree distribution variance for
synchronization-optimized and random networks as a function
of connectivity, p. The blue solid and the red broken curves
represent the random and the synchronization-optimized networks,
respectively. The parameters are N = 100, M = 23, and κ = 1.2.

slightly larger than zero, loops are formed [as shown in
Fig. 5(b)], and the node degree variance gradually decreases.
The sudden decrease in the variance is observed in the vicinity
of pc ∼ 0.02, where the synchronization-optimized networks
become the most homogeneous [corresponding to the graph
in Fig. 5(c), in which all nodes are degree two or three].
Above pc, “small hubs” and cores start to appear, and thus the
variance for the synchronization-optimized network increases
steadily, as shown in Fig. 9. As the connectivity increases
further, the variance decreases, and the difference between the
synchronization-optimized and the random networks becomes
smaller, since both networks approach the complete graph.

D. Anomaly in thermodynamic properties

Thermodynamic properties are used to characterize
constraint-satisfaction problems such as the N queens and
Latin problems [15,16]. In these studies, the possibility of
phase-transition at system size N → ∞ is investigated; how-
ever, no phase transition is found. Hereafter, we consider the
thermodynamic properties of the synchronization-optimized
networks, i.e., the statistical characteristics of the ensemble of
graphs defined in Eq. (8) depending on the inverse temperature,
β, and investigate their dependence on N .

In Fig. 10, the thermal averages of diameters as a function of
β are shown for p = 0.0 and p = 0.05. The thermal average of
the diameter gradually decreases as β increases, and converges
to a synchronization-optimized value. For p = 0.0, the value
approaches 2.0 as β increases, and this is consistent with the
fact that the most synchronization-optimized network is star

β
β

β

FIG. 10. (Color online) Thermodynamic averages of diameters
of synchronization-optimized networks are shown for (a) p = 0.0 and
(b) p = 0.05. The blue solid, red broken, yellow dotted, and green
dotted dash curves indicate the number of oscillators N = 15, 20, 25,
and 30, respectively. The parameters are M = 16 and κ = 1.3.
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β

β

β
β

FIG. 11. (Color online) Heat capacity as a function of β for
(a) p = 0.0 and (b) p = 0.20. The heat capacity diverges as the
number of nodes increases, indicating that an anomaly exists in the
vicinity of βc ∼ 5.0. The notations and parameters are the same as
described in the legend of Fig. 10.

shaped. Between the result for p = 0.0 and 0.05, a significant
difference can be seen in the system size dependence. When
p = 0.0, the thermal average of the diameter for smaller β

increases linearly with the number of oscillators, N . On the
other hand, when the number of links is slightly larger, i.e.,
p = 0.05, the diameter of this random graph decreases as
N increases. We also note that the slope of the curve in
Fig. 10 becomes smaller as N increases. Because we obtain a
random network at β = 0, this suggests that the difference in
diameter between a random network and an optimized network
decreases as N → ∞, for p = 0.05.

Analogous to statistical mechanics, we demonstrate that
the heat capacity, c(β), is defined by Eq. (15), as shown in
Fig. 11. We find an anomaly in the synchronization-optimized
ensemble for smaller p, where the heat capacities (i.e.,
the synchronization performance fluctuation), show divergent
behavior as the system size increases in the vicinity of βc ∼
5.0. This is apparent in Fig. 11(a). By contrast, no divergent
heat capacity behavior can be seen for the network with a
larger number of links [Fig. 11(b)].

An anomaly in heat capacity often implies a phase tran-
sition. However, the phenomenon in Fig. 11 can, in fact, be
attributed to the divergence of the density of states and the
Schottky anomaly [40]. As shown in Fig. 6, there is a distinct
gap in 
 for p = 0.0 and, in such systems, it is known that
there exists a specific heat phenomenon called the Schottky
anomaly [40]. To demonstrate that the anomaly encountered

in our result is indeed the Schottky anomaly, we consider the
two-level system in which n atoms can have energy ε0 or
ε0 + ε. Assuming that each energy level is c0- and c1-times
degenerated, we obtain the heat capacity as

c(T ) = nε2α exp(ε/(kBT ))

T 2kB[exp(ε/kBT ) + α]2
, (19)

where kB is the Boltzmann constant and α = c1/c0 is the
degeneracy ratio between the lower and higher energy levels.
This equation gives a peak in the specific heat, which is placed
at β = βs , which satisfies

(βsε + 2)α = (βsε − 2) exp(βsε), (20)

and its height is given by

1
4nkB(βsε − 2)(βsε + 2). (21)

From these equations, we find the following three impor-
tant observations. First, if α remains the same, βs and ε

are inversely proportional. Second, when α is sufficiently
large, βs increases logarithmically as α increases, because
(βs − 2)/(βs + 2) ∼ 1 in this limit. Third, under the same
assumption, the height of the heat capacity peak also increases
as β2

s ε
2 ∼ ε2(ln α)2.

Our result is qualitatively consistent with that obtained
by this simple two-level model. When p = 0.0, the energy
gap between the ground state and first excited state is 0.8 for
N = 15, which increases slowly up to 1.0 as N increases. On
the other hand, the most optimized state and the second-most
optimized state are degenerated N and N (N − 1)(N − 2)
times, respectively. Assuming that only these states contribute
to the heat capacity, the heat capacity peak is at β ∼ 7.39 for
N = 15, and 8.07 for N = 30, while the observed peak exists
at β ∼ 5.0. The height of the peak increases by more than
three times when N = 30 compared with N = 15, while the
two-level approximation gives the ratio 1.63. These values are
slightly different from the result of the numerical simulations,
which is due to the fact that the less optimized states are
neglected. Inclusion of these states will effectively increase α

and ε, which results in a decrease in βs and an increase in
peak intensity. On the other hand, in the case of p = 0.20,
we have confirmed numerically that α is almost equal to 1 for
any N . This is consistent with the independence of the peak
height from N shown in Fig. 11(b). Therefore, our analysis
using this simple two-level model qualitatively explains the
observed heat capacity anomaly well.

In order to see the relationship between the network
structure and the observed anomaly, a scatter plot of the
maximum degree of sampled networks as a function of 


is given in Fig. 12. This clearly shows that the synchronization
performance decreases along with the degree of the center
node for p = 0.0, for which the network with the high-
est synchronization performance is a starlike network. For
greater connectivity, we see the synchronization performance
decreases as the maximum degree increases, and networks
with fixed 
 are widely distributed at the maximum degree.
Furthermore, plateaus are apparent in Fig. 12(a), and networks
in the same plateau have starlike structures with the same
degree as the center node, and have similar synchronization
performance. For cases of higher synchronization performance
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FIG. 12. (Color online) Scatter plot of maximum degrees of
sampled networks against 
. (a) p = 0.0 and (b) p = 0.10, N = 30.

The inset in (a) is a magnification and the other parameters are the
same as described in the legend of Fig. 10.

(smaller 
 in the inset), there are gaps between the plateaus,
and this corresponds to the energy gap in Fig. 6. Both the
plateaus and the gaps simultaneously and gradually vanish
with increasing connectivity.

IV. CONCLUSIONS

We have considered an identical oscillator network under
external noise and designed a synchronization-optimized
network using REMC. To quantify the synchronization per-
formance of the network, we have used the Kirchhoff index,
i.e., the sum of the inverse eigenvalues of the Laplacian matrix
for the network. The density of states has been estimated using
WHAM, i.e., the number of networks for a given synchroniza-
tion performance, and have obtained good agreement with
theoretical values. Through the density of states, the statistical

properties of the synchronization-optimized networks have
been analyzed.

The optimal network structure depends strongly on con-
nectivity and, for smaller connectivity, the synchronization-
optimized network has a starlike structure. Such a network
is inhomogeneous in a sense that the node degree variance
is larger, and it gradually changes to an almost homogeneous
network in the vicinity of p = 0.015. As the connectivity is fur-
ther increased, hubs start to develop, and the synchronization-
optimized network becomes inhomogeneous. As a result, the
variance as a function of connectivity has two maxima at
p = 0.0 (star) and p ∼ 0.2 (core-periphery structure), and two
minima, p ∼ 0.015 (homogeneous) and p = 1.0 (complete
graph). In general, there is a statistical tendency that the
diameter of the network is related to the synchronization
performance.

The change in structure in response to connectivity is not
only apparent in the most optimized network but can also be
seen in ensembles of well-optimized networks. For example,
the heat capacity of an ensemble of networks shows a divergent
peak as N → ∞ when the connectivity is small, while it
remains finite when the connectivity is large. This anomaly
is qualitatively explained by the increase in the degeneracy of
the excited state. Using a two-level approximation, we show
that this divergence can be accounted for by the Schottky
anomaly with degeneracy. In the case of small connectivity,
the ratio of degeneracy between the first excited state and the
ground state increases rapidly, while it remains constant for
large connectivity.

These results provide us with useful information on network
design for synchronization. For example, we have shown that,
when the connectivity is small, all well-optimized networks
have starlike structures. However, a starlike structure is
vulnerable against attacks on the hub node. On the other hand,
when p ∼ 0.01, the variance of the degree is at its smallest,
and the optimized network is homogeneous. We can expect
that such a homogeneous system will be capable of tolerating
a targeted attack. Therefore, a network with p ∼ 0.01 will be
preferable when a targeted attack is suspected. The statistical
and thermodynamic properties determined in this study can
therefore be applied to the characterization of a wide range
of problems, such as network optimization and constraint-
satisfaction problems.
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