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We explore the conditions on a pair interaction for the validity of the Vlasov equation to describe the dynamics
of an interacting N -particle system in the large N limit. Using a coarse graining in phase space of the exact
Klimontovich equation for the N -particle system, we evaluate, neglecting correlations of density fluctuations,
the scalings with N of the terms describing the corrections to the Vlasov equation for the coarse-grained one-
particle phase space density. Considering a generic interaction with radial pair force F (r), with F (r) ∼ 1/rγ at
large scales, and regulated to a bounded behavior below a “softening” scale ε, we find that there is an essential
qualitative difference between the cases γ < d and γ > d , i.e., depending on the the integrability at large distances
of the pair force. In the former case, the corrections to the Vlasov dynamics for a given coarse-grained scale
are essentially insensitive to the softening parameter ε, while for γ > d the amplitude of these terms is directly
regulated by ε, and thus by the small scale properties of the interaction. This corresponds to a simple physical
criterion for a basic distinction between long-range (γ � d) and short-range (γ > d) interactions, different from
the canonical one (γ � d + 1 or γ > d + 1) based on thermodynamic analysis. This alternative classification,
based on purely dynamical considerations, is relevant notably to understanding the conditions for the existence
of so-called quasistationary states in long-range interacting systems.
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I. INTRODUCTION

Interactions are canonically characterized as short-range
or long-range on the basis of the fundamental distinction
which arises in equilibrium statistical mechanics between
interactions for which the energy is additive and those for
which it is nonadditive (for reviews, see, e.g., Refs. [1–6]). For
a system of particles interacting via two body interactions
with a pair potential V (r), the system is then long-range
(or “strongly long range” [4]) if and only if V (r) decays at
large distances slower than one over the separation r to the
power of the spatial dimension d. In the last decade there has
been considerable study of this class of interactions. One of
the very interesting results about systems in this class which
has emerged, essentially through numerical study of different
models, is that, like for the much studied case of gravity
in astrophysics, their dynamics leads, from generic initial
conditions, to so-called quasistationary states: macroscopic
nonequilibrium states which evolve only on time scales which
diverge with particle number. Theoretically these states are
interpreted in terms of a description of the system’s dynamics
by the Vlasov equation, of which they represent stationary
solutions. Their physical realizations arise in numerous and
very diverse systems, ranging from galaxies and “dark matter
halos” in astrophysics and cosmology (see, e.g., Ref. [7]) to the
red spot on Jupiter (see, e.g., Ref. [8]), to laboratory systems
such as cold atoms [9], and even to biological systems [10].
A basic question is whether the appearance of these out-of-
equilibrium stationary states, and more generally the validity
of the Vlasov equation to describe the system’s dynamics,
applies to the same class of long-range interactions as defined
by equilibrium statistical mechanics, or only to a subclass of
them, or indeed to a larger class of interactions. In short, in what
class of systems can we expect to see these quasistationary

states? Are they typical of long-range interactions as defined
canonically? Or are they characteristic of a different class?

To answer these questions requires establishing the con-
ditions of validity of the Vlasov equation, and specifically
how such conditions depend on the two-body interaction.
In the literature there are, on the one hand, some rigourous
mathematical results establishing sufficient conditions for the
existence of the Vlasov limit. It has been proven notably
[11–13] that the Vlasov equation is valid on times scales
of order ∼ log N times the dynamical time, for strictly
bound pair potentials decaying at large separations r slower
than r−(d−2). On the other hand, both results of numerical
study and various theoretical approaches, based on different
approximations or assumptions, suggest that much weaker
conditions are sufficient, and the time scales for the validity of
the Vlasov equation can be much longer. In the much studied
case of gravity, notably, a treatment originally introduced by
Chandrasekhar [14] and subsequently refined by other authors
(see, e.g., Refs. [15–18]) in which non-Vlasov effects are
assumed to be dominated by incoherent two-body interactions
gives a time scale ∼N/ log N times the dynamical time
for the validity of the Vlasov equation, at least close to
stationary solutions representing quasistationary states, and
this in the absence of a regularization of the singularity in
the two-body potential. Theoretical approaches in the physics
literature derive the Vlasov equation and kinetic equations
describing corrections to it (for a review see Refs. [1,19]
either within the framework of the BBGKY hierarchy [20] or
starting from the exact Klimontovich equation for the N -body
system [21,22]). These approaches are both widely argued
(e.g., see Refs. [1,4,19,23,24]), to lead generally to lifetimes
of quasistationary states of order ∼N times the dynamical
time for any softened pair potential, except in the special
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case of spatially homogeneous quasistationary states in one
dimension.

In this article we address the question of the validity of
Vlasov dynamics using an approach starting from the exact
Klimontovich equation. Instead of considering, as is often
done (see, e.g., Refs. [1,4,19]), an average over an ensemble
of initial conditions to define a smooth one-particle phase
density, we follow an approach (described, e.g., in Ref. [25])
in which such a smoothed density is obtained by performing
a coarse graining in phase space. This approach gives the
Vlasov equation for the coarse-grained phase space density
when certain terms are discarded. We then study how the
latter “non-Vlasov” terms depend on the particle number
N and on the scales introduced by the coarse graining. In
particular we develop this study analyzing the dependence
on the large and small distance behavior of the two-body
potential. Our analysis leading to the scaling behaviors of
these terms is based only on one very simple, but physically
reasonable, hypothesis that we can neglect all correlations
in the (microscopic) N -body configurations other than those
coming from the mean (coarse-grained) phase space density.
The main physical result we highlight is that, under this simple
hypothesis, the coarse-grained dynamics of an interacting
N -particle system shows a very different dependence on the
pair interaction at small scale depending on how fast the
interaction decays at large distances: for interactions of which
the pair force is integrable at large scales the coarse-grained
N -body dynamics is highly sensitive to how the potential is
softened at much smaller scales, while for pair forces which
are nonintegrable the opposite is true. Correspondingly, while
the Vlasov limit may be obtained for any pair interaction
which is softened suitably at small scales, the conditions on
the short-scale behavior of the interaction are very different
depending on whether its large scale behavior is in one of of
these two classes. This result provides a more rigorous basis for
a “dynamical classification” of interactions as long-range or
short-range, which has been introduced on the basis of simple
considerations of the probability distribution of the force on a
random particle in a uniform particle distribution in Ref. [26],
and found also in Ref. [27] to coincide with a classification
based on the dependence on softening of collisional time scales
using a generalization of the analysis of Chandrasekhar for the
case of gravity.

The article is organized as follows. In the next section we
derive the equation for the coarse-grained phase space density
and write in a simple form the non-Vlasov terms which our
subsequent analysis focusses on. In Sec. III we first explain
our central hypothesis concerning the N -body dynamics,
and then apply it to evaluate the statistical properties of the
non-Vlasov terms. In the following section we then determine
the scaling behaviors of these expressions, i.e., how they
depend parametrically on the relevant parameters introduced,
and in particular on the two parameters characterizing the two
body interaction: its large-scale decay and the scale at which it
is softened. In Sec. V we use these expressions to identify the
dominant contributions to the non-Vlasov terms, which turn
out to differ depending on how rapidly the interaction decays at
large scales. In the following section we present more complete
exact results for the one-dimensional case and the comparison
with a simple numerical simulation. We then summarize our

results and conclusions, discussing in particular the central
assumptions and the dependence of our findings on them.

II. A VLASOV-LIKE EQUATION FOR THE
COARSE-GRAINED PHASE SPACE DENSITY

In this section we summarize an approach used to justify
the validity of the Vlasov equation for long-range interacting
systems. The approach involves using a coarse graining, in
phase space, of the full N -body dynamics and leads to an
evolution equation for the coarse-grained phase space density
which consists of the Vlasov terms, plus additional terms. This
equation, and the specific form of the non-Vlasov terms we
derive, is the starting point for our analysis in the subsequent
sections. We follow closely at the beginning the presentation
and notation of Ref. [25].

We consider a d-dimensional system of N particles of
identical mass m = 1 interacting only through the a generic
two-body force, denoting g(x) the force on a particle at x
exerted by another one at the origin.

At any time t , the N particles have phase space positions
which we denote {(xi ,vi)}i=1..N , and the microscopic (or fine-
grained, or Klimontovich) one-particle phase space density is
simply the distribution

fk(x,v,t) =
N∑

i=1

δ(x − xi(t))δ(v − vi(t)). (1)

Likewise the microscopic density in one-particle coordinate
space is

nk(x) =
∫

fk ddv =
N∑

i=1

δ(x − xi). (2)

The full evolution of the N -body system can be written
in the form of the so-called Klimontovich equation for the
microscopic phase space density:

∂fk

∂t
+ v

∂fk

∂x
+ F[nk](x)

∂fk

∂v
= 0, (3)

where

F[nk](x) =
∫

�

g(x − x′)nk(x′) ddx′ =
N∑

i=1

g(x − xi) (4)

is the exact force at point x (due to all other particles). The only
assumption made in deriving this equation from the equations
of motion of the individual particles is that the force g(x) is
bounded as x → 0.

Introducing a top-hat window function W (z = z1, . . . ,zd ),

W (z1, . . . ,zd ) =
{

1, if |zi | < 1
2 , ∀i = 1, . . . ,d

0 otherwise
(5)

we define the coarse-grained phase space density:

f0(x,v,t) =
∫

ddx′

λd
x

ddv′

λd
v

W

(
x − x′

λx

)
W

(
v − v′

λv

)
fk(x′,v′,t),

(6)

where λx and λv are the characteristic sizes of the coarse-
graining cell in position and, respectively, velocity space. We
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will denote by C(x,v) the coarse-graining cell centered at (x,v),
which thus has a phase space volume λd

x λd
v , and

Nc(x,v,t) = λd
xλ

d
vf0(x,v,t) (7)

is the number of particles inC(x,v). We suppose that the coarse-
graining cell is always much smaller (in both real and velocity
space) than the characteristic size of the system, but sufficiently
large to contain a large number of particles, i.e., λx � Lx and
λv � Lv where Lx and Lv are the characteristic size of the
system in coordinate and velocity space, respectively, and

1 � Nc(x,v,t) � N. (8)

We define also the coarse-grained spatial density as

n0(x,t) =
∫

ddvf0(x,v,t)

=
∫

ddx ′

λx

W

(
x − x′

λx

)
nk(x′). (9)

By integrating Eq. (3) over the coarse-graining cell we obtain
straightforwardly the following equation:

∂f0

∂t
+ v · ∂f0

∂x
+ F0(x) · ∂f0

∂v
= − ∂

∂x
[f0 ξv] − ∂

∂v
[f0 ξF],

(10)

where

F0(x,t) =
∫

�

g(x − x′)n0(x′,t) ddx′, (11)

i.e., the force at the point x due to the coarse-grained
distribution (which we will identify as the mean-field force).
Furthermore

ξv(x,v,t) =
⎡
⎣ 1

Nc(x,v,t)

∑
i∈C(x,v)

vi(t)

⎤
⎦ − v, (12)

where vi is the velocity of particle i, and

ξF(x,v,t) =
⎡
⎣ 1

Nc(x,v,t)

∑
i∈C(x,v)

Fi(t)

⎤
⎦ − F0(x,t), (13)

where Fi is the exact force acting on the particle i, i.e.,
Fi = F(xi ,t) where

F(x,t) =
∫

�

g(x − x′)nk(x′,t) ddx′. (14)

Thus ξv is the “velocity fluctuation” in the cell (x,v) around
the coarse-grained velocity v, i.e., the difference between the
arithmetic mean of particles velocities in the cell (i.e., the
velocity of the center of mass) and the velocity at the center of
the coarse-graining cell, and ξF(x,v,t) is the “force fluctuation”
around the coarse-grained force, i.e., the difference between
the arithmetic mean of the exact forces acting on each particle
in the cell (equal to the force on the center of mass of the
particles in the cell) and the force at the center of the cell due
to the coarse-grained particle distribution.

If the right-hand side of Eq. (10) is set equal to zero, we
obtain, given Eq. (11), the Vlasov equation for the coarse-
grained phase space density f0(x,v,t). Establishing the validity
of the Vlasov equation in an appropriate limit thus requires

showing that the terms on the right-hand side may indeed be
taken to zero in this limit. For a real system, for which N is
finite and the typical number of particles in a coarse-graining
cell is finite, Eq. (10) is not closed for the coarse-grained
phase space density, but rather coupled to the fine-grained
density through the terms on the right-hand side. If it is possible
to define the Vlasov limit for the system, these terms will
represent at any finite (but large) N , small perturbations to
the pure Vlasov evolution of the coarse-grained distribution
associated with the “graininess” of the system which, under
suitable hypothesis, are responsible for the relaxation of the
system to the thermodynamic equilibrium. In the rest of this
article we focus on these terms and establish their scaling
with N (or, equivalently, as a function of the characteristic
scales of the coarse-graining cell), given certain simplifying
hypotheses.

III. STATISTICAL EVALUATION OF THE FINITE-N
FLUCTUATING TERMS

We now focus on the two terms on the right-hand side of
Eq. (10). Their direct evaluation is clearly impossible as in
principle it requires knowledge of the full fine-grained phase
space density. We can, however, determine how they scale as a
function of relevant parameters by using a statistical approach:
given a coarse-grained distribution f0(x,v) we can consider the
fine-grained distribution to be characterized by an ensemble
of realizations of particle distributions having f0(x,v) as mean
density. If we know the statistical properties of this ensemble,
we can then, in principle, calculate those of the fluctuating
terms on the right-hand side of Eq. (10). In particular, we can
then consider how the amplitudes of these statistical quantities
depend on the relevant parameters.

We make here the most simple possible hypothesis about
this ensemble for the fine-grained phase space density: we
suppose that it corresponds to the ensemble of realizations of
an inhomogeneous Poissonian point process with mean density
given by the coarse-grained phase space density f0(x,v).
In other words we assume that the particles are randomly
distributed, without any correlation, inside each coarse-grained
cell, with a mean density which varies from cell to cell
following f0(x,v). The density-density correlations are thus
fully described by the one point distribution f0(x,v), and all
other correlations, of the fluctuations around this mean density,
are neglected. Physically this means we retain the “pure” finite
N (discreteness) effects arising from the fluctuations of the
mean density but neglect the correlation of these fluctuations.
Alternatively one can consider that we proceed by assuming
complete ignorance of the distribution of particles below the
coarse-graining scale, other than the information furnished
about it by the coarse-grained density itself. This allows us in
effect to close, at least in a statistical formulation, Eq. (10)
for f0(x,v). Indeed, this hypothesis is arguably the most
natural one to make in seeking to obtain a criterion for the
validity of the Vlasov equation, which is based only on the
coarse-graining density f0(x,v) and the properties of the pair
interaction itself.

Formally we can state our assumption to be that the
relevant terms can be evaluated by considering an ensemble of
realizations of a point process with the N-particle probability
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distribution in phase space given by (see, e.g., Ref. [28])

PN (x1,v1; . . . ; xN,vN ) =
N∏

i=1

f0(xi ,vi)

N
(15)

assuming the coarse-grained phase space density f0(x,v) to be
a smooth function. In practice it is convenient to perform the
calculation with finite coarse-grained cells in which f0(x,v)
is fixed, and the particles are distributed randomly in each
coarse-grained cell.

A. Mean and variance of ξv

We first evaluate the mean and variance of ξv , as defined by
Eq. (12), assuming now the defined properties of the ensemble
of realizations. Given that the latter assigns randomly the
velocities of the particles in the coarse-grained cell, which
is centered at (x,v), we evidently have〈

1

Nc(x,v,t)

∑
i∈C(x,v)

vi(t)

〉
= v, (16)

where 〈· · · 〉 denotes the ensemble average. Therefore we have,
as would be expected,

〈ξv〉 = 0. (17)

Calculating the variance of ξv gives straightforwardly that

〈
ξ 2

v

〉 = 1

Nc(x,v)

d

12
λ2

v, (18)

where we can take Nc = f0(x,v)λd
xλ

d
v to be the average number

of particles in the cell, given that Nc = 〈Nc〉 + δNc where by
hypothesis δNc ∼ √

Nc � Nc.1 Given that Nc(x,v) is large,
and vi are considered independent and identically distributed
variables, ξv is thus simply a Gaussian random variable with
mean zero and variance given by Eq. (18).

B. Mean and variance of ξF

Let us evaluate now the first two moments of ξF. To evaluate
these quantities in the ensemble defined above, it is useful first
to note that

F̄(x,v,t)
.= 1

Nc(x,v,t)

∑
i∈C(x,v)

Fi(t)

= 1

Nc

Nc∑
i=1

N−Nc∑
I=1

g(xi − yI ), (19)

where the i runs over the Nc particles inside the coarse-
graining cell C(x,v), and the index I over the other N − Nc

particles outside the cell. This is the case because we assume
g(−x) = −g(x) [making the sum over all the mutual forces
of the pairs of particles in the cell C(x,v) vanishes]. As the
individual pair forces depend only on the spatial positions
of particles, we need only specify, to calculate the ensemble

1In a uniform Poisson process with mean density n0, the PDF
P (N,V ) of the number of particles N in a volume V is P (N,V ) =
(noV )Ne−n0V /N ! (see, e.g., Ref. [28]).

average of powers of the force, the probability distribution for
the spatial positions of these points. Given the writing of the
force in Eq. (19), in which the sum is performed separately over
the particles inside and outside the coarse-grained cell C(x,v)
considered, it is convenient to write the ensemble average in a
similar form. As noted above we can take Nc to be fixed and
equal to its average value, n0(x)λd

x , up to negligible corrections
of order 1/

√
Nc. We can then write the N particle probability

distribution as

P ′
N

(
x1, . . . ,xNc

; y1, . . . ,yN−Nc

)=
Nc∏
i=1

p(xi)
N−Nc∏
I=1

p̂(yI ), (20)

where p(x) is the one-point probability distribution function
of the spatial position of a particle given the condition that it is
contained in the cell, and p̂(y) is the one-point probability
distribution of the spatial position of a particle given the
condition that it is outside the cell. Given that the Nc particles
are randomly distributed inside the cell, we have simply

p(xi) =
{
λ−d

x , x ∈ S(x)

0, otherwise
, (21)

where S(x) is the support of W (x/λx), i.e., the “stripe” in
phase space with the same spatial coordinates as the phase
space cell C(x,v) (see Fig. 1). Assuming the number of
particles in the cell Nc to be small compared to the total
number of particles Ns(x,v) in this stripe (which is itself
small compared to the total number of particles N ), p̂(y) can
be approximated everywhere simply by the unconditional
one-point PDF for the spatial distribution obtained by
integrating (15) over all but one space coordinate, i.e.,

p̂(y) = n0(y)

N
. (22)

FIG. 1. (Color online) Schema, in one dimension, of the coarse
graining of phase space, showing also the different regions into which
the domain of integration is divided for our analysis of the integrals in
the force variance: C is the coarse-grained cell with center at (x,v), S
(in white) is the “stripe” enclosing all points in [x − λx

2 ,x + λx

2 ]; ∂εS
is the region containing particles within a distance ε of the boundary
of the stripe.
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1. Mean of ξF

Using (20) to calculate the ensemble average of the exact force
exerted by all particles on those in a coarse-grained cell, we
have

〈F̄(x,v,t)〉 = (N − Nc)
∫

�

ddx′
∫

�

ddy ′p(x′)p̂(y′)g(x′ − y′)

=
∫
S(x)

ddx′

λd
x

∫
�

ddy′n0(y′)g(x′ − y′)

=
∫
S(x)

ddx′

λd
x

F0(x′). (23)

Thus

〈ξF(x,v,t)〉 =
∫
S(x)

ddx′

λd
x

[F0(x′) − F0(x)]. (24)

Assuming that we can neglect the variation of the mean field
F0 in the coarse-graining cell, we obtain

〈ξF(x,v,t)〉 = 0. (25)

2. Variance of ξF

We now calculate〈
ξ 2
F (x,v,t)

〉 = 〈F̄2(x,t)〉 − F2
0(x,t). (26)

We first break 〈ξ 2
F (x,v,t)〉 into two parts

〈F̄2(x,t)〉 =
〈

1

N2
c

∑
i

F2(xi)

〉
+

〈
1

N2
c

∑
i,j ;j �=i

F(xi) · F(xj )

〉
,

(27)

where all the sums are over the Nc particles in the cell
C(x,v). We will refer to the first term on the right-hand
side as the “diagonal” contribution, and the second term
as the “off-diagonal” contribution to the variance: the first
is the contribution to the variance due to the variance of the
force on each particle of the cell, the second the contribution
to the variance arising from the correlation of the forces on
different particles in the cell.

Further we can use Eq. (19) to rewrite each term as two
terms:

〈F̄2(x,t)〉 =
〈

1

N2
c

∑
i

∑
I

g2(xi − xI )

〉

+
〈

1

N2
c

∑
i

∑
I,J ;I �=J

g(xi − xI ) · g(xi − xJ )

〉

+
〈

1

N2
c

∑
i,j ;i �=j

∑
I

g(xi − xI ) · g(xj − xI )

〉

+
〈

1

N2
c

∑
i,j ;i �=j

∑
I,J ;I �=J

g(xi − xI ) · g(xj − xJ )

〉
,

where i,j again denote sums over the Nc particles inside the
coarse-grained cell and I,J over the N − Nc particles outside
the cell. Performing the ensemble average by integrating over
the PDF (20), the result can be conveniently divided in two

parts. The first and third terms give∫
�

ddx′

λd
x

n0(x′)
∫
S(x)

ddy g2(y′ − x′) (28)

and[
1 − 1

Nc(x,v)

] ∫
�

ddx′

λd
x

n0(x′)
[ ∫

S(x)
ddy′g(y′ − x′)

]2

, (29)

respectively. Both the second and fourth terms can be ex-
pressed purely in terms of the mean field, as

1

Nc

(
1 − 1

N

) ∫
S(x)

ddx ′

λd
x

F2
0(x′) (30)

and(
1 − 1

Nc

)(
1 − 1

N

) ∫
S(x)

ddx1

λd
x

∫
S(x)

ddx2

λd
x

F0(x1) · F0(x2),

(31)

respectively.
Assuming again that we can neglect the variation of the

mean field F0 in the coarse-graining cell, we can perform the
integrals in the last two expressions, and then obtain〈
ξ 2
F (x,v)

〉
= 1

Nc(x,v)

∫
�

ddx′n0(x′)

×
∫
S(x,λ)

ddyλ−d
x g2(y′ − x′) +

[
1 − 1

Nc(x,v)

]

×
∫

�

ddx′n0(x′)
[∫

S(x,λ)
ddy′λ−d

x g(y′ − x′)
]2

− 1

N
F2

0(x).

(32)

Our analysis below will focus essentially on the first two
terms in this expression as they are those which describe the
contribution to the fluctuating terms which are potentially
sensitive to the small-scale properties of the pair force g(x). We
note that the first term comes from the “diagonal” part of the
variance, and more specifically it represents the contribution
to the variance arising from the force on a single particle in the
cell due to a particle outside the cell: we will thus refer to it
as the two-body contribution. The second integral in Eq. (32),
on the other hand, arises from the “off-diagonal” part of the
variance, and more specifically it represents the contribution
to the variance of the force on the cell due to the correlation of
the force exerted on two particles inside the cell exerted by a
particle outside the the cell: we will refer to it therefore as the
three-body contribution.

IV. PARAMETRIC DEPENDENCE
OF THE FLUCTUATIONS

We now analyze the expressions we have obtained, focusing
on how their value depends parametrically on the relevant pa-
rameters we have introduced, notably the number of particles
in the system (N ), its size (Lx , Lv), the number of particles in
the coarse-graining cells (Nc) and the coarse-graining scales
(λx , λv). Further we will take the pair force to be given by
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g(x) = g|x|−γ x̂ for γ < 0, and by

g(x) = g

{
|x|−γ x̂, |x| � ε

ε−γ x̂, |x| < ε
(33)

for γ > 0, where g is the coupling constant (and g < 0 for the
case of an attractive interaction). We will focus then on how
the amplitude of the fluctuations of the force depend also on the
exponent γ and the characteristic length ε at which the force is
regularized at small scales. Indeed, it is evident that we must in-
troduce such a regularization of the pair force, as without it the
integrals in Eq. (32) can be ill-defined. It is important to note
that our essential scaling results are not dependent on the use of
the specific form of the regularization in Eq. (33): what is nec-
essary to obtain these results is only that the force be bounded
above by a constant of order ε−γ below a scale of order ε.

A. Mean field Vlasov limit

The mean-field Vlasov limit is formulated by taking N →
∞ at fixed system size and scaling g ∝ N−1 so that the mean
field F0 remains fixed. Applying this procedure to the expres-
sions we have obtained for 〈ξ 2

v 〉 and 〈ξ 2
v 〉, both indeed converge

to zero, for any nonzero ε. In order to obtain these expressions
we have, as noted, assumed also that the mean field does not
vary on the scale of the coarse-graining cell. Assuming that
the characteristic scale of variation of the coarse-grained phase
space density, and mean field, is the system size Lx , for a finite
coarse-graining cell we expect corrections to our expressions
due to the variation of these quantities on the scale λx which
are suppressed at least by λx/Lx relative to those we have
calculated. The coarse-grained phase space density f0(x,v,t)
thus indeed obeys the Vlasov equation in the usual formulation
of this limit, when the size of the coarse-graining cell is taken
to be negligible with respect to the system size.

We now study more closely the approach to the Vlasov limit
as characterized by the scaling behavior of the corrections to
it. We assume that these are given by those of the statistical
quantities we have calculated, i.e., we take

|ξv| ∼
√〈

ξ 2
v

〉
, |ξF| ∼

√〈
ξ 2

F

〉
. (34)

B. Velocity fluctuations

Given the result (18) and that Nc ∼ N
Ld

xLd
v
λd

xλ
d
v we infer

|ξv| ∼ 1√
N

(
Lx

λx

)d/2(
Lv

λv

)d/2

λv. (35)

There is evidently no dependence on the pair force in this term.
As already noted we can recover the Vlasov limit by taking
N → ∞. Further we can see that this result remains valid for
arbitrarily small (but nonzero) values of the ratio λx

Lx
so that

variation of coarse-grained quantities on the coarse-grained
scale can indeed be neglected.

C. Force fluctuations

The scaling of the last term on the right-hand side (32)
is already explicated, representing simply a fluctuation of the
force about the mean field of order 1/

√
N times the mean field

itself. In order to determine the dependences of the first two

terms we need to analyze carefully that of the integrals. To do
so we divide the domains of integration in the double integral
into appropriate subdomains, isolating the region which may
depend on the lower cutoff ε in the pair force.

1. Two-body contribution

We consider first the diagonal two-body contribution,
writing the double integral as[ ∫

�/S/∂εS
ddx′ +

∫
∂εS

ddx′ +
∫

S/∂εS
ddx′

]

⊗
[
n0(x′)

∫
B(x′,ε)

ddy′λ−d
x g2(y′ − x′)

+ n0(x′)
∫
S(x)/B(x′,ε)

ddyλ−d
x g2(y′ − x′)

]
, (36)

where in this context ⊗ indicates the integration operation on
the terms in fences. As illustrated for the one-dimensional case
in Fig. 1, the integral over x′, over the whole of space (�) has
been divided into three parts:

(1) ∂εS: the set of points which are within a distance ε of
the boundary of the stripe S. The volume of this region is of
order ελd−1

x

(2) S/∂εS: the set of points belonging to S but not
belonging to ∂εS. For ε � λx , its volume is of order λd

x

(3) �/S/∂εS: the rest of space
and the integral over y′, over the stripe S has been divided into
two parts:

(1) B(x′,ε): the set of points in S which are a distance of
less than ε from the point x′. This region has a volume of order
εd .

(2) S/B(x′,ε): the rest of S; for ε � λx , its volume is of
order λd

x .
We consider now one by one the terms in the integral written

as in Eq. (36). The first term in the integration over x′ excludes
the region where the pair force is ε-dependent and is over a
volume of order Ld

x . Hence if we suppose n0 ∼ const, it gives
a contribution which scales as

∼n0L
d−2γ
x . (37)

For the second region of integration over x′, of volume of
order ελd−1

x , the region B(x′,ε) of the integration over y′ gives
a contribution of order ε−2γ over a volume of order εd , and
thus

∼n0
(
ελd−1

x

)
εdλ−d

x ε−2γ . (38)

In the region S(x)/B(x′,ε), on the other hand, of volume of
order λd

x , we have

∼n0
(
ελd−1

x

)
λ−2γ

x . (39)

In the third region of integration over x′, of volume of order
λd

x , we obtain again a contribution of order ε−2γ in the volume
B(x′,ε), and thus

∼n0ε
d−2γ , (40)

while the second term region of the y′ integration gives

∼n0λ
d−2γ
x . (41)
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2. Three-body contribution

Proceeding in the same manner we write the three-body
contribution to the variance of the force as[ ∫

�/S/∂εS
ddx′ +

∫
∂εS

ddx′ +
∫
S/∂εS

ddx′
]

⊗
[
n0(x′)

∫
B(x′,ε)

ddy′λ−d
x g(y′ − x′)

+ n0(x′)
∫
S(x,λ)/B(x′,ε)

ddyλ−d
x g(y′ − x′)

]2

.

The first term in the integration over x′ gives then a
contribution

∼n0L
d−2γ
x .

Compared to the two-body integral, the analysis of the re-
maining parts is essentially the same, except for one important
difference: as the integration over y′ is over the vector pair
force, the integral over y′ is zero when integrated in a sphere
around x′; in particular the integration over B(x′,ε) vanishes
when B(x′,ε) is fully contained in S. This is the case for the
integration region S/∂εS, which therefore does not depend on
ε and simply gives a contribution of order

∼n0λ
d−2γ
x . (42)

For the second integration region in the integral over x′, of
volume ∼ελd−1

x , B(x′,ε) is not fully contained in S, and we
have therefore a contribution from this part of the integration
over y′ of order εdλ−d

x ε−γ , while the second part, which does
not depend on ε, gives a contribution of order λ

−γ
x . Taking the

square and multiplying by the volume of ∂εS, we obtain three
terms:

∼n0ελ
d−1
x ε2dλ−2d

x ε−2γ (43)

from the square of the first term,

∼n0ελ
d−1
x εdλ−d

x ε−γ λ−γ
x (44)

from the cross term, and

∼n0ελ
d−1
x λ−2γ

x (45)

from the square of the second term.

V. FORCE FLUCTUATIONS ABOUT THE VLASOV LIMIT:
DEPENDENCE ON ε

Gathering together the expressions derived above, we
obtain, keeping only the leading divergence in ε in each of
the two-body and three-body contributions,〈

ξ 2
F (x,v)

〉
= g2

Nc

(
C� n0L

d−2γ
x + CS n0λ

d−2γ
x + C∂S n0ε

d−2γ
)

+ g2

(
1 − 1

Nc

)(
C ′

� n0L
d−2γ
x + C ′

S n0λ
d−2γ
x

+C ′
∂S n0ε

2d+1−2γ λ−(d+1)
x

) − 1

N
|F[n0](x)|2, (46)

where all C∗ and C ′
∗ are constants [Note that we have not

included (44) because when it diverges, for γ > d + 1, the
term retained is indeed more rapidly divergent.]

Depending on the values of γ and d different terms
dominate. We consider each case.

A. Case γ < d
2

In this range there are no divergences as ε → 0, and for
ε � λx � Lx , the dominant term from the two integrals is

g2n0L
d−2γ
x ∼ 1

n0Lx

g2n2
0L

2
x ∼ 1

N
|F0|2, (47)

and therefore we infer the scaling of the total force fluctuation
is

|ξF| ∼ 1√
N

|F0|. (48)

As noted above we therefore obtain in this case the Vlasov
limit taking N → ∞ with g ∼ 1/N . Further we conclude that,
at finite N , the fluctuations around the mean-field force are
dominated by contributions coming from fluctuations of the
density at the scale of the system size, which dominate those
coming both from the scale λx of the coarse-graining cell and
those from the scale ε at which the pair force is regularized.

B. Case d
2 < γ < d + 1

2

In this range of γ , there is a divergence at ε → 0 in
the contribution coming from the two-body term, while the
three-body term remains finite. Keeping only the dominant
contributions to the two integrals when ε � λx � Lx , we
obtain

〈
ξ 2

F(x)
〉 ∼ Cε

g2n0(x)

Nc(x,v)
εd−2γ + C ′

λg
2n0(x)λd−2γ

x , (49)

where Cε and C ′
λ are constants.

Given the divergence in ε we see explicitly that in this case
the Vlasov limit is obtained taking N → ∞ with g ∼ N−1 at
finite nonzero ε, and this limit can only be defined if such a
small scale regularization of the pair force is introduced.

Using Nc(x,v) ∝ f0(x,v)λd
xλ

d
v , we can write the dominant

fluctuations as

〈
ξ 2

F(x)
〉 ∼ g2 n0(x)

λd
x

[
Cε

εd−2γ

f0(x,v)λd
v

+ C ′
λλ

2d−2γ
x

]
. (50)

This expression allows us to conclude, as anticipated, that
there is a crucial difference between the following subcases:
(i) the range of γ in which the first term dominates and (ii) the
range in which the second term dominates.

1. For d
2 < γ < d

In this case the exponent of λx in the second term inside the
brackets in Eq. (50) is positive, and therefore when we increase
λx at fixed ε (and fixed λv), this term dominates over the first
one. More specifically when λx � ε(f0(x,v)λd

vε
d )−

1
2d−2γ this
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term dominates, and〈
ξ 2
F

〉 ∼ g2n0(x)λd−2γ
x . (51)

Thus, even though the amplitude of the fluctuations depends
on ε, and diverges as ε → 0, for a sufficiently large coarse-
graining cell the fluctuations become in practice effectively
insensitive to the value of ε, for a wide range of values which
is such that the larger is λx the smaller is the lower limit on ε,
with the latter vanishing as λx → ∞. Note that since

|ξF| ∼ 1√
n0(x)λd

x

(
λx

Lx

)d−γ

|F0(x)|

∼ 1√
N

(
λx

Lx

)d/2−γ

|F0|,

we can also neglect the final term in Eq. (32).

2. For d < γ < d + 1
2

In this range it is instead the exponent of λx in the second
term inside the brackets in Eq. (50) which is negative, and as
a consequence it is now the first term which dominates when
we make the coarse-graining scale λx large. We have therefore〈

ξ 2
F

〉 ∼ g2 n0

f0λd
xλ

d
v

εd−2γ . (52)

Further as this can be rewritten as

|ξF| ∼ 1√
NNc

(
ε

Lx

)d/2−γ

|F0|, (53)

it follows that for sufficiently small ε this is the dominant
contribution to the fluctuations. In this range therefore the
leading contribution to the force fluctuations is directly
dependent on ε.

C. Case d + 1
2 < γ

In this case both the integrals giving the two-body and three-
body contributions are divergent at small ε, but the dominant

divergence comes from the latter giving

〈
ξ 2
F (x)

〉 ∼ g2n0(x)
ε2d+1−2γ

λd+1
x

. (54)

This case is therefore like the previous case (d < γ < d + 1
2 ):

the dominant contribution to the fluctuations is divergent as
ε → 0.

VI. EXACT ONE-DIMENSIONAL CALCULATION
AND NUMERICAL RESULTS

In the case of a one-dimensional system, d = 1, it is
possible to perform explicitly the integrals in Eq. (32) to
obtain exactly the expression of the force fluctuations. In
order to illustrate our main result above, we can compare the
expressions we obtain, and in particular their leading scaling
behaviors, with what is obtained directly by measuring the
force fluctuations in cells on realizations of a homogeneous
Poisson particle distribution. As we are interested primarily
in the ε dependence of these fluctuations we consider solely
the contribution to them from the part of the integral which is
potentially sensitive to them. We can therefore write

〈
ξ 2

F(x)
〉
S = n0

Nc

∫ λx
2

− λx
2

dx ′
∫ λx

2

− λx
2

dy ′λ−1
x g2(y ′ − x ′)

+ n0

(
1− 1

Nc

) ∫ λx
2

− λx
2

dx ′
[∫ λx

2

− λx
2

dy ′λ−1
x g(y ′−x ′)

]2

,

where we use the subscript in 〈ξ 2
F(x)〉S to indicate that this is

the contribution to the force variance sourced by particles in
the phase space “stripe” S, and

g(x) = g

{
x

|x|γ+1 , |x| � ε

x
|x|ε

−γ |x| < ε
. (55)

Integrating we obtain

〈
ξ 2

F(x)
〉
S = g2 1

Nc

n0(x)

λx

[
1

1 − γ
ε2−2γ − 4

1 − 2γ
λxε

1−2γ + 1

(1 − 2γ )(1 − γ )
λ2−2γ

x

]

+ g2

(
1 − 1

Nc

)
n0(x)

λ2
x

{
2γ (1 + 2γ )

2(1 − γ )(3 − 2γ )
ε3−2γ − 4γ

(1 − γ )2(2 − γ )
ε1−γ

[
λ2−γ

x − (λx − ε)2−γ
]

− 4

(1 − γ )(2 − γ )(3 − γ )
ε−γ

[
λ3−γ

x − (λx − ε)3−γ
] + 4

(1 − γ )(2 − γ )
ε1−γ (λx − ε)2−γ

− 4

(1 − γ )2

(
λx

2

)2−2γ (
λx

2
− ε

) ∞∑
n=0

(γ − 1)n
1 + 2n

1

n!

(
1 − 2

ε

λx

)2n

+ 2

(1 − γ )2(3 − 2γ )
λ3−2γ

x

}
, (56)

where (x)n is the Pochhammer symbol, (x)n = 	(x+n)
	(x) = x(x + 1) · · · (x + n − 1).

Expanding this expression in the limit ε/λ → 0, and keeping only the leading ε-dependent terms, we obtain

〈
ξ 2

F(x)
〉
S = g2 n0(x)

Nc

[
− 4

1 − 2γ
ε1−2γ + 1

(1 − 2γ )(1 − γ )
λ1−2γ

x

]

+ g2n0(x)

(
1 − 1

Nc

)[
2γ (1 + 2γ )

2(1 − γ )(3 − 2γ )
λ−2

x ε3−2γ + 4

(1 − γ )2
λ−1−γ

x ε2−γ + Cλ1−2γ
x

]
, (57)
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FIG. 2. (Color online) The variance of the force on particles in a
phase space cell due to particles in the corresponding stripe, plotted
as a function of ε, for the different values of γ . The crosses indicate
the points obtained from the numerical simulation described in the
text and dotted lines are the corresponding analytical results, Eq. (56).
We use units in which λx = 1 and g = 1.

where C is a constant depending on γ . Comparing this
expression with (46), which we obtained for the d-dimensional
case, we note that we indeed have agreement when we take
d = 1. The term of order ε2−γ corresponds to the term of order
εd+1−γ in Eq. (44), which we did not include in (46) because
it is never the leading divergence.

We now compare these analytical expressions with those
obtained from a direct numerical estimation of the same
quantity in a Poissonian realization of a particle system. To
do so we have distributed N = 72 900 particles randomly in
a “phase space box” (see Fig. 1) of side 27λv (in velocity)
and 9λx (in position). Thus there are 243 cells, containing, on
average, 300 particles. We then calculate the exact force on
each particle in the system due to all particles in the stripe to
which it belongs, i.e., F(xi) = ∑

j∈S g(xi − xj ). For each cell

we then average this quantity to get F̄ = 1
Nc

∑
i∈C Fk(xi), and

we finally estimate the variance of this quantity over the 243
cells.

Shown in Fig. 2 are the results of these numerical
simulations compared with the theoretical results, Eq. (56),
for a range of values of ε and different values of γ . The
agreement is excellent in all cases. Further we have verified
that, except in the region where ε approaches λx , the results are
in excellent agreement with the expression (57) for the small
ε/λx behavior. Thus we find results completely in line with our
determination of the scalings in this limit for the d-dimensional
case, leading to the different behaviors described in Sec. V:
for γ = 0.25, in the range γ < d/2, the force fluctuations are
independent of ε; for γ = 0.75 and γ = 1.25, in the range
d/2 < γ < d/2 + 1, the divergent two-body term ∼ ε1−2γ

dominates at small ε, but is then overtaken at larger ε by
the flat behavior of the the dominant ε-independent term
in the three-body term; for γ = 1.75 and γ = 2.5, both in
the range d/2 + 1 < γ we have again at the smallest ε the
behavior ∼ε1−2γ from the 2-body term, but at larger ε instead

the dominant behavior ε-dependent term ∼ ε3−2γ from the
three-body term.

VII. DISCUSSION AND CONCLUSIONS

Let us now discuss further the physical significance of these
results, and in particular how they justify the basic qualitative
distinction between interactions as we have anticipated in
the introduction. We have considered a generic N -particle
system with Hamiltonian dynamics described by a two-body
interaction with a pair force ∼1/rγ and regularized below
a scale ε to a constant value. Introducing a coarse graining
in phase space, one obtains an equation for the coarse-
grained phase space density with terms corresponding to the
Vlasov equation, in addition to “non-Vlasov” terms which
are functionals of the microscopic phase density. We then made
the hypothesis that the typical amplitude of these terms can be
estimated by assuming this microscopic phase space density
to be given by a realization of an inhomogeneous Poissonian
point process, in which the mean density is specified by the
coarse-grained phase space density but the density fluctuations
are uncorrelated. In other words we neglect all contributions
due to correlation of density fluctuations with respect to the
ones due to the simple products of mean densities. Doing so we
have determined the scalings of these latter terms as a function
of the different scales in the problem, of γ and of the spatial
dimension d. If the assumed hypothesis is valid (for large N ),
a limit in which the Vlasov equation applies is simply any
one in which the derived non-Vlasov terms go to zero while
the Vlasov terms tend to fixed finite values. Our results show,
first, that, for any interaction in the class we have considered,
such a limit exists and can be defined in different ways:
notably, by taking N to infinity at fixed values of the other
scales, and in particular at fixed smoothing, or, alternatively,
by taking the limit in which the coarse-graining scale, while
always remaining small compared to the system size, is taken
arbitrarily large compared to the other scales, and in particular
the smoothing scale ε. However, when this limit is taken, there
is a important difference between the case in which γ > d or
γ < d: for the former case the dominant correction term to the
Vlasov limit is always strongly dependent on ε, while in the
latter case the dominant term, at fixed λx , is independent of ε in
a wide range whose lower limit vanishes as λx diverges. This
different leading dependence on ε corresponds to fluctuations
which are sourced by quite different contributions in the two
cases: for γ > d, the dominant fluctuation in the force on
a coarse-graining cell comes from the contributions coming
from forces on individual particles due to single particles which
are “close by,” i.e., within a radius ε: for γ < d, on the other
hand, the dominant fluctuation comes from the coherent effect
on two different particles in the cell coming from a single
particle which is “far away,” i.e., at a distance of order the
size of the coarse-graining cell, or, even for γ < d/2, of order
the size of the system. Given that these amplitudes are those
of the terms describing the corrections to the Vlasov evolution
due to the large, but finite, number of particles in a real system,
this means that the dynamics of the particle system at a coarse-
grained scale in the two cases is dominated by completely

062910-9



ANDREA GABRIELLI, MICHAEL JOYCE, AND JULES MORAND PHYSICAL REVIEW E 90, 062910 (2014)

different contributions: by the particle distribution at the
smallest scales when γ > d, and by the particle distribution
at the coarse-graining scale or larger when γ < d. Thus in the
latter case we can decouple the dynamics at the coarse-graining
scale from that at smaller scales (the interparticle distance, the
scale of particle size), while for γ > d we cannot do so. Or,
in the language of renormalization theory, the former admit
a kind of universality in which the coarse-grained dynamics
is insensitive to the form of the interaction below this scale,
while the latter do not. This is a basic qualitative distinction
between the dynamics in these two cases, which corresponds
naturally to what one call “short-range” or “long-range.” In
order to distinguish it from the canonical distinction based
on thermodynamical considerations, following Ref. [26], we
can refer to γ > d as dynamically short-range, and γ < d as
dynamically long-range.2

For what concerns quasistationary states the implications
of this result and relevance of the classification are simple: for
all cases one would expect that such states may exist (since
the Vlasov limit exists) but the conditions for their existence,
which requires that the time scales of their persistence be
long compared to the system dynamical time, will be very
different. For γ > d, their lifetime, which would be expected
to be directly related to the amplitude of the non-Vlasov
term, can be long only if the smoothing scale in the force
is sufficiently large; in the case γ < d, their lifetime will be
expected to be independent of ε. We note that this is precisely
in line with results of analytical calculations based on the
Chandrasekhar approach to estimation of the relaxation rate,
and the results of numerical simulations of systems of this
kind reported in Ref. [27].

These results are all, as we have emphasized, built on
our central hypothesis that correlation of density fluctuations,
associated with the finite particle number, may be neglected. To
formulate it we must define a smooth mean phase space density
by introducing a coarse-graining scale, which is assumed to
be a “mesoscopic scale”: arbitrarily small compared to the
system size, and yet large enough so that the phase space cell
contains many particles. Our central hypothesis is not one of
which we have proven the validity, but it is a consistent, simple
and physically reasonable one, analogous to that of “molecular
chaos” in the derivation of the Boltzmann equation. It is also
in line with the fact that when the Vlasov approximation is
valid, the system dynamics is defined in terms only of the
mean density and fluctuations due to higher order density
correlations are considered subdominant. We note above all
that it leads to conclusions and behaviors which are very
reasonable physically, even in the cases we have not focused
on but to which our analysis can be applied. For example, if we
consider a hard repulsive core interaction without a smoothing,
i.e., let ε → 0 for γ large, we infer that the force fluctuation
on a coarse-grained cell diverges and that there is thus no
Vlasov limit. Indeed, in this case an appropriate two-body

2Or, alternatively, if one adopts the terminology advocated by
Ref. [4], in which the thermodynamic distinction is made between
“strongly long-range” and “weakly long-range,” our classification
could be described as a distinction between “dynamically strongly
long-range” and “dynamically weakly long-range” interactions.

collision operator is required to take into account the effects
of interactions between particles.

Finally we note that the ensemble we have assumed to
describe the fine-grained phase space density is a realization
of a Poisson process with mean density given by the coarse-
grained space. This implies that we include (Poissonian)
fluctuations of particle number at all scales: indeed, these
(finite particle number) fluctuations are the source of the
fluctuation terms in the dynamical equations which we have
analyzed. One could consider that it might be more appropriate
physically to take, in estimating the fluctuations induced at
a given coarse-grained density, the ensemble in which the
particle number is constrained to be fixed in all coarse-graining
cells. In other words we could average, given a coarse-grained
phase space density, only over the configurations in which
the particles, of fixed number in each cell, are distributed
randomly within the cells. It is straightforward to verify, with
the appropriate modification of the average, that doing so
can only change our results for what concerns the large-scale
contributions to the force fluctuations: the diverging behaviors
at small scales we have focused on arise from the fact that
there is a finite probability for a particle to be arbitrarily close
to another one, and the local value of the density will at most
modify the amplitude but not the parametric dependence of this
term. On the other hand, our determinations of the parametric
dependence of the contributions to the force fluctuations from
the bulk will be expected to depend on how the particle
fluctuations at larger scales are constrained.3

In future work we plan to explore the possibility of
developing the approach used in this article to understand and
describe further the effect of the “non-Vlasov,” collisional,
terms on the evolution of a finite N system, i.e., to use it
to develop a kinetic theory for the N -particle system. In this
context it would be interesting to determine whether existing
kinetic equations such as that of Lenard-Balescu, or variants
of it developed in the literature (see, e.g., Refs. [19,23] for a
discussion and references), could be derived in a different
way from this starting point, or even potentially modified
or formulated differently. In this respect we note that the
results derived here already provide a better basis for many
derivations of such equations (and in particular the Lenard-
Balescu equation) which take as a starting point the assumption
that the Vlasov equation applies in the large N limit (and
then derive the kinetic equation for perturbations about it). It
would be interesting also to clarify in particular the relation
between this approach and that of Chandrasekhar, which,
as we have noted, when extended to a generic interaction
has been shown [27] to give very consistent conclusions
about the sensitivity of collisional relaxation of quasistationary
states to the small-scale regularization. Likewise it would be
interesting to try to test directly in numerical simulations for
the validity of our central hypothesis about correlations, and

3A simple example is the case of one-dimensional gravity, i.e., γ =
0 in d = 1. In this case Poissonian force fluctuations indeed diverge
with system size [29] precisely as derived here. On the other hand,
because the force is independent of distance, the force fluctuation in
a cell coming from particles in other cells vanishes if the number of
particles in these cells does not fluctuate.
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also characterize using analytical methods the robustness of
our central conclusions to the existence of different weak
correlations of the density fluctuations.
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