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Classification of wave regimes in excitable systems with linear cross diffusion
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We consider principal properties of various wave regimes in two selected excitable systems with linear cross
diffusion in one spatial dimension observed at different parameter values. This includes fixed-shape propagating
waves, envelope waves, multienvelope waves, and intermediate regimes appearing as waves propagating at a
fixed shape most of the time but undergoing restructuring from time to time. Depending on parameters, most of
these regimes can be with and without the “quasisoliton” property of reflection of boundaries and penetration
through each other. We also present some examples of the behavior of envelope quasisolitons in two spatial
dimensions.
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I. INTRODUCTION

Progress in the study of self-organization phenomena in
physical, chemical, and biological systems is dependent on
study of generation, propagation, and interaction of nonlinear
waves in spatially distributed active, e.g., excitable, systems
with diffusion [1]. An important general property of such
systems is their ability to generate and conduct self-supported
strongly nonlinear waves of the change of state of the medium.
The shape and speed of such waves in the established regime
does not depend on initial and boundary conditions and is
fully determined by the medium parameters. Until recently the
results concerning such systems have been focused on systems
“reaction + diffusion” with a diagonal diffusivity matrix, e.g.,
for two reacting components,

∂u

∂t
= f (u,v) + Du∇2u,

∂v

∂t
= g(u,v) + Dv∇2v, (1)

with nonnegative diffusivities Du � 0, Dv � 0, Du + Dv > 0.
However, a number of applications motivate consideration
of a more generic class of reaction-diffusion systems, with
nondiagonal elements of the diffusivity matrix (“cross dif-
fusion”), which can produce a number of unusual patterns
and wave regimes; see e.g., for a review Ref. [2]. In this
paper we concentrate on one subclass of such unusual wave
regimes, which is associated with soliton-like interaction, i.e.,
penetration of waves upon impact with each other or reflection
from nonflux boundaries. This is rather uncharacteristic of the
waves in (1) with the exception of narrow parametric regions
on the margins of the excitability [3]. However, in systems with
cross diffusion, such “quasisoliton” behavior can be observed
in large parametric regions [4,5]. These phenomena have been
observed in numerical simulations of two-component excitable
media with cross diffusion, both in linear formulation, e.g.,

∂u

∂t
= f (u,v) + Du∇2u + h1∇2v,

(2)
∂v

∂t
= g(u,v) + Dv∇2v − h2∇2u,

and in nonlinear, “taxis” formulation,

∂u

∂t
= f (u,v) + Du∇2u + h1∇(u∇v),

(3)
∂v

∂t
= g(u,v) + Dv∇2v − h2∇(v∇u),

where h1 � 0, h2 � 0, h1 + h2 > 0.
Quasisolitons have similarities and differences with the

classical solitons in conservative (fully integrable) systems.
The already mentioned similarity is their ability to penetrate
through each other and reflect from boundaries. The differ-
ences are the following:

(1) The amplitude and speed of a true soliton depend
on initial conditions. For the quasisoliton, the established
amplitude and speed depend on the medium parameters.

(2) The amplitudes of the true solitons do not change after
the impact. The dynamics of quasisolitons on impact is often
naturally seen as a temporary diminution of the amplitude with
subsequent gradual recovery.

Recently we have demonstrated “envelope quasisolitons”
in one-dimensional systems with linear cross diffusion (2) [6],
which share some phenomenology with envelope solitons in
the nonlinear Schrödinger equation (NLS) for a complex field
w [7],

i
∂w

∂t
+ ∇2w + w|w|2 = 0. (4)

Namely, they have the form of spatiotemporal oscillations
(“wavelets”) with a smooth envelope, and the velocity of
the individual wavelets (the phase velocity) is different from
the velocity of the envelope (the group velocity). This may
be serious evidence for some deep relationship between these
phenomena from dissipative and conservative realms. The link
in this relationship is cross diffusion, which for NLS is revealed
if is rewritten as a system for two real fields u and v via
w = u − iv of the form (2) with

h1 = h2 = 1, Du = Dv = 0,

f = u(u2 + v2), g = −v(u2 + v2).
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Note the signs of the cross-diffusion terms in the component-
wise form of NLS and in (2).

Further investigation has revealed a great variety of the
types of nonlinear waves in excitable cross-diffusion sys-
tems. In this paper we present some classification of the
phenomenologies of such waves.

Our observations are made in two selected two-component
kinetic models, supplemented with cross diffusion, rather than
self-diffusion terms; such terms may appear, say, in mechan-
ical [8], chemical [2,9], biological, and ecological [10,11]
contexts. We note that the case of only cross-diffusion terms,
with Du = Dv = 0, is special in that the spatial coupling is
then not dissipative, and all the dissipation in the system is due
to the kinetic terms. So, theoretically speaking, this case may
present features that are not characteristic for more realistic
models. In practice, however, these worries seem unfounded.
Parametric studies done in the past [4,12] indicate that the
role of the self-diffusion coefficients Du, Dv is not essential
if they are small enough. Moreover, we have verified that
the results presented below are robust in that respect, too. In
other words, regimes observed for Du = Dv = 0 typically are
qualitatively preserved, even if quantitatively modified, upon
adding small Du, Dv . So in this study we limit consideration
to Du = Dv = 0 to reduce number of parameters and focus
attention on effects of the cross-diffusion terms. Except where
stated otherwise, the values of the cross-diffusion coefficients
are h1 = h2 = 1. We consider the FitzHugh-Nagumo (FHN)
kinetics,

f = u(u − a)(1 − u) − k1v, g = εu, (5)

for varied values of parameters a, k1, and ε. As a specific
example of a real-life system, we also consider the Lengyel-
Epstein (LE) [13] model of a chlorite-iodide-malonic acid-
starch autocatalitic reaction system

f = A − u − 4uv

1 + u2
, g = B

(
u − uv

1 + u2

)
(6)

for varied values of parameters A and B.

II. METHODS

We simulate (2) in one spatial dimension for x ∈ [0,L],
L � ∞, with Neumann boundary conditions for both u and v.
We use first-order time stepping, fully explicit in the reaction
terms and fully implicit in the cross-diffusion terms, with a
second-order central difference approximation for the spatial
derivatives. Unless stated otherwise, we used steps �x = 1/10
and �t = 1/5000 for FHN kinetics (5) and �x = 0.1 and
�t = 1/1000 for LE kinetics (6).

To simulate propagation “on an infinite line,” we did the
simulations on a finite but sufficiently large L (specified in each
case) and instantaneously translated the solution by δx1 = 30
away from the boundary each time the pulse, as measured at the
level u = u∗, where u∗ = 0.1 for FHN kinetics and u∗ = 1.5
for LE kinetics, approached the boundary to a distance smaller
than δx2 = 100, and filled in the new interval of x values by
extending the u and v variables at levels u = u0, v = v0, where
(u0,v0) is the resting state, u0 = v0 = 0 for FHN kinetics, and
u0 = A/5, v0 = 1 + A2/25 for LE kinetics.

Initial conditions were set as u(x,0) = u0 + us �(δ − x),
v(x,0) = v0, to initiate a wave starting from the left end of the
domain. Here �() is the Heaviside function, and the wave seed
length was typically chosen as δ = 2 or δ = 4. The interval
length L was chosen sufficiently large [say, for the system (2,5)
it was typically at least L = 350] to allow wave propagation
unaffected by boundaries, for some significant time.

To characterize shape of the waves emerging in simulations
and its evolution, we counted significant peaks (wavelets) in
the solutions as the number n of continuous intervals of x

where u − u0 > 0.1. In some regimes, this number varied with
time, as the shape of enveloped changed while propagating.
We also measured the speed of individual wavelets as the speed
of the fore ends of these intervals at short time intervals. To
estimate the group velocity, we considered the fore edge of the
foremost significant peak over a longer time interval, covering
several oscillation periods.

To compare the oscillatory front of propagating waves to
the linearized theory, we took the v component of the given
solution in the interval and selected the connected area in the
(x,t) plane where |v(x,t)| < 0.1 ahead of the main wave. We
numerically fitted this grid function v(x,t) to (7) using Gnuplot
implementation of the Marquardt-Levenberg algorithm. The
initial guess for parameters C, μ, c, k, x, ω was done “by eye.”
The fitting was initially on a small interval in time, smaller
than the temporal period of the front oscillations, and then
gradually extended to a long time interval, so that the result of
one fitting was used as the initial guess for the next fitting.

III. RESULTS

A. Overview of wave types

Figure 1 illustrates the three main types of waves in the
excitable cross-diffusion system (2) with FHN kinetics (5).
Figure 2 explains why these are “main” types. It shows the
regions in the parametric plane (a,ε), and we see that the
solutions shown in Fig. 1 are represented by large parametric
areas. Their common features are quasisoliton interaction and
oscillatory front, and the differences are in the propagation
mode. A simple quasisoliton [Fig. 1(a), abbreviation SFR
in Fig. 2(a)] retains its shape as it propagates. A group,
or envelope, quasisoliton [Fig. 1(b), abbreviation SER in
Fig. 2(a)] does not have a fixed shape; instead it has the
form of spatiotemporal oscillations, whose envelope retains
a fixed unimodal shape as it propagates. A multienvelope
quasisoliton [Fig. 1(c) and Fig. 1(d), abbreviation MER in
Fig. 2(a)] is shown at two time moments, to illustrate the
dynamics of its formation. At first, the emerging solution looks
like an envelope quasisoliton; however, after some time behind
it forms another envelope quasisoliton, then behind that one
yet another, and so it continues. The interval of time between
formation of new envelopes depends on the parameters; e.g.,
it becomes smaller for smaller values of a.

Each of the three types of quasisolitons shown in Fig. 1 has
a counterpart type of solutions of similar propagation mode,
but without the quasisoliton property, i.e., not reflecting upon
collision [abbreviations SFN, SEN, MEN in Fig. 2(a)]. Density
plots of interaction of the three main types of quasisolitons and
their nonsoliton counterparts are shown in Fig. 3. Note that
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FIG. 1. (Color online) Three typical wave regimes in the cross-diffusion system (2,5) with k1 = 10, ε = 0.01 for different values of a.
(a) Simple quasisoliton, a = 0.22. (b) Envelope quasisoliton, a = 0.12. (c, d) Multienvelope quasiisoliton, a = 0.04, at two different time
moments.

the nonsoliton regimes do not show immediate annihilation
upon the collision. Rather, the process looks like reflection
with a decreased amplitude, and subsequent decay; see
Fig. 3(d)–3(f).

Apart from the nonreflecting counterparts to the three main
types, there are also “nonpropagating” counterparts, all of
which are denoted by N in Fig. 2(a). These regimes correspond
to waves that are in fact formed from the standard initial
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FIG. 2. (Color online) (a) The parametric regions corresponding to different wave regimes in (2,5) in the (a,ε) plane at k1 = 10, xs = 4,
us = 2. The abbreviations in the legend stand for various types of typical wave solutions: SER, single envelope reflecting; SEN, single envelope
nonreflecting; MER, multiple envelope reflecting; MEN, multiple envelope nonreflecting; SFR, single fixed-shape reflecting; SFN, single
fixed-shape nonreflecting; SIR, single intermediate (between single shape and envelope) reflecting; 2EN, envelope nonreflecting with separate
envelopes at the front and at the back with nonoscillating plateau between them; N, no propagation. See Supplemental Material [14] for a
movie. (b) Boundaries of the regimes of propagation and decay (of any waves) for different initial conditions.

062912-3



M. A. TSYGANOV AND V. N. BIKTASHEV PHYSICAL REVIEW E 90, 062912 (2014)

0

70

0 150

t

x

0

90

0 150

t

x

0

150

0 400

t

x

(a) (b) (c)

0

70

0 150

t

x

0

70

0 150

t

x

0

120

0 400
t

x

(d) (e) (f)

FIG. 3. (Color online) Density plots of impact episodes for selected regimes designated in Fig. 2. (a) SFR: single fixed-shaped (“simple”)
quasisoliton, a = 0.22, ε = 0.01. (b) SER: single-envelope quasisoliton, a = 0.1, ε = 0.01. (c) MER: multiple envelope quasisoliton, a = 0.02,
ε = 0.01. In the panel, only the first reflected envelope has almost recovered within the view; other envelopes recover later. (d) SFN: single
fixed-shape nonreflecting wave, a = 0.45, ε = 0.004. (e) SEN: single-envelope nonreflecting wave, a = 0.1, ε = 0.004. (f) MEN: multiple
envelope nonreflecting wave, a = 0.02, ε = 0.004. In (c) and (f), individual wavelets are not distinguishable at printing resolution so only
the envelope is in fact seen; in (f) the fine structure of the wavelets is shown magnified in the inset. White corresponds to u = −0.3, black
corresponds to u = 1. Time reference point t = 0 is chosen arbitrarily at the beginning of the selected episode; point x = 0 corresponds to the
left boundary of the interval. All simulations are done for �x = 0.1, �t = 0.001, L = 400, k1 = 10.

conditions, but then decay after some time. Naturally, the
success of initiation of a propagating wave does in fact depend
on the parameters of the initial conditions: Fig. 2(b) shows how
the region of single quasisoliton differs for two different initial
conditions. This is of course expectable for excitable kinetics.

The analysis of the dynamics of the wavelets and wave
speeds for the three main types of quasisolitons, illustrated in
Figs. 4 and 5, reveals the following:

(1) The amplitude and speed of the simple quasisolitons
do not change in time [Fig. 4(a) and 4(d)].

(2) For the envelope and multienvelope quasisolitons, the
amplitudes of individual wavelets during their lifetime first
grow to a certain maximum and then decrease monotinically
[Fig. 4(b) and 4(c)]. The speed of a wavelet (the phase velocity)
is high at first, but then decreases nonmonotonically [Fig. 4(e)
and 4(f)].

(3) In the process of establishment of an envelope qua-
sisoliton, the number of wavelets in it increases until saturation
[Fig. 5(a)], and so does the speed of the envelope (the group
velocity) [Fig. 5(e)].

(4) Figure 5(b) and 5(f) shows that in simple quasisolitons
(a > 0.2), the number of wavelets remains the same (n = 2),

and their speed remains approximately the same in that
interval; whereas in envelope quasisolitons (a < 0.2), both
the number of wavelets and their velocities increase with the
decrease of a.

(5) Figure 5(c) and 5(g) shows that increase of parameter
ε causes decrease of both the number of wavelets and of their
speeds.

(6) Parameter k1 also plays a significant role in definining
the wave regime and its parameters [Fig. 5(d) and 5(h)].

The oscillatory character of the fronts of cross-diffusion
waves both for simple quasisolitons and for envelope qua-
sisolitons, which is apparent from numerical simulations, is
easily confirmed by linearization of (2) around the resting
state. The resting states in both FHN (5) and LE (6) kinetics
are stable foci which already show propensity to oscillations.
Taking the solution of the linearized equation in the form[

u − u0

v − v0

]
≈ Re(Cve−μ(x−ct)ei(kx−ωt)), (7)

we need

A(λ,ν)v = 0, v �= 0, det A = 0, (8)
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FIG. 4. (Color online) Dynamics of (a–c) amplitudes and (d–f) velocities of individual wavelets for the three types of quasisolitons in
(2,5) for k1 = 10, ε = 0.01. (a, d) Simple quasisoliton, a = 0.22; see Fig. 1(a). (b, e) Envelope quasisoliton, a = 0.12; see Fig. 1(b). (c, f)
Multienvelope quasisolitons, a = 0.04; see Fig. 1(c, d).

where

A =
[−a − λ −k1 + ν2

ε − ν2 −λ

]
,

λ = μc − iω, ν = −μ + ik.

Equation (8) imposes two constraints (for the real and
imaginary parts of the determinant) on the four real quantities
μ, c, k, and ω, so it is by far insufficient to determine the
selection of these parameters, but this equality can be verified
for the numerical simulations, in order to ensure that the
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FIG. 5. (Color online) (a–d) Number of wavelets and (e–h) velocities of the envelope waves in transient and in established regimes. (a, e)
The transients for k1 = 10, ε = 0.01 and three values a = 0.08 (circles), 0.12 (squares) and 0.16 (triangles). (b, f) Established quantities as
functions of parameter a for fixed k1 = 10, ε = 0.01. (c, g) Established quantities as functions ε for fixed a = 0.12, k1 = 10. (d, h) Established
quantities as functions k1 for fixed ε = 0.01 and a = 0.12 (circles) and a = 0.22 (triangles). In (b–d) and (f–h), filled symbols designate
quasisoliton (reflecting) waves, and open symbols designate nonreflecting waves.

062912-5



M. A. TSYGANOV AND V. N. BIKTASHEV PHYSICAL REVIEW E 90, 062912 (2014)

-0.1

 0.1

 550  610

simulation
fit

x

v

t = 5 t = 10 t = 15

-0.1

 0.1

 210  290

simulation
fit

x

v

t = 5 t = 10 t = 15

(a () b)

FIG. 6. (Color online) Profiles of established propagating waves at selected moments of time for k1 = 10, ε = 0.01, L = ∞. The origins
of the t and x axes are chosen arbitrarily. (a) Simple quasisoliton, a = 0.22. (b) Envelope quasisoliton, a = 0.12.

observed oscillatory fronts are not a numerical artifact but
a true property of the underlying partial differential equations.
Hence we fitted selected simulations around the fronts with the
dependence (7). The quality of the fitting is illustrated by two
examples in Fig. 6. The fitted parameters satisfied (8) with good
accuracy; in both cases, they gave | det A/(Tr A)2| < 10−3.

Note that the approximation (7) makes explicit the concepts
of wavelets (the oscillating factor ei(kx−ωt)), the phase velocity
(the ratio ω/k), the envelope (in this case the exponential shape
e−μ(x−ct)), and the group velocity (the fitting parameter c). As
expected, for the simple quasisoliton shown in Fig. 6(a) the
fitted group and phase velocities coincided within the precision
of fitting (|c − ω/k| < 10−5). For the envelope quasisoliton
shown in Fig. 6(b) they were significantly different: c ≈ 4.077,
ω/k ≈ 3.586.

B. Multienvelope quasisolitons

We use the term multiplying envelope quasisolitons
(MEQS) to concisely designate spontaneously multiplying
envelope quasisolitons. The process of self-multiplication
leads to eventually filling the whole domain, behind the leading
edge of the first group, with what appears as a train of envelope
quasisolitons, i.e., a hierarchical, quasiperiodic regime. This
is illustrated in Fig. 7(a) for periodic boundary conditions,
the setting that eliminates the “leading edge” complication
mentioned above. One envelope quasisoliton (EQS) produced
by the standard initial conditions develops an instability at its
tail, leading to generation of the second EQS (t = 230). The
system of two EQSs generates a third (t = 420). After forming
of a system of five EQSs (t = 600), the inverse transition
happens, from five to four envelopes (t = 1430, t = 1630),
and then from four to three envelopes (t = 1980, t = 2270),
leading to an established, persistent state of three envelopes
(t = 4050). The same process is represented also as a density
plot in Fig. 7(b).

Panels (a) and (d) of Fig. 8 analyze the dynamics of the
number of wavelets and the group (envelope) velocity for
the simulation shown in Fig. 7. Both the wavelet number
and the group velocity grow, albeit nonmonotonincally, till
reaching stable constant values, which corresponds to estab-

lishment of the stationary regime of three envelopes shown in
Fig. 7. We stress that the group velocity of the established
multienvelope soliton regime in a circle is always higher
than the speed of a similar regime on the “infinite line,”
which is illustrated in Fig. 8(b) and 8(e): there the speed
is established monotonically, and the number of envelopes
constantly increases. In Ref. [15] we have demonstrated that
in a cross-diffusion excitable system, the speed of a periodic
train of waves can be faster for smaller periods. There we
called this effect “negative refractoriness,” meaning, using
electrophysiological terminology, that in the relative refractory
phase the excitability is enhanced rather than suppressed. In the
present case, we observe a similar negative refractoriness effect
on the higher level of the hierarchy, for envelope quasisolitons
(groups of waves) rather than individual waves.

To conclude the analysis of the wavelet number and group
speeds for multienvelope quasisolitons, we note that for the
MEQS on an “infinite line,” as should be expected, does not
depend on the length of the interval used for computations,
and the number of envelope, obviously, does; see Fig. 8(c)
and 8(f).

C. Lengyell-Epstein kinetics

Results of our numerical experiments with the reaction–
cross-diffusion system (2) with the LE kinetics (6) are
qualitatively similar to those with the FHN kinetics (5),
described above. Figure 9 illustrates the collision of an EQS
with an impremeable boundary for the LE kinetics. We can see
that the amplitudes of the wavelets decrease upon the collision
(t = 330) and then recover to their stationary values (t = 580,
t = 610). Similarly, Fig. 10 illustrates formation of MEQS
and their interaction with the boundary for the LE kinetics.
The parametric portrait in the (A,B) plane is shown in Fig. 11.
All the qualitatively distinct regimes identified for the FHN
kinetics and shown in Fig. 2, have been also found for the LE
kinetics and shown in Fig. 11.

D. More exotic regimes

Finally, we consider two more regimes to complete our
overview.
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FIG. 7. (Color online) Formation and evolution of a multienvelope quasisoliton regime on a circle (one-dimensional cable with periodic
boundary conditions), for a = 0.03, k1 = 10, ε = 0.01. (a) Snapshots of the profiles at selected moments of time. The waves and wavelets
propagate counterclockwise. (b) Density plots of the u component of the solution for selected time intervals; white corresponds to umin = −0.2,
black corresponds to umax = 1 corresponds to black. See also the movie in the Supplemental Material [14].

The “single intermediate reflecting” (SIR) regime found
both in Fig. 2(a) and Fig. 11 is “intermediate” in the sense that it
periodically changes its shape as it propagates, in which sense
it is similar to the envelope quasisoliton; however, most of the
time it propagates nearly as a simple quasisoliton. Only during
relatively short episodes, the wave undergoes transformation,
whereby it looses a wavelet at the tail and begets one at
the front, and these episodes are separated by relatively long
periods when the wave retains a constant shape. The dynamics

of the parameters of such a regime is shown in Fig. 12(a), (b),
(d), and (e). This phenomenology is reminiscent of a limit cycle
born through bifurcation of a homoclinic orbit. In our present
context, this would of course be an equivariant bifurcation with
respect to the translations along the x axis, or the bifurcation
in the quotient system, i.e., the system describing the evolution
of the shape of the propagating wave, as opposed to position of
that wave (see Refs. [16–19]). Correspondingly, the limit cycle
presents itself as the periodic repetition of the shapes of the
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FIG. 8. (Color online) The dynamics of (a–c) numbers of wavelets and (e–h) velocities of the envelope waves in multienvelope quasisoliton
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quasisolitons, rather than periodic solutions in the usual sense.
In the qualitative theory of ordinary differential equations,
there are two classical examples, which predict different
dependencies of the period on the bifurcation parameter.
One is the bifurcation of a homoclinic loop of a saddle
point [20]; the other is the bifurcation of a homoclinic loop of
a saddle node [21], also known as SNIC (saddle node in the
invariant circle) bifurcation, SNIPER (Saddle-Node Infinite

Period) bifurcation, and “infinite period” bifurcation; see, e.g.,
Ref. [22, chap. 8.4]. In the case of a homoclinic of a saddle,
the expected dependency is

T ≈ C1 + C2 ln (|a − a∗|) , (9)

where a∗ is the critical value of the bifurcation parameter a

and C1 and C2 are some constants. For the bifurcation of the

 1

 2

 3

 180  260

u
v

x

t = 120

 1

 2

 3

 370  450

u
v

x

t = 220

 1

 2

 3

 520  600

u
v

x

t = 300

 1

 2

 3

 520  600

u
v

x

t = 330

 1

 2

 3

 50  130

u
v

x

t = 580

 1

 2

 3

 0  80

u
v

x

t = 610

FIG. 9. (Color online) Quasisoliton interaction of an envelope soliton with an impermeable boundary in LE model (2,6), A = 6.35,
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FIG. 10. (Color online) Formation of a multienvelope quasisoliton and its interaction with an impermeable boundary in LE model (2,6),
with A = 6.45, B = 0.045.

homoclinic loop of a saddle node, the asymptotic is different,

T ≈ C3|a − a∗|−1/2 (10)

for some constant C3. The fitting of the dependence of the
soliton shape period on the bifurcation parameter a in the
FHN kinetics by (9) and (10) is shown in Fig. 12, panels (c)
and (f), respectively. In our case, the hypothetical limit cycles
exist for a < a∗, and the best-fit bifurcation value for (9) is
a∗ ≈ 0.206477, whereas for (10) it is a∗ ≈ 0.206925.

The other regime is “double-envelope nonreflecting”
(2EN), and it has separate “envelope” trains at the front and
at the back, separated by a nonoscillating plateau; see Fig. 13.
The corresponding dynamics of the wavelet amplitudes and
their speeds is shown in Fig. 14. This regime is observed for
smaller values of ε in the FHN kinetics [Fig. 2(a)] and smaller
values of B in the LE kinetics (Fig. 11).
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FIG. 11. (Color online) Parametric regions in the (A,B) plane for
different wave regimes in LE model (2,6),. The nomenclature of the
wave regimes is the same as in Fig. 2.

E. Quasisolitons in two spatial dimensions

In Ref. [23] we have shown that simple quasisoliton waves
in two-dimensional excitable systems with cross diffusion can
penetrate or break on collision. Whether the wave break occurs
or not depended on curvature and thickness of the waves, and
also on the angle of their collision, leading to emergence of
complicated patterns. The two-dimensional extensions of the
envelope and multienvelope quasisolitons are no simpler, and
we present here only a few selected examples; see Figs. 15–17.
The wave breaks can occur to whole wave trains, as well as
modify the number of a wavelets in a train, and the result
of a collision depends on the time interval since a previous
collision, so that encounters occurring in a quick succession
are more likely to lead to wave breaks. This can lead to “wave
flocks,” that is, wave groups bounded not only lenthwise but
also sidewise; see Figs. 15 and 17. For comparison, Fig. 16
shows development of a “wave grid” of two-dimensional
simple quasisolitons, i.e., the case where every wave has
exactly one wavelet; another reason for a different appearance
is that the waves at these parameters are more robust than those
in Figs. 15 and 17, and are broken less often, hence the typical
sidewise extent of the wave fragments is significantly longer.

IV. DISCUSSION

Solitons have attracted an enormous attention both from
mathematical viewpoint and from applications ever since their
discovery. For applications, it has been always understood
that the classical solitons are an idealization, and it is
therefore interesting to study systems and solutions similar to
solitons in different aspects and in various degrees. Zakharov
and Kuznetsov [24], discussing optical solitons, commented
(translation is ours): “Objects called solitons in nonlinear
optics are not solitons in the strict sense of the word.
Those are quasisolitons, approximate solutions of the Maxwell
equations, depending on four parameters. Real stationary
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FIG. 12. (Color online) Dynamics of quasisolitons in the transitional area “SIR” in Figs. 2(a) and 11. (a, b) amplitudes and (d, e) velocities
of individual wavelets of quasisolitons. (a, d) FHN model (2,5), a = 0.18, ε = 0.006. (b, e) LE model (2,6), A = 6.25, B = 0.025. (c, f)
Dependence of the quasisoliton shape change period in the FHN model as a function of parameter a at fixed ε = 0.005, and its best fits by the
theoretical dependencies (9) and (10), respectively. See the last episode of the Fig02 movie in the Supplemental Material [14].

solitons, which propagate with constant speed and without
changing their form, are exact solutions of the Maxwell
equations, depending on two parameters.” We mention in
passing that we are using the word “quasisolitons” in a different
sense than in Ref. [24]; however, the main message is that
the completely integrable systems like nonlinear Schrödinger
equation are always an idealization, and in real life one is
interested in broader class of equations and a broader class of
solutions.

The nonlinear dissipative waves in excitable and self-
oscillatory systems are traditionally considered an entirely dif-
ferent sort of things from the integrable systems displaying the
classical solitons: the words “active media” and “autowaves”
are sometimes also used to characterize this different “world.”

The excitable media with cross diffusion that we considered
in this paper are somewhat intermediate in that they present
features in common to both these different “worlds.” On one
hand, in a large areas of parameters, we observe reflection from
boundaries and penetration through each other, although with
a brief decrease, but without change in shape and amplitude
in the long run. The link to dissipative waves is that in the
established regimes have amplitude and speed depending on
the system parameters rather than initial conditions.

In this paper, we have reviewed parametric regions and
properties of a few different regimes, such as simple quasisoli-
tons (corresponding to classical solitons in integrable systems)
and envelope quasisolitons (corresponding to envelope, or
group solitons, or breathers in integrable systems). We have
identified a transitional region between simple and envelope
quasisolitons, which displays features of a homoclinic bifurca-
tion in the quotient system. We also have described a regime we
called multienvelope quasisolitons. This regime presents a next

level of hierarchy, after simple quasisolitons (“solitary” wave,
stationary solution in a comoving frame of reference) and
envelope quasisolitons (“group” wave, periodic solution in a
comoving frame of reference), which are “groups of groups of
waves” and apparently quasiperiodic solutions in a comoving
frame of reference. One naturally wonders if this is the last
level in this hierarchy or more complicated structures may be
observed after a more careful consideration; however, this is
far beyond the framework of the present study.

We have limited our consideration, with two simple excep-
tions, to a purely empirical study, leaving a proper theoretical
investigation for the future. The two exceptions are that we
confirm that the oscillating fronts of the simple quasisolitons
and envelope quasisolitons observed in numerical simulations
are in agreement with the linearized theory, and that the periods
of the quasisolitons in the transitional zone between simple
and envelope are consistent with a homoclinic bifurcation in a
comoving frame of reference. Further theoretical progress may
be achievable either by studying of the quasisoliton solutions
as boundary-value problems by their numerical continuation
and bifurcation analysis, or by asymptotic methods. At present
we can only speculate that one possibility is the limit of many
wavelets per envelope, which is inspired by observation that
in this limit the shape of the wavelets is nearly sinusoidal,
so some kind of averaging procedure may be appropriate in
which the fast-time “wavelet” subsystem is linear and the
nonlinearity only acting in the averaged slow-time “enve-
lope” subsystem. We have already commented in Ref. [6]
that treating cross-diffusion FitzHugh-Nagumo system as a
dissipative perturbation of the nonlinear Schrödinger equation
does not work out. A further observation is that apparently
this separation of time scales cannot be uniform, as some parts
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t = 20 t = 70 t = 120

t = 600 t = 640 t = 680

FIG. 15. Selected snapshots of “wave flocks” of envelope quasisolitons in 2D FHN model with a = 0.02, ε = 0.01, k1 = 5, h1 = h2 = 0.3,
box size 140 × 140. See Supplemental Material [14] for a movie.

of the envelope quasisolitons that indeed look as amplitude-
modulated harmonic “AC” oscillations with a slow “DC”
component, such as the head and the main body of the EQS
illustrated in Fig. 1(b), and the “front” and “back” oscillatory
pieces of the “double-envelope” regime shown in Fig. 13,
and some other parts which have only the slow component
but no oscillating component, such as the tail of the EQS
of Fig. 1(b) and the plateau and the tail of the double-
envelope wave of Fig. 13. This suggests that any asymptotic
description of these waves will have to deal with matched
asymptotics.

The systems we consider are not conservative, and the
natural question is where such systems can be found in
nature. We have mentioned in the Introduction a number
of applications that motivate consideration reaction-diffusion
system with cross-diffusion components; a more extensive
discussion of that can also be found in Ref. [2]. Regimes
resembling quasisolitons and finite-length wave trains phe-
nomenologically have been observed in various places. The
review [2] describes a number of unusual wave regimes
obtained in BZ-type reactions in microemulsions, including,
e.g., “jumping waves” and “packet waves,” which share some

t = 740 t = 745 t = 750

FIG. 16. Selected snapshots of “wave grid” of quasisolitons in 2D FHN model with a = 0.02, k1 = 30, ε = 0.01, h1 = h2 = 0.1, box size
140 × 140. See Supplemental Material [14] for a movie.
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t = 600 t = 640 t = 680

FIG. 17. Selected snapshots of “wave flocks” of envelope quasisolitons in 2D LE model with A = 6.4, B = 0.04, h1 = 0.3, h2 = 0.3, box
size 140 × 140. See Supplemental Material [14] for a movie.

phenomenology with the group quasisolitons. The “packet
waves” are considered in more detail in Refs. [25,26], which
demonstrate, in particular, cases of quasisolitonic behavior of
those, i.e., reflection from boundaries, see Fig. 5(e) in Ref. [26],
although it is difficult to be sure if it is the same as our group
quasisolitons as too little detail are given. Those packet waves
have been reproduced in a model with self-diffusion only,
but with three components. Another example of complicated
wave patterns which may be related to quasisolitons is given
in Ref. [27], with experimental observations in a variant of BZ
reaction as well as numerical simulation; again the simulations
there were for a three-component reaction-diffusion system
with self-diffusion only. Regarding chemical systems, we
must note that the models we considered here may not be
expected to be realized literally. Apart from the choice of
the kinetic functions and particularly of their parameters,
based more on mathematical curiosity than real chemistry,
the linear cross-diffusion terms as in (2) cannot describe
real chemical systems as they do not guarantee positivity of
solutions for positive initial conditions, so system (2) can only
be considered as an idealization of (3), with corresponding
restrictions. Further, our choice of the diffusivity matrix
appears to be in contradiction with physical constraints related
to the Second Law of Thermodynamics, which in particular
require that the eigenvalues of the diffusivity matrix are real
and positive, whereas ours are complex; see, e.g., Ref. [2,
p. 899] for a discussion. From this viewpoint, with respect
to chemical systems, our solutions may be only considered
as “limit cases,” presenting regimes which possibly may be
continued to parameter values that are physically realizable.
On the other hand, it is well known that the aforementioned
constraints apply to the actual diffusion coefficients, whereas
mathematical models obtained by asymptotic reduction deal
with effective diffusion coefficients, and the effective diffusion
matrices may well have complex eigenvalues. A famous
example is the complex Ginzburg-Landau equation (CGLE);
see, e.g., Ref. [28, Appendix B]. This equation for one complex
field, sometimes called an “order parameter,” emerges as a
normal form of a supercritical Hopf bifurcation in the kinetic
term of a generic reaction-diffusion system. This equation can
also be written, in turn, as a two-component reaction-diffusion
system, for the real and the imaginary parts of the order
parameter. If the original reaction-diffusion system contains no

cross-diffusion terms, but the self-diffusion terms are different,
then the reduced reaction-diffusion system, corresponding to
the CGLE, contains the full diffusion matrix including cross-
diffusion term. Moreover, in that case the two eigenvalues
of the diffusion matrix are complex. Incidentally, the two
effective cross-diffusion coefficients will have signs opposite
to each other, as in our Eq. (2).

Speaking of other possible analogies found in literature,
in nonlinear optics there is a class of phenomena called
“dissipative solitons,” which also could be related to our
quasisolitons. The literature on the topic is vast; we mention
just one recent example [29]; for instance, compare Fig. 3
in that paper with our Fig. 13(a). Notice that the most
popular class of models are variations of CGLE; e.g., models
considered in Ref. [29] involve effective diffusion matrices
precisly of the form (2).

Propagating pulses of complicated shape, resembling group
quasisolitons, have also been observed in a model of blood clot-
ting [30]. It is a three-component reaction-diffusion system,
and “multihump” shapes are observed there for nonequal dif-
fusion coefficients. A yet another possibility is the population
dynamics with taxis of species or components onto each other,
such as bacterial population waves; examples of nontrivial
patterns there have been presented, e.g., in Refs. [10,31]. A
spatially extended population dynamics model considered in
Ref. [32] does not present complicated wave forms but is
interesting as it demonstrates emergence of cross diffusion
from a model with nonequal self-diffusion-only coefficients as
a result of an asymptotic procedure. Finally we mention neural
networks, where “antiphase wave patterns,” resembling group
quasisolitons, have been observed in networks of elements
described by Morris-Lecar system [33]. The question whether
all these resemblances are superficial, or there is some deeper
mathematical connection behind some of them, presents an
interesting topic for further investigations.
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