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Manipulating matter rogue waves and breathers in Bose-Einstein condensates
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We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-
Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity
transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap,
(ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we
change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue
waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions.
Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our
results may help to manage rogue waves experimentally in a BEC system.
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I. INTRODUCTION

During the past several years considerable interest has
been shown in exploring localized nonlinear waves in the
variable coefficient nonlinear Schrödinger (NLS) equation and
its generalizations [1–3]. The motivation comes from the fact
that NLS equation and its variants appear in several branches
and topics of physics, including nonlinear optics [4,5] and
Bose-Einstein condensates (BECs) [6–8], etc. Focusing our
attention on BECs alone, it is well known that the Gross-
Pitaevskii (GP) equation governs the evolution of macroscopic
wave function at ultra-low temperatures [6,9]. In particular, for
cigar-shaped BECs, it has been shown that the GP equation
can be reduced to the one-dimensional variable coefficient
NLS equation [10–12]

iψt + 1
2ψxx + R(t)|ψ |2ψ + 1

2β(t)2x2ψ = 0, (1)

where ψ(x,t) is the condensate wave function, t is the dimen-
sionless normalized time, x is the dimensionless normalized
coordinate in the axial direction, R(t) represents the effective
scattering length, and β(t) is the axial trap frequency.

A simple and straightforward way of exploring the localized
and periodic structures of (1) is by transforming it into a
constant coefficient NLS equation through a suitable trans-
formation. From the known solutions of the latter equation the
solutions of the former equation can be identified. Using this
procedure a class of solutions, in particular various localized

solutions, have been identified for the model (1), including
soliton, breather, and rogue wave (RW) solutions. In order
to appreciate the relevance of the above type of localized
structures for Eq. (1), we may first consider their existence
in the case of a constant coefficient NLS equation,

iUT + 1
2UXX + |U |2U = 0. (2)

It is well known that the standard NLS equation (2) admits
the following basic localized profiles and their higher-order
versions [13].

(i) Envelope soliton: It is a solitary wave (localized envelope
along with a carrier wave) that retains its characteristics
(amplitude, shape and velocity) under collision with another
soliton, except for a change in phase. The intensity profile
of the soliton is shown in Fig. 1(a). The typical form of the
envelope soliton is

U (X,T ) = P1R expiη1 sech η2, (3)

where P1(=P1R + iP1I ) is a complex constant, η1 = P1IX +
[(P 2

1R − P 2
1I )T ]/2 + η

(0)
1I , and η2 = P1R(X − P1I T ) + η

(0)
1R +

log (1/2P1R). Here η
(0)
1R and η

(0)
1I are constant parameters.

(ii) Breather: It is a localized solution with temporally
and/or spatially periodic structures having constant back-
ground exhibiting internal oscillations and bound states of
nonlinear wave packets [14], which is represented in Fig. 1(b).
Its typical form reads [15]

U (X,T ) = ρ0 cos(2φR) exp i(θ + 2φR)

(
1 + 1√

a cosh (ηR + σ ) + cos ηI

×
{(

cosh 2φI

cos 2φR

− 1

)
cos ηI + i

[
tan 2φR sinh(ηR + σ ) − sinh 2φI

cos 2φR

sin ηI

]})
, (4)

where ρ0 is the amplitude of the plane wave,
θ = kX − ωT , σ , k, ω are constant parameters,
ηR = PRX − (
RT )/2 + η0

R , ηI = PIX − (
IT )/2 + η0
I ,


R = 2kPR − P 2
R−P 2

I sin 2φR+2PRPI sinh 2φI

cosh 2φI −cos 2φR
, 
I = 2kPI +

P 2
R−P 2

I sin 2φI +2PRPI sinh 2φR

cosh 2φI −cos 2φR
, a = cosh2 φI/ cos2 φR , PR =

−2ρ0 cos φR sinh φI , PI = 2ρ0 sin φR cosh φI , and
φ = φR + iφI is a complex constant. This solution is also
called a general breather (GB) since it is periodic both in space
and in time. Two important special cases are the following:
(i) When φR �= 0 and φI = 0, the GB solution corresponds
to an Akhmediev breather (AB), which is periodic in space
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FIG. 1. (Color online) Profiles of (a) soliton, (b) general breather, and (c) Peregrine soliton (rogue wave).

and localized in time. (ii) If we take φR = 0 and φI �= 0,
(4) becomes a Ma breather (MB) which is periodic in time
only and localized in space.

(iii) Rogue wave: A further specialized structure, which is
localized both in space and in time with a constant plane wave
background, is the so-called Peregrine soliton or RW [16]. It
can be obtained by taking the limits φR = εγ and φI = εδ, and
ε → 0, where γ , δ and ε are constants. Then Eq. (4) reduces
to the following form:

U (X,T ) = ρ0 eiθ

[
1 − 4 + 8iρ2

0T

1 + 4ρ2
0 (X − kT )2 + 4ρ4

0T 2

]
. (5)

Very often the above localized nonlinear wave is described as
a wave that “appears from nowhere and disappears without a
trace” [17], as shown in Fig. 1(c). It was first observed in the
area of oceanography [18] and is traditionally defined as a wave
whose wave height (the distance from trough to crest) is more
than twice the significant wave height. The latter is generally
defined as the average wave height among one third of highest
waves in a given time series [18,19]. Further, it has also been
explained that the above structure (5) arises due to a modu-
lation instability) [16,20] of the plane wave solution of the
constant coefficient NLS equation. Very recently higher-order
RWs (HRWs) which correspond to the higher-order rational
solutions of the NLS equation (2) have been deduced [21].
The explicit expressions for the second- and third-order RWs
of the NLS equation are given in the Appendix. These HRWs
have higher amplitudes than the first-order RW. The RWs have
also been observed experimentally in physical systems such
as water wave tanks [22], capillary waves [23], and nonlinear
optics [5,24]. Several theoretical studies on the dynamics of
RWs in nonlinear fiber optics [25,26], plasma physics [27],
laser-plasma interactions [28], and even econophysics [29],
described by a scalar NLS equation, have been made recently.

Now, as mentioned at the beginning, the dynamics of a
cigar-shaped BEC at absolute zero temperature is usually
described by the mean-field GP equation (1), which is a
generalized form of the ubiquitous constant coefficient NLS
equation (2), for the wave function of the condensate. Since
the NLS equation (2) admits breather and RW solutions, it is
natural to expect that RWs and breathers may also be found in
BEC systems as well. In this context, the RWs can correspond
to a sudden increase of peaks in the condensate clouds similar
to the nature of high peaks in the open sea, while breathers are
generalizations of the RWs. The formative mechanism for the
matter RWs in BECs is the accumulation of energy and atoms
towards its central part and their spreading out to a constant
density background. The formation of matter breather is the
periodic exchange of atoms between the profile and the plane

wave background. From an experimental point of view, the
existence of RW and breather structures in a BEC system can
be effectively controlled by tuning the nonlinear interaction
between atoms by Feshbach resonance technique [7,30,31] and
modulating the trapping frequency of the external potential. It
will therefore be of great interest to study the characteristics
and/or controlling of structures of RWs and breathers due
to their localization both in space and in time in BEC
experiments. Past explorations of the GP equation in BECs
have paved the way for important developments in manipu-
lating coherent matter waves for application, including atom
interferometry [32], coherent atom transport [33], and quan-
tum information processing or quantum computation [34].
Therefore, it is of high significance to study the dynamics
of RWs and breather profiles of the GP equation (1). However,
only a few attempts have been made to identify and analyze
the RWs and breather solutions of (1) [35–40]. To the best of
our knowledge neither higher-order RW solutions (with certain
free parameters) nor higher-order breather solutions of (1) have
been taken up for study. Motivated by these observations,
in this work we construct the aforementioned localized and
periodic solutions of (1). Besides constructing these two
families of solutions we also investigate how to manipulate
the RWs and breathers through the effective scattering length
and the strength of the trap parameter.

Having stated our motivation we now proceed to construct
a transformation that transforms Eq. (1) into the standard NLS
equation (2). Following the standard procedure [11,41] we
find that the required similarity transformation should be of
the form

ψ(x,t) = r0

√
R(t)[U (X,T )]

× exp

{
i

[
c1r

2
0 Rx − Rt

R
x2 − 1

2
c2

1r
4
0

∫
R2(t) dt

]}
,

(6)

where

X(x,t) = r0R(t)x − c1r
3
0

∫
R2(t) dt, (7a)

T (t) = r2
0

∫
R2(t) dt, (7b)

and U (X,T ) is the solution of the standard NLS equation (2).
In the above b,r0 are arbitrary constants, and the modulational
functions R(t) and β(t)2 should satisfy the following condi-
tion:

d

dt

(
Rt

R

)
−

(
Rt

R

)2

+ β(t)2 = 0, (8)
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which is a Riccati-type equation with dependent variable
(Rt/R) and independent variable t . Regardless of what R(t)
is, as long as condition (8) is satisfied, the GP equation
is integrable [11,41]. We also note here that the Painlevé
singularity structure analysis performed on Eq. (1) confirms
the same restriction (8) on the system coefficients [42]. We
further note that solution (6) provides us some flexibility to
generate new structures related to the RWs, which may be
useful for the BEC experiments.

Even though one can arbitrarily choose the functions
R(t) and β(t) that satisfy the constraint (8) and generate
the required solutions, in this paper we consider the trap
frequency to be of the following three forms: (i) β(t)2 = β2

0 ,
(ii) β2(t) = (β2

0/2)[1 − tanh(β0t/2)], and (iii) β(t)2 =
2β2

0 [1 + 3 tan2(β0t)], where β0 is a constant. As shown
in Ref. [11] the effective scattering length for these three
cases turns out to be (i) R(t) = sech (β0t + δ), (ii) R(t) =
1 + tanh(β0t/2), and (iii) R(t) = 1 + cos (2β0t). We consider
the trap frequency to be in the above forms since it has
been shown that they are valid forms in BEC experi-
ments [11]. We consider each one of the cases separately
and substitute them in Eq. (6) along with the RW and
breather solutions of (2). We then analyze in detail how
the nature of the RW and breather structures get modified by
the above two functions β(t) and R(t). Our analysis shows that
the amplitude parameter (r0) plays a vital role in the formation
of RWs, and the trap frequency and the effective scattering
length modify the structure of the RW and breather profiles,
allowing one the possibility of manipulating the RWs and
breathers in specific ways.

The paper is organized as follows. In the following section,
we construct RW solutions for time-independent and time-
dependent traps and study their characteristics in detail. We
observe that the second- and third-order RWs transform to
first-order RW-like structures when we tune a parameter
which appears in the harmonic traps (time-independent and
time-dependent traps). In Sec. III, we also construct RW
solutions with free parameters which allow us to split the
symmetric form solution into a multipeaked solution for (1)
and investigate how these RW structures get modified in the
plane wave background by increasing the strength of the
trap. In Sec. IV, we construct one-breather and two-breather
solutions of (1) and investigate their characteristics when we
alter the trap parameter. Finally, in Sec. V, we present a
summary of the results and our conclusions.

II. CHARACTERISTICS OF ROGUE WAVES

To begin, we consider the case in which the trap frequency
is a constant, that is, β(t)2 = const = β2

0 . A time-independent
trap frequency implies that the frequency does not change
with time and space. We then consider the trap frequency to be
time-dependent and investigate the associated RW solutions.

A. Time-independent trap

Substituting β(t)2 = β2
0 in the integrability condition (8),

we find that the time-dependent interaction term should be
of the form R(t) = sech (β0t + δ), where δ is an integration

constant. Plugging this expression in Eq. (6), we find

ψj (x,t) = r0

√
sech(β0t + δ) Uj (X,T )η(x,t), (9)

where

η(x,t) = exp

{
i

[
c1r

2
0 sech(β0t + δ)x

+
(
β2

0x2 − c2
1r

4
0

)
tanh(β0t + δ)

2β0

]}
,

and Uj (X,T ), j = 1,2,3, are the first-, second-, and third-
order RW solutions of the NLS equation (2) whose explicit
expressions are given in the Appendix [see Eqs. (A2), (A4),
and (A5)]. Also X(x,t) and T (t) have the forms as given in
Eqs. (7).

In Fig. 2 the first, second, and third columns represent the
density profiles of the first-, second-, and third-order RWs
obtained from (9). In this figure we present the formation of
RWs in cigar-shaped BECs. In the context of BECs, it is the
fluctuation in the density of atoms, localized in space and time,
which is what we observe as RWs. For instance, consider the
first-order RWs depicted in Figs. 2(a)–2(d). These may be
interpreted as follows: Atoms in the condensate, initially at
a constant density background, suddenly accumulate to form
a hump towards the center of the condensate at finite time
while leaving voids in the density which appear as troughs
in the RWs, depending on the initial state. The crest and
troughs reach their extrema as time progresses, and then the
condensate atoms spread out so as to recover the constant
density background in finite time, thus revealing the unstable
nature of RWs. Further, by tuning the amplitude parameter r0

in Eq. (9), we can visualize the formation and manipulation of
RWs. For example, when we increase the amplitude parameter
r0 smoothly from 0.5 to 1.2, we can observe in Figs. 2(a)–2(d)
the formation of more and more localized first-order RWs with
increasing amplitude. At r0 = 1.2 one can visualize a large
amplitude wave which is sufficiently localized both in space
and in time, which in turn confirms the formation of the first-
order RW in BEC. The formation of second and third-order
RWs is also demonstrated in Figs. 2(c)–2(l), respectively, for
the same set of parameter values of r0. From these figures we
infer that the time-dependent nonlinear interaction between
the atoms induces density fluctuations over the condensate,
which gets more and more localized both in space and in time
as we increase the order of the RW.

In order to confirm the existence of the RWs further, we
have also performed a direct numerical simulation of (1) with
the aid of the split-step Crank-Nicolson method using an initial
wave function which is the same as the function (9) and with
space step dx = 0.01 and time step dt = 0.001 [43]. In Fig. 3
we have presented the computer-generated density profile of
the first-order RW and the corresponding contour plot with
the parameters chosen as r0 = 1.2, c1 = 0.01, β0 = 0.1, and
δ = 0.01, which are same as that of Fig. 2(d). One can easily
observe a very good agreement between the numerical results
and the analytical predictions for the emergence of the RWs.
We have also verified numerically the presence of second- and
third-order RWs of (1), replicating Figs. 2.

Next we demonstrate how these localized structures vary
with respect to the trap parameter β0. Figure 4 displays the
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FIG. 2. (Color online) First, second, and third columns represent the formation of first-, second-, and third-order RWs in BECs for the
time-dependent nonlinearity coefficient R(t) = sech(β0t + δ) and time-independent trap frequency β(t)2 = β2

0 , obtained using expression (9).
The parameter r0 = 0.5 for panels (a), (e), and (i), 0.7 for (b), (f), and (j), 0.9 for (c), (g), and (k), and 1.2 for (d), (h), and (l). The other
parameters are c1 = 0.01, β0 = 0.1, and δ = 0.01.

first-order RW for the same nonlinearity management pa-
rameter R(t) = sech(β0t + δ) and the external trap frequency
β(t)2 = β2

0 . The nature of the first-order RW for β0 = 0.1 is

FIG. 3. (Color online) (a) First-order RW in BEC and (b) the
corresponding contour plot obtained by numerically solving Eq. (1)
through the split-step Crank-Nicolson method for the time-dependent
nonlinearity coefficient R(t) = sech(β0t + δ) and time-independent
trap frequency β(t)2 = β2

0 . The initial condition chosen corresponds
to the analytic solution of Fig. 2(d).

depicted in Fig. 4(a). When we increase the strength of the trap
parameter the density profiles corresponding to the first-order
RW become more and more localized in time as shown in
Figs. 4(b) and 4(c), respectively. The corresponding contour
plots are given in Figs. 4(d)–4(f).

Figure 5 displays the density profiles of the second-order
RWs for the same nonlinearity management parameter as a
function of β0. In Fig. 5(a) we display the second-order RW for
β0 = 0.1. When the strength of the parameter β0 is increased
to 1.2, the wave subcrests start to stretch as shown in Fig. 5(b).
The wave subcrests become more and more localized in time
when we increase the value of β0, and finally the second-order
RW attains a new structure as given in Fig. 5(c) for β0 = 5.0.
The resultant structure looks almost like a first-order RW;
see Fig. 4(c). Figures 5(d)–5(f) are the corresponding contour
plots.

We also observe similar effects in the third-order RW case as
well when we increase the value of β0. Figure 6 demonstrates
the changes in the third-order RW when we vary the interaction
strength. At β0 = 1.5, the third-order RW transforms into
the second-order RW-like structure as shown in Fig. 6(b).
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FIG. 4. (Color online) First-order RWs for R(t) = sech(β0t + δ) and β(t)2 = β2
0 . The parameter β0 is varied as (a) β0 = 0.1, (b) β0 = 1.2,

(c) β0 = 5.0. Panels (d)–(f) are their corresponding contour plots. The other parameters are fixed as r0 = 1.0, c1 = 0.01, and δ = 0.01.

When we increase the value of the parameter β0 to 5.0, one
obtains a first-order-like RW, which is displayed in Fig. 6(c).
These facts are also confirmed by the corresponding contour
plots, Figs. 6(d)–6(f). The aforementioned results reveal that
when we increase the strength of the trap parameter β0,
the second- and third-order RWs become more localized in
time and delocalized in space, approaching the structure of a
first-order RW. Thus the robustness of the density profiles can
be controlled by varying the strength of trap frequencies.

B. Time-dependent monotonous trap

Next we consider the time-dependent trap frequency in
the form β2(t) = (β2

0/2)[1 − tanh(β0t/2)]. For this choice,
relation (8) fixes the interatomic interaction term to be of

the form R(t) = 1 + tanh(β0t/2). The first-, second-, and
third-order RW solutions for this trap frequency and strength
of interatomic interaction are found to be

ψj (x,t) = r0

√
1 + tanh

(
β0

2
t

)
Uj (X,T ) η(x,t), (10)

where j = 1,2,3 and

η(x,t) = exp

[
i

(
β0sech 2

(
β0t

2

)
x2

4
[
1 + tanh

(
β0t

2

)] − c1r
2
0

[
1 + tanh

(
β0t

2

)]
x

+ c2
1r

4
0

{
β0t + 2 log

[
cosh

(
β0t

2

) − tanh
(

β0t

2

)]}
β0

)]
.

FIG. 5. (Color online) Second-order RWs for R(t) = sech(β0t + δ) and β(t)2 = β2
0 . The parameter β0 is varied as (a)β0 = 0.1, (b) β0 = 1.2,

(c) β0 = 5.0. Panels (d)–(f) are their corresponding contour plots. The other parameters are the same as in Fig. 4.
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FIG. 6. (Color online) Third-order RWs for R(t) = sech(β0t + δ) and β(t)2 = β2
0 . The parameter β0 is varied as (a) β0 = 0.1, (b) β0 = 1.5,

(c) β0 = 5.0. Panels (d)–(f) are their corresponding contour plots. The other parameters are the same as in Fig. 4.

The qualitative nature of the first-, second-, and third-
order RWs for R(t) = 1 + tanh(β0t/2) and β(t)2 = β2

0/2[1 −
tanh(β0t/2)] turns out to be the same as in the previous case
[Figs. 2(d), 2(h), and 2(l)] when the amplitude parameter r0 is
varied, and so we do not display the outcome here separately.
On the other hand, we identify interesting structures while
varying the parameter β0, which is discussed in the following.

In Fig. 7 we depict the first-order RW for these choices
of R(t) and β(t). When β0 = 0.1 the first-order RW is as
shown in Fig. 7(a) [see also Fig. 7(d) for the corresponding
contour plot]. By altering the value of the trap parameter β0

to 1.0, the structure of the first-order RW gets modified as
shown in Figs. 7(b) and 7(e). One can also see from Fig. 7

that, as the trap parameter β0 is increased, the RW gradually
becomes more localized in time and the condensate atoms
settle down to a slightly higher density background due to the
attractive nature of the potential. When β0 = 5.0 the modified
structure of the first-order RW is given in Figs. 7(c) and
7(f), where this feature is even more prominent. The density
profiles of the corresponding second-order RWs are presented
in Fig. 8. When we tune the parameter β0 from 0.1 upwards the
wave subcrests start to stretch. From the contour plots we can
observe that the stretches occur on one side of the RW only.
When we increase the value of β0 further the second-order
RW gets modified to a first-order RW-like structure, which
is demonstrated in Fig. 8(c). A similar transition has also

FIG. 7. (Color online) First-order RWs for R(t) = 1 + tanh(β0t/2) and β(t)2 = β2
0 /2[1 − tanh(β0t/2)]. The parameter β0 is varied as (a)

β0 = 0.1, (b) β0 = 1.0, and (c) β0 = 5.0. Panels (d)–(f) are the corresponding contour plots of (a)–(c). The other parameters are the same as in
Fig. 4.
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FIG. 8. (Color online) Second-order RWs for R(t) = 1 + tanh(β0t/2) and β(t)2 = β2
0 /2[1 − tanh(β0t/2)]. The parameter β0 is varied as

(a) β0 = 0.1, (b) β0 = 1.0, and (c) β0 = 5.0. Panels (d)–(f) are the corresponding contour plots of (a)–(c). The other parameters are the same
as in Fig. 4.

been observed in the third-order RW case as well, which
is illustrated in Fig. 9. The third-order RW acquires a new
structure as shown in Figs. 9(b) and 9(e) when we increase the
value of the parameter β0 from 0.1 to 1.0. At β0 = 5.0, we
observe that the third-order RW acquires a further modified
structure which is displayed in Figs. 9(c) and 9(f). Note the
similarity in the central part with that of the first-order RW as
given in Figs. 7(c) and 7(f).

C. Time-dependent periodic trap

In the case of the third choice we consider the time-
dependent periodic trap frequency to be of the form β(t)2 =
2β2

0 [1 + 3 tan2(β0t)] so that the strength of the time-dependent

periodic interatomic interaction turns out to be R(t) = 1 +
cos(2β0t). Substituting these two expressions in Eq. (6), we
find

ψj (x,t) = r0

√
1 + cos (2β0t) Uj (X,T ) η(x,t), (11)

where

η(x,t) = exp

(
i

{
β0 tan (β0t)x

2 + 2c1r
2
0 cos(β0t)

2x

− c2
1r

4
0 [12β0t + 8 sin(2β0t) + sin(4β0t)]

16β0

})
.

FIG. 9. (Color online) Third-order RWs for R(t) = 1 + tanh(β0t/2) and β(t)2 = β2
0 /2[1 − tanh(β0t/2)]. The parameter β0 is varied as

(a) β0 = 0.1, (b) β0 = 1.0, and (c) β0 = 5.0. Panels (d)–(f) are their corresponding contour plots. The other parameters are the same as in
Fig. 4.
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FIG. 10. (Color online) (a) First-order RW, (b) second-order RW, and (c) third-order RW for R(t) = 1 + cos(2β0t) and β(t)2 = 2β2
0 [1 +

3 tan2(β0t)]. Panels (d)–(f) are the corresponding contour plots of (a)–(c). The parameters are r0 = 1.0, β0 = 2.5, c1 = 0.01, and δ = 0.01.

Here Uj (X,T ), j = 1,2,3, are again the first-, second-,
and third-order RW solutions of the NLS equation [see
Eqs. (A2), (A4), and (A5)].

In Fig. 10 we present the density profiles of the first-,
second-, and third-order RWs (first row) and their corre-
sponding contour plots (second row) for the strength of
time-dependent interatomic interaction R(t) = 1 + cos(2β0t)
and time-dependent periodic trap frequency β(t)2 = 2β2

0 [1 +
3 tan2(β0t)]. Fixing the value of β0 at 2.5, from Fig. 10 we
see that the RW exists on a periodic background for the above
forms of R(t) and β2(t). Further we have also verified that
the behavior of the RWs as a function of β0 follows the same
qualitative picture discussed above for the other forms of R(t)
and β2(t).

III. CHARACTERISTICS OF TRIPLET RWS

Very recently it has been shown that one can generalize the
expressions for the higher-order RW solutions of the scalar
NLS equation (2) given in Appendix further by introducing
certain free parameters which allow one to split a symmetric
form RW solution into a multipeaked solution and that by
varying these free parameters one can extract certain novel
patterns of RWs [44]. The introduction of free parameters
decompose the higher-order RW solutions into n(n + 1)/2
first-order forms, where n is the order of the RW, however,
maintaining the symmetry of the higher-order solutions even
in their decomposed forms. Further the free parameters are
shown to determine the size and orientation of the first-order
solutions [44]. Triplets are symmetry preserving first-order
structures revealing the fact that the (higher-) second-order
RW solution is a family of three first-order rational solutions. It
is evident that the existence of triplets in an ocean corresponds
to three big waves on the water surface in a row or “three sister
waves” [45]. Inspired by such a possibility, in the following,
we consider the second- and third-order RW solutions of (1)
with suitable free parameters and analyze the symmetrical

structures that arise due to these free parameters when we vary
the strength of nonlinearity and the trap parameter. To begin
with, we confine our attention to the second-order RW solution.
In this case we have the following modified expressions [44]
for G2, H2, and D2 in Eq. (A3):

G2 = 12[3 − 16X4 − 24X2(4T 2 + 1) − 48lX − 80T 4

− 72T 2 − 48mT ],

H2 = 24{T [15 − 16X4 + 24X2 − 48lX − 8(1 − 4X2)T 2

− 16T 4] + 6m(1 − 4T 2 + 4X2)},
D2 = 64X6 + 48X4(4T 2 + 1) + 12X2(3 − 4T 2)2 + 64T 6

+ 432T 4 + 396T 2 + 9 + 48m[18m + T (9 + 4T 2

− 12X2)] + 48l[(18l + X(3 + 12T 2 − 4X2)]. (12)

Note that this RW solution now contains two free parameters,
l and m. The parameters l and m describe the relative
positions of the first-order RWs in the triplet. Substituting
the above expressions in Eqs. (9)–(11), for j = 2, we obtain
the corresponding second-order RW solutions to the GP
equation (1) with the free parameters l and m included.
When l = m = 0, this solution coincides with the one given
earlier [see Eq. (A4)], which contains one largest crest and
four subcrests with two deepest troughs [Fig. 2(h)]. When l

and m are not equal to 0, the second-order RW splits into
three first-order RWs. These waves emerge in a triangular
fashion (a triplet pattern). The three first-order RWs form
a triangular pattern with 120 degrees of angular separation
between them [44]. In Figs. 11(a)–11(c) we display the triplet
pattern for R(t) = sech(β0t + δ) and β(t)2 = β2

0 when l = 15
and m = 25. The triplet RW pattern for β0 = 0.1 is shown
in Fig. 11(a). When we increase the parameter β0 to 0.3
we observe that the triplet pattern has started to collapse as
shown in Fig. 11(b), and a complete collapse is observed
as in Fig. 11(c) when we increase the β0 value further
to 1.0. Figures 11(d)–11(g) represent the triplet pattern for
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FIG. 11. (Color online) Triplet RWs. (a)–(c) R(t) = sech(β0t + δ) and β(t)2 = β2
0 ; (d)–(f) R(t) = 1 + tanh(β0t/2) and β(t)2 = β2

0 /2[1 −
tanh(β0t/2)]; (g)–(i) R(t) = 1 + cos(2β0t) and β(t)2 = 2β2

0 [1 + 3 tan2(β0t)]. Further, in (a), (d), and (g) β0 = 0.1, in (b), (e), and (h) β0 = 0.3,
and in (c), (f), and (i) β0 = 1.0. The other parameters are l = 15, m = 25, r0 = 1.0, c1 = 0.01, and δ = 0.01.

R(t) = 1 + tanh(β0t/2) and β(t)2 = β2
0/2[1 − tanh(β0t/2)].

The formation of triplet RWs is shown in Fig. 11(d) when
β0 = 0.1. When we increase the value β0 to 0.3 one of the
single RWs in the triplet pattern vanishes, which is illustrated in
Fig. 11(e). By increasing the parameter β0 further we observe
that two first-order RWs are more localized in time, as shown
in Fig. 11(f). Figures 11(g)–11(i) represent the triplet pattern
for R(t) = 1 + cos(2β0t) and β(t)2 = 2β2

0 [1 + 3 tan2(β0t)].
The form of the triplet pattern for β0 = 0.1 is displayed in
Fig. 11(g). Here also when we increase the value of β0 we
observe the collapse of the triplet pattern in the periodic wave
background [see Fig. 11(i)].

We then move on to investigate the structure of the
third-order RW solution with four free parameters, l,m,g, and
h. The third-order RW solution with four free parameters is
much lengthier than the one without free parameters, and so
we do not give the explicit expression here and analyze the
results only graphically. Here also we analyze the solution with
respect to the free parameters. When l = m = g = h = 0, we
have the classical third-order RW solution, which is shown in
Fig. 2(l). It has one largest crest and six subcrests with the
two deepest troughs. For nonzero values of l, m, g, and h, the
third-order RW splits into six separated first-order RWs. When

we increase the value of the free parameters, the six first-order
RWs take new positions. The sextet pattern is displayed in
Figs. 12(a)–12(c) for R(t) = sech(β0t + δ) and β(t)2 = β2

0
when l = 10, m = 20, g = 500, and h = 500. For β0 = 0.1
the set of six first-order RWs is shown in Fig. 12(a). When we
increase the value of β0 to 0.25, three peaks disappear, and the
remaining peaks start to bend as shown in Fig. 12(b). When
we increase the value of β0 further the RWs bend in the plane
wave background as given in Fig. 12(c). Figures 12(d)–12(f)
represent six first-order RWs for the time-dependent nonlinear-
ity strength R(t) = 1 + tanh(β0t/2) and the time-dependent
external trap frequency β(t)2 = β2

0/2[1 − tanh(β0t/2)]. The
formation of six first-order RWs at β0 = 0.1 is shown in
Fig. 12(d). When we increase the strength of the parameter
β0 to 0.25, one of six first-order RWs vanishes, as seen in
Fig. 12(e). If we increase the value β0 further, three out of
six peaks bend in the plane wave background and eventually
collapse, which is shown in Fig. 12(f). Figures 12(g)–12(i)
represent the sextet pattern for R(t) = 1 + cos(2β0t) and
β(t)2 = 2β2

0 [1 + 3 tan2(β0t)]. The form of the six first-order
RWs for β0 = 0.05 is displayed in Fig. 12(g), and for the
further increase in β0, the modified structures in the periodic
wave background are as shown in Figs. 12(h) and 12(i).
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FIG. 12. (Color online) Sextet RWs. (a)–(c) R(t) = sech(β0t + δ) and β(t)2 = β2
0 ; (d)–(f) R(t) = 1 + tanh(β0t/2) and β(t)2 = β2

0 /2[1 −
tanh(β0t/2)]; (g)–(i) R(t) = 1 + cos (2β0t) and β(t)2 = 2β2

0 [1 + 3 tan2(β0t)]. Further, in (a), (d), and (g) β0 = 0.1; in (b), (e), and (h) β0 = 0.25;
and in (c), (f), and (i) β0 = 1.0. The other parameters are l = 10, m = 20, g = 500, h = 500, r0 = 1.0, c1 = 0.01, and δ = 0.01.

IV. CHARACTERISTICS OF BREATHERS

In the previous two sections we have analyzed how the RW
profiles get modified by the variations of the distributed coef-
ficients present in the variable coefficient NLS equation (1).
In this section we analyze how the breather structures get
modified in the condensates when we vary the strength of the
external trap parameter.

To begin, we consider the first-order breather solution of
the NLS equation (2), which is given in Ref. [46] and is a
special case of the GB solution (4),

Ũ1(X,T )

=
{

f 2 cosh[α(T − T1)] + 2i f v sinh[α(T − T1)]

2 cosh[α(T − T1)] − 2v cos[f (X − X1)]
− 1

}
× exp (iT ), (13)

where the parameters f and v are expressed in terms of
a complex eigenvalue (e.g., λ), that is, f = 2

√
1 + λ2 and

v = Im(λ), and X1 and T1 serve as coordinate shifts from the
origin. The real part of the eigenvalue represents the angle
that the one-dimensionally localized solutions form with the
T axis, and the imaginary part characterizes frequency of
periodic modulation. The parameter α (=f v) in Eq. (13) is
the growth rate of modulation instability. Substituting this
breather solution of the NLS equation into (9)–(11), we study
the underlying dynamics of (1).

For illustration, we consider the case R(t) = sech(β0t + δ)
and β(t)2 = β2

0 and plot the outcome in Fig. 13. The first row
in Fig. 13 represents an Akhmediev breather (AB) solution
for the eigenvalue λ = 0.6i and Ma breather (MB) solution

FIG. 13. (Color online) (a) AB for λ = 0.6i, (b) MB for λ =
1.4i when R(t) = sech(β0t + δ) and β(t)2 = β2

0 . (c) and (d) Their
corresponding contour plots. The other parameters are r0 = 1.0,
β0 = 0.01, c1 = 0.01, and δ = 0.01.
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FIG. 14. (Color online) Stretching of breathers. (a), (c), and (e)
AB with an eigenvalue λ = 0.6i; (b), (d), and (f) MB with λ = 1.4i

for the three different forms of R(t) discussed in the text. (a)–(d)
β0 = 0.8, (e) and (f) β0 = 1.5. The other parameters are r0 = 1.0,
c1 = 0.01, and δ = 0.01.

for λ = 1.4i, and the second row represents their contour
plots. The AB and MB solutions are localized in time and
space, respectively, as discussed in Sec. I. This is clearly
demonstrated in the two columns of Fig. 13. When we tune the
parameter β0, a new structure against a breather background
is obtained. To visualize this we fix the value of β0 to be
0.8. For this value a stretching occurs in space in the case
of AB [Fig. 14(a)], whereas in the case of MB [Fig. 14(b)]
the stretching occurs in time. Figures 14(c)–14(d) illustrate
the AB and MB profiles for the time-dependent nonlinearity
coefficient R(t) = 1 + tanh(β0t/2) and time-dependent trap
frequency β(t)2 = (β2

0/2)[1 − tanh(β0t/2)]. Here also we tune
the strength of the trap parameter β0 to 0.8 and observe that
stretching occurs over space in AB, which is depicted in
Fig. 14(c), and the MB gets more localized, and when t � 0 the
breather profile completely disappears, as shown in Fig. 14(d).
Our results reveal the fact that when we tune the parameter β0

in the obtained breather solution, the breather gets a modified
structure corresponding to a distortion of the breather profile.
Figures 14(e) and 14(f), respectively, represent the AB and
MB in the periodic background for R(t) = 1 + cos(2β0t) and
β(t)2 = 2β2

0 [1 + 3 tan2(β0t)] when β0 = 1.5.
Next, we proceed to construct the two-breather solutions

of (1) and analyze how these solutions are distorted by

the variations of modulation parameters. The two-breather
solution of the NLS equation is given by [47]

Ũ2(X,T ) =
[

1 + G̃2(X,T ) + iH̃2(X,T )

D̃2(X,T )

]
exp(iT ), (14)

where G̃2, H̃2, and D̃2 are given by

G̃2 = −(
k2

1 − k2
2

)[k2
1δ2

k2
cosh(δ1Ts1) cos(k2Xs2)

− (
k2

1 − k2
2

)
cosh(δ1Ts1) cosh(δ2Ts2)

− k2
2δ1

k1
cosh(δ2Ts2) cos(k1Xs1)

]
, (15a)

H̃2 = −2
(
k2

1 − k2
2

)[δ1δ2

k2
sinh(δ1Ts1) cos(k2Xs2)

− δ1δ2

k1
sinh(δ2Ts2) cos(k1Xs1)

− δ1 sinh(δ1Ts1) cosh(δ2Ts2)

+ δ2 sinh(δ2Ts2) cosh(δ1Ts1)

]
, (15b)

D̃2 = 2
(
k2

1 + k2
2

) δ1δ2

k1k2
cos(k1Xs1) cos(k2Xs2)

+ 4δ1δ2(sin(k1Xs1) sin(k2Xs2)

+ sinh(δ1Ts1) sinh(δ2Ts2))

− (
2k2

1 − k2
1k

2
2 + 2k2

2

)
cosh(δ1Ts1) cosh(δ2Ts2)

− 2
(
k2

1 − k2
2

)[ δ1

k1
cos(k1Xs1) cosh(δ2Ts2)

− δ2

k2
cos(k2Xs2) cosh(δ1Ts1)

]
, (15c)

where the modulation frequencies, kj = 2
√

1 + λ2
j , j = 1,2,

are described by the (imaginary) eigenvalues λj . In the above
expressions, Xj , Tj , j = 1,2, represent the shifted point of

origin, δj (=kj

√
4 − k2

j /2) is the instability growth rate of
each component, and Xsj = X − Xj and Tsj = T − Tj are
shifted variables.

With two purely imaginary eigenvalues, λj , j = 1,2,
solution (14) is capable of describing a variety of possible
second-order breather structures. The solution includes ABs,
MBs, and the intersection of AB and MB solutions for
certain combinations of eigenvalues. For example, when the
imaginary parts of both eigenvalues Im(λj ), j = 1,2, lie
between 0 and 1, we obtain the ABs. On the other hand, when
both of them are greater than one [Im(λj ) > 1] we obtain
the MBs, and in the mixed possibility case, that is, one of
the eigenvalues is less than one [Im(λ1) < 1] and the other
eigenvalue [Im(λ2) > 1) is greater than one, we obtain the
intersection of AB and MB solutions.

Substituting the two-breather NLS solution (14) in Eqs. (9)–
(11) we obtain the general two-breather solution of (1).
Figure 15 displays the evolution of the two-breather solution
of (1) for R(t) = sech(β0t + δ) and β(t)2 = β2

0 = (0.01)2 with
imaginary eigenvalues. To obtain the ABs from (14) we con-
sider the situation where the magnitudes of both eigenvalues
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FIG. 15. (Color online) (a) Two AB profiles for λ1 = 0.55i and λ2 = 0.75i with T1 = −3 and T2 = 3. (b) Two ABs without time shifts.
(c) AB-RW profile for λ1 = 0.55i and λ2 = 0.99i. (d) Two MBs for λ1 = 1.3i and λ2 = 1.4i with X1 = −3 and X2 = 3. (e) Two MBs without
space shifts and (f) the intersection of AB and MB for λ1 = 0.5i and λ2 = 1.3i for R(t) = sech(β0t + δ) and β(t)2 = β2

0 . The other parameters
are the same as in Fig. 4.

λ1 and λ2 are less than 1 (λ1 = 0.55i and λ2 = 0.75i). One
AB developing with a time delay after another is shown in
Fig. 15(a), while in Fig. 15(b) we present the case where there
is no such time delay. In Fig. 15(c) we depict the case when

one AB along with a RW coexist for the choice λ1 = 0.55i

and λ2 = 0.99i. When we take the eigenvalues λ1 and λ2 to
be 1.3i and 1.4i, respectively, we obtain two MB solutions.
Similarly the evolution of the two MBs with and without spatial
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FIG. 16. (Color online) Distortion of two-breather profiles. (a), (d), and (g) Two ABs with λ1 = 0.55i and λ2 = 0.75i; (b), (e), and (h) the
intersection of AB-MB profiles with λ1 = 0.5i and λ2 = 1.3i; and (c), (f), and (i) two MBs with λ1 = 1.3i and λ2 = 1.4i. The trap parameter
β0 is chosen as (a) 0.15, (b), and (e) 0.5, (c) and (f) 0.2, (d) 1.5 and (g)–(i) 0.7. The other parameters are r0 = 1.0, c1 = 0.01, and δ = 0.01.
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delay is shown in Figs. 15(d) and 15(e), respectively. We also
observe that the distance between the MBs increases when we
set both eigenvalues to be nearly equal, for example, λ1 = 1.3i

and λ2 = 1.31i, which is not displayed here. When we take
the eigenvalues as λ1 = 0.5i and λ2 = 1.3i, the AB intersects
with the MB, which is displayed in Fig. 15(f). When we tune
the strength of the trap parameter β0 to 0.15, both ABs get
stretched in the plane wave background, which is demonstrated
in Fig. 16(a). When β0 = 0.5, in the intersection of AB and
MB solutions we observe that the AB gets a bending structure
while the MB fully disappears in the plane wave background,
which is shown in Fig. 16(b). In Fig. 16(c) we note that both
MBs develop a bending structure in the plane wave background
when β0 = 0.2. Figures 16(d)–16(f) display the evolution of
the two-breather solution of (1) for R(t) = 1 + tanh(β0t/2) and
β(t)2 = β2

0/2[1 − tanh(β0t/2)] with the imaginary eigenval-
ues. When β0 = 0.15 one of the ABs gets stretched, which is
not shown here, and on further increase of the value of β0 to 1.5,
one of the ABs gets annihilated and the other AB bends in the
plane wave background, which is demonstrated in Fig. 16(d).
When β0 = 0.5 the intersection of AB-MB structures is as
shown in Fig. 16(e). In Fig. 16(f) we observe that both
MBs get a bending structure in the plane wave background.
Figures 16(g)–16(i) show the evolution of the two-breather
solution of (1) for R(t) = 1 + cos(2β0t) and β(t)2 = 2β2

0 [1 +
3 tan2(β0t)] with the imaginary eigenvalues. Here also when
we increase the value of β0 we observe the collapse of the
two-breather solution in the periodic wave background.

V. CONCLUSION

In this work, we have constructed higher-order RW so-
lutions with and without free parameters for the quasi-one-
dimensional GP equation with time-dependent interatomic
interaction and an external trap through the similarity trans-
formation technique. By mapping the variable coefficient NLS
equation onto the constant coefficient NLS equation we have
derived these solutions. We have shown that the mapping
can be done when the external trap and the nonlinearly
interatomic interaction of atoms satisfy a constraint. From the
known higher-order RW and breather solutions of the constant
coefficient NLS equation, we have derived the solutions
of (1). In our analysis, we have considered the harmonic trap
frequency in three different forms: (i) the time-independent
expulsive trap, (ii) time-dependent monotonous trap, and
(iii) time-dependent periodic trap, and correspondingly fixed
the effective scattering length. We then studied the charac-
teristics of the constructed RW solutions in detail. We have
observed that the second- and third-order RWs transform to
first-order RW-like structures when a parameter appearing
in the harmonic trap (time-independent and time-dependent
traps) is varied. We have then analyzed the characteristics of
triplet and sextet patterns of matter RWs for (1). We have also
constructed one-breather and two breather solutions of (1). We
have investigated how these periodic localized waves change in
the plane wave background when we tune the trap parameter
in the obtained breather solutions. Our results may provide
possibilities to manipulate RWs experimentally in a BEC
system.

ACKNOWLEDGMENTS

K.M. thanks the University Grants Commission (UGC-
RFSMS), Government of India, for providing a research
fellowship. The work of P.M. forms part of the Department
of Science and Technology (Ref. No. SR/S2/HEP-03/2009)
and Council of Scientific and Industrial Research (Ref. No.
03(1186)/10/EMR-II), Government of India-funded research
projects. The work of M.S. forms part of a research project
sponsored by NBHM, Government of India. The work forms
part of an IRHPA project and a Ramanna Fellowship project of
M.L., sponsored by the Department of Science and Technology
(DST), Government of India, and he is also supported by a
DAE Raja Ramanna Fellowship.

APPENDIX

In the absence of the trap, and the nonlinearity strength
R(t) is equal to one, Eq. (1) reduces to the standard NLS
equation (2). Several localized and periodic structures of
standard NLS are documented in the literature [21,46,47].
Equation (2) admits an N th-order RW solution. We present the
RW solution of the NLS equation in the following form [21]:

Uj (X,T ) =
[

(−1)j + Gj (X,T ) + iT Hj (X,T )

Dj (X,T )

]
exp(iT ),

(A1)

where j = 1,2, . . . ,Gj ,Hj , and Dj are polynomials in the
variables T and X.

For the first-order (j = 1) RW solution G1 = 4, H1 =
8, and D1 = 1 + 4X2 + 4T 2. From (A1) we get U1 =
(4 1+2iT

1+4X2+4T 2 − 1) exp(iT ). For convenience we multiply this
expression by −1 = exp[iπ ] and consider the solution in the
form

U1(X,T ) =
(

1 − 4
1 + 2iT

1 + 4X2 + 4T 2

)
exp[iT ]. (A2)

We use only this form of expression in our analysis. This
solution is same as the one given in Eq. (5) when k = 0, ω = 1
and ρ0 = 1. For the second-order (j = 2) RW solution, the
function G2, H2, and D2 turn out to be [21]

G2 = 3
8 − 3X2 − 2X4 − 9T 2 − 10T 4 − 12X2T 2,

(A3)
H2 = 15

4 + 6X2 − 4X4 − 2T 2 − 4T 4 − 8X2T 2

and

D2 = 1
8

(
3
4 + 9X2 + 4X4 + 16

3 X6 + 33T 2 + 36T 4

+ 16
3 T 6 − 24X2T 2 + 16X4T 2 + 16X2T 4

)
.

Then we get

U2(X,T ) =
[

1 + G2 + iT H2

D2

]
exp(iT ). (A4)

The profiles of second-order RW and third-order RW of the
constant coefficient NLS equation are shown in Fig. 17. For
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FIG. 17. (Color online) Profiles: (a) Second-order RW and
(b) third-order RW of the standard NLS equation.

the third-order (j = 3) RW solution, we have

U3(X,T ) =
[

− 1 + G3 + iT H3

D3

]
exp(iT ), (A5)

where

G3(X,T ) = g0 + (2T )2g2 + (2T )4g4 + (2T )6g6

+ (2T )8g8 + (2T )10g10, (A6)

with

g0 = 1 − (2X)2 − 2

3
(2X)4 + 14

45
(2X)6 + (2X)8

45
+ (2X)10

675
,

g2 = −3 − 20(2X)2 + 2

3
(2X)4 − 4

45
(2X)6 + (2X)8

45
,

g4 = 2

[
−17

3
+ 5(2X)2 − (2X)4

32
+ (2X)6

33

]
, (A7)

g6 = 2

45

[
73 + 14(2X)2 + 7

3
(2X)4

]
,

g8 = 1

15
(11 + (2X)2), g10 = 11

675

and

H3(X,T ) = h0 + (2T )2h2 + (2T )4h4 + (2T )6h6

+ (2T )8h8 + (2T )10h10, (A8)

with

h0 = 2

[
7 + 7(2X)2 − 2(2X)4 − 2

32
(2X)6

− (2X)8

45
+ (2X)10

675

]
,

h2 = 2

3

[
−11 − 28(2X)2 − 2(2X)4 − 28

45
(2X)6 + (2X)8

45

]
,

(A9)

h4 = 4

15

[
−107 + 19(2X)2 − 7

3
(2X)4 + (2X)6

32

]
,

h6 = 4

45

[
−29 − 2(2X)2 + (2X)4

3

]
,

h8 = 2

33

[
1 + (2X)2

5

]
, h10 = 2

675
.

The denominator is represented by

D3(X,T ) = d0 + (2T )2d2 + (2T )4d4 + (2T )6d6 + (2T )8d8

+ (2T )10d10 + (2T )12d12, (A10)

where

d0 = 1

23

[
1 + 6(2X)2 + 5

3
(2X)4 + 52

45
(2X)6 + (2X)8

15

+ 2

675
(2X)10 + (2X)12

2025

]
,

d2 = 23 − 9(2X)2 + 10

3
(2X)4 + 2

15
(2X)6

− (2X)8

45
+ (2X)10

675
,

(A11)

d4 = 2

[
71 + 116

3
(2X)2 − 2

3
(2X)4 − 4

45
(2X)6 + (2X)8

135

]
,

d6 = 32

3

[
17

3
+ 5(2X)2 + (2X)4

45
+ (2X)6

135

]
,

d8 = 32

15

[
83

3
+ 2(2X)2 + (2X)4

32

]
,

d10 = 28

225

[
7 + (2X)2

3

]
, d12 = 29

2025
.
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