
PHYSICAL REVIEW E 90, 062817 (2014)

Correlations between weights and overlap in ensembles of weighted multiplex networks

Giulia Menichetti,1 Daniel Remondini,1 and Ginestra Bianconi2
1Department of Physics and Astronomy and INFN Sez. Bologna, Bologna University, Viale B. Pichat 6/2 40127 Bologna, Italy

2School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
(Received 18 July 2014; published 31 December 2014)

Multiplex networks describe a large number of systems ranging from social networks to the brain. These
multilayer structure encode information in their structure. This information can be extracted by measuring the
correlations present in the multiplex networks structure, such as the overlap of the links in different layers. Many
multiplex networks are also weighted, and the weights of the links can be strongly correlated with the structural
properties of the multiplex network. For example, in multiplex network formed by the citation and collaboration
networks between PRE scientists it was found that the statistical properties of citations to coauthors differ from the
one of citations to noncoauthors, i.e., the weights depend on the overlap of the links. Here we present a theoretical
framework for modeling multiplex weighted networks with different types of correlations between weights and
overlap. To this end, we use the framework of canonical network ensembles, and the recently introduced concept
of multilinks, showing that null models of a large variety of network structures can be constructed in this way. In
order to provide a concrete example of how this framework apply to real data we consider a multiplex constructed
from gene expression data of healthy and cancer tissues.
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I. INTRODUCTION

Recently, multilayer networks [1,2] describing systems as
different as social networks [3], collaboration networks [4],
transportation networks [5,6], climate networks [7], or the
brain [8,9] are attracting large interest. In fact it has become
clear that in order to understand the complexity of a large
variety of systems is not enough to consider single networks,
but it is necessary to describe the complex set of interactions
between different networks by adopting the framework of mul-
tilayer networks. For example, the biological functionality of
the cells can be described by a multilayer network involving at
least metabolic, protein interaction and transcription network
layers. Similarly, social networks cannot be fully understood
if the nature of the different ties is not taken into account
distinguishing among friendship, collaboration, family ties,
and so on. Multilayer networks are formed by a set M of
layers constituted by single networks and by interlinks linking
the nodes in the different layers. Multilayer networks can
be distinguished in multiplex networks [3–7] and interacting
networks of networks [10,11]. In interacting networks of
networks the nodes in the different layers represent different
elements of the system. For example, in the cell, metabolites,
proteins, and transcription factors remain distinct biological
entities. In a multiplex, instead, the same set of nodes forms M

networks, one in each layer corresponding to different types
of interactions. Examples of multiplex networks are social
networks [3] where people can interact in different ways,
transportation [5,6] networks where the same location can be
reached by different means of transportation, or collaboration
networks [4,6]. Here we will provide a multilayer network
analysis of a gene network extracted using the gene expression
of a pool of cancer patients and a pool of healthy subjects
respectively for each layer.

Recently large attention has been given to multiplex
network structure [3–7,12–19] and dynamics [20–23]. In
particular it has been found that multiplex networks encode in
their structure important correlations: we can distinguish, for

example, between degree correlations [14,15,17] determining
whether a hub in a network is also an hub in another
network, overlap determining to what extent any two nodes
of the network are linked in several networks at the same
time [3,5,16,19], or pairwise activity correlations measuring
if the presence of a node in one network is correlated with
the presence of another node in the same network [6]. Many
multiplex networks are also weighted, i.e., the links between
the nodes not only are distinguished by the type of interaction
linking the nodes but also by the intensity of these interactions.
In Ref. [4] different multiplex networks have been extracted
from the American Physical Society data set in order to
investigate the correlation between the weights of the links
and the overlap of the links in different layers. In particular,
the multiplex networks formed by the PRE authors in which the
scientists are linked if they collaborated with each other and if
they cite each other has been shown to display a statistical
significant difference between the way scientists cite their
collaborators and the way scientists cite noncollaborators. This
result shows that in this as in other systems it is possible
that the weights of the links are correlated with the pattern
of overlap observed between the links of different layers.
It is therefore very important to propose maximal entropy
weighted multiplex networks (based on the theory of network
ensembles [24–37]) models that can be used to generate
multiplex networks with different types of correlations. These
models, on one side, can be used to simulate dynamical
processes on different multiplex network topologies, and, on
the other side, similarly to what happens for single networks,
their entropy [26,34] can be used to evaluate the information
content of some of their properties [4,38]. Here we provide
the theoretical framework to generate null models for these
weighted multiplex networks, using the combined tools of
canonical network models (exponential random graphs) and
the recently introduced concept [16] of multilinks that is
able to distinguish between different patterns of overlap
of the links in the multiplex network. In fact, in order to
reveal the correlations between the weights distribution and
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overlap of the links it is fundamental to consider the weighted
properties of the multilinks indicated by the multistrength
and inverse multiparticipation ratio. The multilinks enumerate
exhaustively all the types of connections between two nodes
of a multiplex network. Therefore the total number of possible
multilinks grows exponentially with the number of layers M .
For this reason the full multilink characterization of a multiplex
network is numerically feasible only if the number of layers
M is finite. To overcome this shortcoming here we define
the ν multilinks that are only characterized by their overlap
multiplicity ν, i.e., the ν multilinks are all the multilinks
that connects two nodes of the multiplex with ν links in ν

different layers. Building weighted multiplex ensembles with
given properties of the ν multilinks allows the description and
the realization of multiplex networks with large number of
layers M .

The paper is structured as follows. In Sec. II we introduce
the weighted multiplex networks and their weighted multilinks
properties, in Sec. III we describe an application to real tran-
scriptomics data, in Sec. IV we introduce weighted multiplex
network ensembles, in Sec. V we provide the description of
the most relevant weighted multiplex ensembles, considering
the case of uncorrelated and correlated ensembles, in Sec. VI
we show how this framework can be applied to construct null
models of the biological case study, and, finally, in Sec. VII
we give the conclusions.

II. WEIGHTED MULTIPLEX NETWORKS

A. Definition

A weighted multiplex is formed by N nodes connected by
M weighted networks Gα , with α = 1, . . . ,M . A multiplex
can be represented as �G = (G1,G2, . . . ,Gα, . . . GM ), where
each network Gα is fully described by the weighted adjacency
matrix of elements aα

ij , with aα
ij > 0 if there is a link of weight

aα
ij between node i and node j in layer α, otherwise we have

aα
ij = 0.

In order to simplify the treatment of the weighted multiplex,
we suppose that the weight of the link between any pair of
nodes (i,j ), aα

ij can only assume integer values. This is a
legitimate assumption because in a large number of weighted
multiplexes the weights of the links can be considered as
multiples of a minimal weight. Moreover, for the sake of
simplicity we consider only networks without tadpoles and
with a symmetric adjacency matrix {aα

ij }, i.e., undirected
networks. The generalization of our approach to directed
multiplex networks is straightforward.

Since each layer of the multiplex is a weighted network, we
can introduce the so-called total strength, Sα , that takes into
account the total weight of the links in layer α. The expression
for Sα is

Sα =
∑
i<j

aα
ij . (1)

B. Interaction between the weights and the topology
of single layers

Each single layer α of the multiplex network is a weighted
network [39,40], namely, a network with heterogeneous inter-
actions between the nodes, that can show interesting weights-

topology correlations. These correlations can be revealed by
measuring the following three quantities:

(i) the degree kα
i of a node i in layer α,

(ii) the strength sα
i of node i in layer α;

(iii) the inverse participation ratio Yα
i of node i in layer α.

These quantities can be expressed in terms of the adjacency
matrix elements respectively as

kα
i =

∑
j �=i

θ
(
aα

ij

)
, (2)

where the function θ (x) = 1 if x > 0, otherwise θ (x) = 0;

sα
i =

∑
j �=i

aα
ij (3)

and

Yα
i =

∑
j �=i

(
aα

ij

sα
i

)2

. (4)

Moreover, here we introduce for further convenience the
quantity uα

i ,

uα
i = Yα

i

(
sα
i

)2 =
∑
j �=i

(
aα

ij

)2
, (5)

which indicates the sum of the squares of the weights
incident to a node. Similarly to what happens for single
networks [39,40], in any given layer α, the strength sα

i of a node
indicates the sum of the weights of the links of node i in layer α,
while the inverse participation ratio Yα

i indicates how unevenly
the weights of the links of node i in layer α are distributed.
The inverse of Yα

i has a range between 1 and kα
i . The extremes

of the interval correspond respectively to an uniform weight
distribution across the links of the node i in the layer α, i.e.,
aα

ij = sα
i /kα

i , which means (Yα
i )−1 = kα

i , and to the opposite
situation, i.e., (Yα

i )−1 ≈ 1, when one particular link of the node
i has a prevailing weight, i.e., aα

ir � aα
ij for every j �= r . In

these terms Yα
i characterises the effective number of links of

node i in layer α.
It is a standard procedure in network theory to evaluate the

averages of the strength and the partition ratio of the weights of
the links conditioning on the degree of the node. In a multiplex,
we will then consider the following quantities:

sα(k) = 〈
sα
i δ

(
kα
i ,k

)〉 = 1

Nα
k

∑
i

sα
i δ

(
kα
i ,k

)
,

(6)

Yα(k) = 〈
Yα

i δ
(
kα
i ,k

)〉 = 1

Nα
k

∑
i

Yi,αδ
(
kα
i ,k

)
,

where Nα
k indicates the number of nodes of degree k in layer

α. When considering sα
k , similarly to what happens in general

on single networks, we can expect a scaling of the type

sα(k) ∝ kβα , (7)

with βα � 1. We can distinguish [39] between two main
scenarios depending on the value of the exponent. For βα = 1
the average strength of nodes of degree k increases linearly
with k. This means that the average weight of the links incident
to a node does not depend on the degree of the node, at least if
we consider only distinguishable links (for a treatment of the
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case of undistinguishable links see Refs. [32,33]). For βα > 1
hubs tend to have in average links with greater weight than
low connectivity nodes. In a multiplex, we might have that
the weights in the different layers are distributed differently.
Therefore we might observe in some layers a superlinear
growth of the sα(k) with the degree in that layer, while in other
layers we can observe a linear dependence of the strengths on
the degree. When considering single weighted networks it has
been observed that in many cases the inverse participation ratio
scales as an inverse power law of the degree of the node [40].
In the multiplex scenario, this would imply

Yα(k) ∝ 1

kξα
, (8)

where the exponent ξα � 1 might change from one layer
to another layer. The exponent ξα = 1 indicates that all the
weights incident to any node are equal, while the exponent
ξα = 0 would imply the opposite scenario where for every
node, one of the weights incident to them is significantly higher
than the other weights.

C. Weights-topology correlations in multiplex networks
with overlap: multilink �m, multistrength �m,

and inverse multipartition ratio �m
It has been recently shown [16] that multilinks are the most

natural way to describe and generate multiplex networks with
overlap of the links. We say that two nodes are connected by
a multilink �m = (m1,m2, . . . ,mα, . . . ,mM ) with mα = 0,1 if
they are connected in every layer α such that mα = 1 and not
connected in every layer α, where mα = 0. In Fig. 1 we show
an example of a multiplex formed by two layers where each
pair of nodes is linked by a given multilink. In order to indicate
if a multilink �m is present or not between two given nodes i and
j we can introduce a multiadjacency matrix A �m with elements
A �m

ij equal to 1 if there is a multilink �m between node i and
node j and zero otherwise.

In terms of the weighted adjacency matrices aα of the
multiplex the elements A �m

ij of the multiadjacency matrix A �m

FIG. 1. (Color online) Schematic view of a duplex (multiplex
formed with two networks where any pair of nodes is linked by a
different multilink �m).

are given by

A �m
ij =

M∏
α=1

[
θ
(
aα

ij

)
mα + (

1 − θ
(
aα

ij

))
(1 − mα)

]
, (9)

where θ (x) = 1 if x > 0, otherwise θ (x) = 0. The multilink
�m = �0 between two nodes represents the situation in which in
all the layers of the multiplex the two nodes are not directly
linked.

The multiadjacency matrices are 2M but there are only
2M − 1 independent multiadjacency matrices because the
normalization condition ∑

�m
A �m

ij = 1 (10)

is satisfied for any pair of nodes (i,j ). Furthermore, since the
multiadjacency matrices have elements A �m

ij = 0,1, the above
condition implies that between any pair of nodes (i,j ) there can
be only one multilink �m. We indicate the type of this multilink
as

�m = �mij = (
θ
(
a1

ij

)
,θ

(
a2

ij

)
, . . . , θ

(
aα

ij

)
, . . . ,θ

(
aM

ij

))
, (11)

where θ (x) = 1 if x > 0 and otherwise θ (x) = 0. The mul-
tilink �m is characterized by the overlap multiplicity ν( �m) =∑

α mα , indicating that the multilink �m links two pair of nodes
by ν( �m) links. Using the multiadjacency matrices it is possible
to define the multidegree �m, k �m

i of node i, given by

k �m
i =

∑
j �=i

A �m
ij , (12)

indicating how many multilinks �m are connected to node i.
Consider, for example, the social multiplex network where
people interact by two means of communication (mobile phone
and email). The multidegree k

(1,1)
i indicates the number of

friends of node i that communicate with node i both by email
and mobile phone, k

(1,0)
i indicates the number of friends of

node i that only communicate with node i by mobile phone,
and k

(0,1)
i indicates the number of friends of node i that only

communicate with node i by email.
For a given weighted multiplex network we can study the

relation between weights and multilinks introducing, at first,
the total multistrength �m, S �m

α in a layer α such that mα > 0 as

S �m
α =

∑
i<j

aα
ijA

�m
ij . (13)

Given a particular multilink �m, this quantity indicates the total
weight in layer α of multilinks �m and it is properly defined
whenever mα > 0. The number of total multistrengths �m that
we can define in a multiplex of M layers is given by K =
M2M−1. In fact, we have that the total multistrength S �m

α is
nontrivial only for multilinks �m, where mα = 1, while for the
remaining layers β the value of mβ can be either zero or 1.

Moreover, we can define the multistrength �m, s �m
i,α of node i

in layer α such that mα > 0, as

s �m
i,α =

∑
j �=i

aα
ijA

�m
ij (14)
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and the inverse multiparticipation ratio �m, Y �m
i,α of node i in

layer α such that mα > 0 as

Y �m
i,α =

∑
j �=i

(
aα

ijA
�m
ij∑

r aα
irA

�m
ir

)2

. (15)

Using the same argument used to evaluate the number of total
multistrengths �m, it is easy to prove that the number of local
multistrength �m and the number of multiparticipation ratio �m
are given by N · M · 2M−1. Moreover, here we introduce u

α, �m
i ,

the sum of the squares of the weights incident to a node i in
layer α and belonging to a certain type of multilink, as

u �m
i,α = Y �m

i,α

(
s �m
i,α

)2 =
∑
j �=i

(
aα

ijA
�m
ij

)2
. (16)

In multiplex weighted networks, it was found that multi-
strengths and inverse multipartition ratio can have a different
scaling behavior depending on the type of multilink. In fact,
the average quantities

s �m
α (k �m) = 〈

s
α, �m
i δ

(
k �m
i ,k �m)〉

,
(17)

Y �m
α (k �m) = 〈

Y
α, �m
i δ

(
k

α, �m
i ,k �m)〉

,

are expected to scale like

s �m
α (k �m) ∝ (k �m)βα, �m,

(18)
Y �m

α (k �m) ∝ (k �m)−ξα, �m,

with βα, �m � 1 and positive ξα, �m � 1. The significance depen-
dence of these exponents as a function of the multilink type �m,
i.e., on the presence of a certain pattern of overlap or absence
of it, indicates the rich interplay between the topology of the
weighted networks and their weights. For example, in the
CoCi-PRE duplex described in Ref. [4], formed by authors of
PRE that in one layer are connected by collaborations and on
the other layer are connected by citations of each other work,
the weight-topology correlation is revealed by the different
exponent of the multistrength in the citation network calculated
either in presence of the overlap of the links in the two layers
on in absence of it. This reveals the tendency of scientific
authors of PRE to cite more the scientists of high multidegree
that are their co-authors than the scientists with the same
multidegree that are not their coauthors. These correlations
between weights and overlap patterns are a very general type of
correlation likely to exist in large set of multiplex data set with
significant overlap of the links. It is therefore very important
to be able to construct null models for multiplex networks
with the desired level of correlations between weights and
overlap of the links, i.e., with given weighted properties of the
multilinks.

D. Weights-topology correlations in multiplex networks
with overlap: ν-total strength, the ν-multistrength sequence,

and the ν-inverse multiparticipation ratio

Using multilinks �m can be numerically viable only for
weighted multiplex networks with a number M of layers such
that M � log(N ). As long as this condition is not met, it is
more efficient to study the properties of the ν multilinks. The
ν multilinks are any type of multilink �m with multiplicity of

overlap ν( �m) = ν. Therefore in a multiplex social networks,
where the layers correspond to the means of communication
between two people, node i and node j are linked by a ν

multilink if they can communicate by a maximum of ν means
of communication, independently on the identity of these.
For example, two people that communicate in Twitter and
Facebook are linked by a ν multilink with ν = 2, and the same
is true for two people interacting by mobile phone and email.

We can therefore define the ν-multiadjacency matrices Aν

with elements Aν
ij = 0,1 given by

Aν
ij =

∑
�m|ν( �m)=ν

A �m
ij

=
∑

�m|ν( �m)=ν

M∏
α=1

[
θ
(
aα

ij

)
mα + (

1 − θ
(
aα

ij

))
(1 − mα)

]
,

and ν = 0,1,2 . . . ,M . The ν-adjacency matrices are not all
independent, since between any two nodes there can be just
one type of ν multilink, i.e.,

M∑
ν=0

Aν
ij = 1. (19)

Therefore we can consider as independent variables only the ν-
adjacency matrices corresponding to the nontrivial ν multilinks
with ν = 1,2 . . . ,M . Moreover, we call with νij the type of ν

multilink connecting node i with node j , i.e., we have

Aνij

ij = 1 (20)

for all pairs of nodes (i,j ). The number of distinct and
nontrivial ν multilinks with ν �= 0 is given by M , hence the ν

properties of the networks are only polynomial with M while
the full multilink properties are growing exponentially with
M . Modelling networks with given ν multilinks properties
is therefore convenient when considering multiplex networks
with large number of layers M . Given the definition of
ν-multiadjacency matrices it is straightforward to define the ν

multidegree kν
i of node i, given by

kν
i =

N∑
j=1

Aν
ij , (21)

indicating the number of neighbors of node i that
are connected to node i by a ν multilink, with ν =
0,1,2 . . . ,M . If we consider the weighted properties of
the ν multilink for a given layer α, we can define
the ν-total strength Sν

α , the ν-multistrength sequence{sν
i,α},

and the ν-inverse multi participation ratio {Y ν
i,α}, as in the

following:

Sν
α =

∑
i<j

aα
ijA

ν
ij ,

sν
i,α =

∑
j �=i

aα
ijA

ν
ij , (22)

Y ν
i,α =

∑
j �=i

(
aα

ijA
ν
ij∑

r aα
irA

ν
ir

)2

. (23)
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Moreover, we can introduce the quantities u
α,ν
i , indicating

the sum of the squares of the weights incident to a node i in
layer α and belonging to a certain type of ν multilink, as

uν
i,α = Y ν

i,α

(
sν
i,α

)2 =
∑
j �=i

(
aα

ijA
ν
ij

)2
. (24)

Similarly to what we described in the previous paragraph,
we can evaluate the correlations between the weights and
the pattern of overlap between the links by measuring the
exponents βα,ν and ξα,ν , determining the scaling

sν
α(kν) ∝ (kν)βα,ν ,

(25)
Y ν

α (kν) ∝ (kν)−ξα,ν ,

of the average quantities sν
α(kν) and Y ν

α (kν) given by

sν
α(kν) = 〈

s
α,ν
i δ

(
kν
i ,k

ν
)〉
,

(26)
Y ν

α (kν) = 〈
Y

α,ν
i δ

(
k

α,ν
i ,kν

)〉
.

III. A BIOLOGICAL CASE STUDY

Here we analyze a data set of gene expression profiles from
human cancer and healthy subjects, using the framework of
multilayer networks. For this analysis, we construct a duplex
based on whole-genome gene expression data, as taken from
Geo Omnibus Database ([41], GSE4183 data set). From this
data set, a subset of 2835 genes was chosen, known to have
a clear biological role (i.e., belonging to known functional
pathways as annotated in the KEGG database [42]) and
with potential interactions between each other (as annotated
in PathwayCommons Protein-Protein Interaction network
database [43]). In one layer, the network is reconstructed
from gene expression correlation of M1 = 8 normal colon
samples, while in the other layer M2 = 15 cancer samples
are considered. Nonparametric Kendall’s τ is used in order to
evaluate the correlation between genes, and in each layer a
network is obtained by a thresholding on the absolute value of
τ that keeps about ≈10% of the possible links (τ1 = 0.5 and
τ2 = 0.4 for normal and cancer samples, respectively).

We also associate a weight aα
ij to each duplex link, obtained

from gene expression values of the normal and cancer groups.
Namely we calculate the average value over all samples of
each gene in both layers,

〈
eα
i

〉 = 1

Mα

Mα∑
k=1

eα
ik, (27)

with α = 1,2 indicating the two layers of the network (1 =
Normal, 2 = Cancer) and eα

ik indicating the expression of gene
i in the sample k belonging to the layer α = 1,2. Finally, we
define the weights on each layer as the absolute difference
between all gene couples,

aα
ij = ∣∣〈eα

i

〉 − 〈
eα
j

〉∣∣ ∀i, j = 1, . . . ,2,835. (28)

The weights have been discretized as follows: given the
minimum and maximum over all values of aα

ij (from the
union of cancer and normal samples distance matrices), we
performed a uniform binning with 100 bins in this interval,
thus obtaining 100 possible values for the weights aα

ij . This
duplex encodes in its topology all the connections among those

FIG. 2. (Color online) Biological case study: We display the
distributions {s �m

i,α/k �m
i }, i.e., the average weight of each node’s

interactions, classified according to the multilinks.

genes with highly correlated or anticorrelated gene expression
profiles. Moreover, the weight distribution describes their
distances in terms of mean gene expression values. These kinds
of information essentially differ: For example, two genes can
be highly correlated in their trends across the samples but one
could be much more expressed than the other one.

We can integrate different aspects of gene expression data
sets thanks to network approaches, and, furthermore, we can
investigate different experimental setups thanks to multiplex
networks tools. The analysis of the multiplex network we
have constructed, formed by one layer for the normal samples
and one layer for those patients with colorectal cancer, can
help us understand if there is a backbone of highly correlated
genes that are conserved after the onset of the cancer disease.
Moreover, we can characterize all the interactions that are
specific for the two conditions.

In order to understand how the weights of the links in a
selected layer are related to different multilinks we consider
the distributions {s �m

i,α/k �m
i }, i.e., for each node we calculate

the average weight of its interactions, classified according to
the multilinks. In Fig. 2 we show these distributions for a
given layer α = 1,2 and a given multilink �m. In both layers,
the distribution of average weights related to multilink (1,1)
differs significantly from that one of the specific layer [i.e.,
multilink (1,0) or (0,1)], with a lower mean value and median
of the distribution. For layer 1, we compared the distributions
{s(1,1)

i,1 /k
(1,1)
i } and {s(1,0)

i,1 /k
(1,0)
i } using a Wilcoxon rank sum

test, a nonparametric test for equality of population medians.
The p value is highly significant (3.88 × 10−22) and the
two mean values are, respectively, 〈{s(1,1)

i,1 /k
(1,1)
i }〉 = 19.36

and 〈{s(1,0)
i,1 /k

(1,0)
i }〉 = 20.92. For layer 2, the layer related to

cancer samples, the rank sum test is always significant but
with a less dramatic p value (5.23 × 10−8). The mean values
for this layer are, respectively, 〈{s(1,1)

i,2 /k
(1,1)
i }〉 = 19.54 and

〈{s(0,1)
i,2 /k

(0,1)
i }〉 = 20.46.

We studied the relation between the weights of the set
of overlapping links, {a(1,1)

ij,1 } and {a(1,1)
ij,2 }. A linear fitting

shows that these weights are almost identical, with a rela-
tion a

(1,1)
ij,2 = 0.94a

(1,1)
ij,1 + 3.30 (R2 = 0.92). This result is not
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trivial, since genes could be correlated (preserving the links)
but expressed in a different way (i.e., with different weights)
in healthy and cancer samples, and highlights the existence
of a backbone of genes (and related biological processes) that
are conserved during the disease progression, possibly due to
their fundamental functional role.

The focus here in this paper is on the possibility to generate
a null model for such a multiplex real instance, in order to
provide an example of possible application of the theoretical
framework here developed to model real data sets. In order to
generate a null model, we will construct a network ensemble
with given multidegree sequence and multistrength sequence
and generate multiplex networks out of this ensemble with
the desired structural properties. Sampling multiplex networks
from their ensembles will offer the opportunity of comparing
our real biological structure with some compatible instances.
Moreover, the entropy measure gives us the logarithm of the
number of “typical” duplex networks in the ensemble, a value
that can be used to compare different experimental setups and
clinical conditions, evaluating what is the level of information
encoded in the selected structural properties of biological
networks.

IV. CANONICAL WEIGHTED MULTIPLEXES
ENSEMBLES OR EXPONENTIAL

WEIGHTED MULTIPLEXES

Null models for weighted multiplex networks can be con-
structed using the formalism of canonical network ensembles
also known as exponential random graphs [24,25,27,28].
These ensembles of networks generate the least biased set
of networks satisfying a set of constraint on average. In
fact, these ensembles are derived by a maximal entropy
approach conditioned to a series of structural constraints.
The entropy of these ensembles and of the correspondent
microcanonical ensembles enforcing the corresponding hard
constraints [26,38] can be used to quantify the level of
information encoded in the structural constraints that are
imposed to the networks. In Refs. [16,19] this approach was
taken to model simple multiplex networks. Here we show how
this framework can be applied to model weighted multiplex
networks.

A weighted multiplex ensemble is defined once the proba-
bility P ( �G) of any possible weighted multiplex is given. We
can build a canonical multiplex ensemble by maximizing the
entropy S of the ensemble given by

S = −
∑

�G
P ( �G) log P ( �G) (29)

under the condition that the soft constraints we want to
impose are satisfied. We assume to have K of such constraints
determined by the conditions∑

�G
P ( �G)Fμ( �G) = Cμ (30)

for μ = 1,2 . . . ,K , where Fμ( �G) determines one of the
structural constraints that we want to impose to the multiplex.
Therefore, the maximal-entropy multiplex ensemble satisfying
the constraints given by Eqs. (30) is the solution of the

following system of equations:

∂

∂P ( �G)

⎡
⎣S −

K∑
μ=1

λμ

∑
�G

Fμ( �G)P ( �G) − �
∑

�G
P ( �G)

⎤
⎦ = 0,

(31)

where the Lagrangian multiplier � enforces the normalization
of the P ( �G) probability distribution and the Lagrangian
multiplier λμ enforces the constraint μ.

Therefore we get that the probability of a multiplex P ( �G)
in a canonical multiplex ensemble is given by

P ( �G) = 1

Z
exp

[
−

∑
μ

λμFμ( �G)

]
, (32)

where the normalization constant Z = exp(1 + �) is called the
“partition function” of the canonical multiplex ensemble and
is fixed by the normalization condition on P ( �G). The values
of the Lagrangian multipliers λμ are determined by imposing
the constraints given by Eq. (30), assuming for the probability
P ( �G) the structural form given by Eq. (32). From the definition
of the partition function Z and Eq. (32), it can be easily shown
that the Lagrangian multipliers λμ can be expressed as the
solutions of the following set of equations:

Cμ = −∂ log Z

∂λμ

. (33)

We call the entropy S of the canonical multiplex ensemble the
Shannon entropy of the ensemble.

We can define the marginal probability for a specific value
of the element aα

ij as

πα
ij

(
aα

ij = w
) =

∑
�G

P ( �G)δ
(
aα

ij ,w
)
, (34)

where δ(x,y) stands for the Kronecker delta. The marginal
probabilities πα

ij (aα
ij ) sum up to 1,

∞∑
aα

ij =0

πij

(
aα

ij

) = 1. (35)

We can compute also the average weight 〈aα
ij 〉 between node i

and node j that is

〈
aα

ij

〉 =
∑

�G
P ( �G)aα

ij =
∞∑

aα
ij =0

aα
ijπij

(
aα

ij

)
. (36)

In the layer α a link between two nodes i and j exists with
probability pα

ij that is related with all the possible weights that
differ from zero,

pα
ij =

∑
�G

P ( �G)θ
(
aα

ij

) =
∞∑

aα
ij �=0

πα
ij

(
aα

ij

)
. (37)

A. Uncorrelated and correlated canonical multiplex ensembles

The multiplex ensembles can be distinguished between
uncorrelated and correlated multiplex ensembles. For uncor-
related multiplex ensembles, the probability of a multiplex
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P ( �G) is factorizable into the probability Pα(Gα) of each single
network Gα at layer α, i.e.,

P ( �G) =
M∏

α=1

Pα(Gα). (38)

Therefore, the entropy S of any uncorrelated multiplex
ensemble given by Eq. (29) with P ( �G) given by Eq. (38)
is additive in the number of layers, i.e.,

S =
M∑

α=1

Sα = −
M∑

α=1

∑
Gα

Pα(Gα) log Pα(Gα). (39)

As a consequence of these relations, when each constraint
depends on a single network Gα in a layer α the resulting
multiplex ensemble is uncorrelated.

Example of these types of constraints are the total strengths
Sα in each layer α, the strength sα

i of the generic node i in
layer α, or the degree kα

i of the node i in layer α.
In these ensembles of multiplex networks we have that

the presence of a link in a layer α is uncorrelated with the
presence of a link between the same two nodes in a layer
β �= α. Therefore we have〈

aα
ij a

β

ij

〉 = 〈
aα

ij

〉〈
a

β

ij

〉
. (40)

In correlated multiplex networks, instead the probability of a
multiplex does not factorize into the probabilities of the single
networks that constitute the multiplex network. We have in
this case

P ( �G) �=
M∏

α=1

Pα(Gα), (41)

and as a consequence of this there is at least a pair of nodes (i,j )
and layers α,β such that the weights of the links connecting
node i and node j is layer α and layer β are correlated, i.e.,〈

aα
ij a

β

ij

〉 �= 〈
aα

ij

〉〈
a

β

ij

〉
. (42)

Example of constraints that generate correlated multiplex
ensembles are constraints on the multidegree sequence or the
multistrength sequence.

V. EXAMPLES OF CORRELATED AND UNCORRELATED
MULTIPLEX NETWORK ENSEMBLES

Here we provide three example of uncorrelated and corre-
lated multiplex network ensemble. The case of uncorrelated
multiplex networks (case treated in Sec. V A) is very closely
related to the treatment of weighted ensembles of single net-
works [29–31], nevertheless the case of uncorrelated multiplex
networks (cases treated in Secs. V B and V C) provides a novel
framework to understand correlations between weights and
multidegrees in a model. In the main text of the article we will
present only few examples of multiplex network ensembles,
while a longer set of ensembles is discussed in the appendix.

A. Multiplex ensembles with given expected strength sequence
and degree sequence in each layer

This is an example of uncorrelated network ensemble. We
fix the expected strength sα

i and the expected degree kα
i of

every node i, in each layer α. We have K = M2N constraints
in the system. These constraints are given by

∑
�G

Fi,α( �G)P ( �G) =
∑

�G

⎛
⎝∑

j �=i

aα
ij

⎞
⎠ P ( �G) = sα

i ,

(43)∑
�G

Fi,α( �G)P ( �G) =
∑

�G

⎛
⎝∑

j �=i

θ (aα
ij )

⎞
⎠ P ( �G) = kα

i ,

with α = 1,2, . . . ,M . We introduce the Lagrangian multipliers
λi,α for the first set of N · M constraints and the Lagrangian
multipliers ωi,α for the second set of N · M constraints. There-
fore, the probability P ( �G) of a multiplex in this ensemble, of
general expression given by Eq. (32), in this specific example
is given by

P ( �G) = 1

Z
exp

⎡
⎣−

M∑
α=1

∑
i

λi,α

∑
j �=i

aα
ij

−
M∑

α=1

∑
i

ωi,α

∑
j �=i

θ (aα
ij )

⎤
⎦ ,

where the partition function Z can be expressed explicitly as

Z =
∑

�G
exp

⎡
⎣−

M∑
α=1

∑
i

∑
j �=i

(
λi,αaα

ij + ωi,αθ
(
aα

ij

))⎤⎦

=
M∏

α=1

∏
i<j

[
1 + e−(ωi,α+ωj,α )−(λi,α+λj,α )

1 − e−(λi,α+λj,α )

]
, (44)

and the Lagrangian multipliers are fixed by the conditions

sα
i = −∂log Z

∂λi,α

,

kα
i = −∂log Z

∂ωi,α

. (45)

The average weight of the link (i,j ) in layer α, i.e., 〈aα
ij 〉, is

given by Eq. (36) that in this case reads

〈
aα

ij

〉 = e−(ωi,α+ωj,α )+(λi,α+λj,α )

(eλi,α+λj,α − 1)(e−(ωi,α+ωj,α ) + eλi,α+λj,α − 1)
. (46)

From Eq. (34) we write the marginal probabilities πα
ij (aα

ij ) for
this specific ensemble that is given by

πα
ij

(
aα

ij

) = e−(λi,α+λj,α )aα
ij −(ωi,α+ωj,α )θ(aα

ij )[1 − e−(λi,α+λj,α )]

1 + e−(λi,α+λj,α )[e−(ωi,α+ωj,α ) − 1]
.

(47)

Moreover, from Eq. (37) the probability pα
ij that the link

(i,j ) in layer α has weight different from zero is given by

pα
ij = e−(ωi,α+ωi,α )

e−(ωi,α+ωj,α ) + eλi,α+λj,α − 1
. (48)

We observe that we can write the Eq. (32) in terms of marginal
probabilities πα

ij (aα
ij ), namely

P ( �G) =
M∏

α=1

∏
i<j

πα
ij

(
aα

ij

)
. (49)
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Therefore the entropy S of this canonical multiplex ensemble
is given by Eq. (29) and in this special case can be written as

S = −
M∑

α=1

∑
i<j

∞∑
aα

ij =0

πα
ij

(
aα

ij

)
log

(
πα

ij

(
aα

ij

))
. (50)

B. Multiplex ensembles with given expected multidegree
sequence {k �m

i } and given expected multistrength sequence {s �m
i,α}

In many applications it is important to consider the weighted
multiplex networks in which we fix at the same time the
average multidegree sequence k �m

i and the average multi-
strength sequence s �m

i,α . The number of independent constraints
is therefore K = (2M − 1)N + (2M−1)M · N .

In particular, the constraints we are imposing are the
following:

∑
�G

F �m
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

A �m
ij a

α
ij

⎞
⎠ P ( �G) = s �m

i,α,

(51)∑
�G

F �m
i ( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

A �m
ij

⎞
⎠ P ( �G) = k �m

i .

The canonical probability P ( �G) of the multiplex in the
ensemble becomes

P ( �G) = 1

Z
exp

⎡
⎣−

∑
�m�=�0

∑
i

∑
j �=i

(
ω �m

i A �m
ij +

M∑
α=1

λ �m
i,αA �m

ij a
α
ij

)⎤
⎦

= 1

Z
exp

⎡
⎣−

∑
i<j

∑
�m�=�0

(
ω �m

i + ω �m
j

)
A �m

ij

⎤
⎦

× exp

⎡
⎣−

∑
i<j

∑
�m�=�0

M∑
α=1

(
λ �m

i,α + λ �m
j,α

)
A �m

ij a
α
ij

⎤
⎦ . (52)

The partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij , (53)

where Zij is given by

Zij = 1 +
∑
�m �=�0

e−(ω �m
i +ω �m

j )
M∏

α=1

(
e−(λ �m

i,α+λ �m
j,α )

1 − e−(λ �m
i,α+λ �m

j,α )

)mα

. (54)

The Lagrangian multipliers are fixed by the conditions

− ∂log Z

∂λ �m
i,α

= s �m
i,α =

∑
j �=i

〈
aα

ijA
�m
ij

〉
,

(55)

−∂log Z

∂ω �m
i

= k �m
i =

∑
j �=i

〈
A �m

ij

〉
.

We now indicate with �aij the vector (a1
ij ,a

2
ij , . . . ,

aα
ij , . . . ,a

M
ij ). The probability of a multiplex P ( �G) can be

rewritten as

P ( �G) =
∏
i<j

πij (�aij ), (56)

with

πij (�aij ) = e−(ω �mij

i +ω �mij

j )

Zij

e− ∑
α=1,M (λ �mij

i,α +λ �mij

j,α )aα
ij , (57)

where �mij = (mij

1 , . . . ,m
ij
α , . . . ,m

ij
m) with m

ij
α = θ (aα

ij ). With
πij (�aij ) we define, for a position ij , the probability of a par-
ticular sequence of weights on the layers. The normalization
condition is fulfilled, ∑

�aij

πij (�aij ) = 1. (58)

Later we can compute the average weight of the link ij on
the multilink �m, in the layer α, and the probability of a multilink
�m between node i and node j , p �m

ij = 〈A �m
ij 〉, respectively,

〈
aα

ijA
�m
ij

〉 = e−(ω �m
i +ω �m

j )

Zij

[
1

1 − e−(λ �m
i,α+λ �m

j,α )

]

×
M∏

β=1

[
e−(λ �m

i,β+λ �m
j,β )

1 − e−(λ �m
i,β+λ �m

j,β )

]mβ

, (59)

p �m
ij = e−(ω �m

i +ω �m
j )

Zij

M∏
α=1

[
e−(λ �m

i,α+λ �m
j,α )

1 − e−(λ �m
i,α+λ �m

j,α )

]mα

, (60)

where the normalization condition is fulfilled, namely,∑
�m

p �m
ij = 1. (61)

Moreover, the relationship between p �m
ij and the probabilities

πij (�aij ) is ∑
�aij

A �m
ijπij (�aij ) = p �m

ij . (62)

Finally, the probability of a multiplex P ( �G) is given by
Eq. (56) and the entropy S of this ensemble can be calculated
starting from its definition Eq. (29), giving

S = −
∑
i<j

∑
�aij

πij (�aij ) log πij (�aij ). (63)

C. Multiplex ensembles with given expected ν-multidegree
sequence {kν

i } and expected ν-multistrength sequence {sν
i,α}

In a multiplex networks formed by many layers, an efficient
way to consider both topological and weighted properties of
the multilayer structure is to construct multiplex networks
with given expected ν-multidegree sequence {kν

i } and ex-
pected ν-multistrength sequence {sν

i,α}. The N · M · (M + 1)
constraints are given by

∑
�G

F ν
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

aα
ijA

ν
ij

⎞
⎠ P ( �G) = sν

i,α,

(64)∑
�G

F ν
i ( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

Aν
ij

⎞
⎠P ( �G) = kν

i ,
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with i = 1,2, . . . ,N , α = 1,2, . . . M , and ν = 1,2, . . . ,M .
The canonical probability P ( �G) of the multiplex in this
ensemble can be expressed in terms of the Lagrangian
multipliers λν

j,α and ων
i , i.e.,

P ( �G) = 1

Z
exp

⎡
⎣−

∑
i<j

M∑
ν=1

(
ων

i + ων
j

)
Aν

ij

⎤
⎦

× exp

⎡
⎣−

∑
i<j

M∑
ν=1

M∑
α=1

(
λν

i,α + λν
j,α

)
Aν

ij a
α
ij

⎤
⎦ , (65)

where the partition function Z is given by

Z =
∏
i<j

Zij , (66)

with

Zij = 1 +
M∑

ν=1

e−(ων
i +ων

j )
∑

�m|ν( �m)=ν

M∏
α=1

[
e−(λν

i,α+λν
j,α )

1 − e−(λν
i,α+λν

j,α )

]mα

.

(67)

The Lagrangian multipliers are fixed by the conditions
Eq. (64) that can be also written in terms of the partial
derivatives of the partition function as

− ∂log Z

∂λν
i,α

= sν
i,α =

∑
j �=i

〈
aα

ijA
ν
ij

〉
,

(68)

−∂log Z

∂ων
i

= kν
i =

∑
j �=i

〈
Aν

ij

〉
.

As in the previous cases, the probability P ( �G) of a multiplex
network �G is given by Eq. (56). The entropy of this ensemble
takes the same expression given by Eq. (63) with πij (�aij )
given by

πij (�aij ) = e−(ωνij

i +ωνij

j )

Zij

e− ∑
α=1,M (λνij

i,α +λνij

j,α )aα
ij . (69)

The probability pν
ij that the node i and the node j are linked

by a ν multilink is given by

pν
ij = e−(ων

i +ων
j )

Zij

∑
�m|ν( �m)=ν

M∏
α=1

[
e−(λν

i,α+λν
j,α )

1 − e−(λν
i,α+λν

j,α )

]mα

. (70)

Finally, the average weight of the link aα
ij belonging to a ν

multilink is given by

〈
aα

ijA
ν
ij

〉 = e−(ων
i +ων

j )

Zij

[
1

1 − e−(λν
i,α+λν

j,α )

]

×
∑

�m|ν( �m)=ν

mα

M∏
β=1

[
e−(λν

i,β+λν
j,β )

1 − e−(λν
i,β+λν

j,β )

]mβ

. (71)

VI. SAMPLING MULTIPLEX ENSEMBLES WITH GIVEN
EXPECTED MULTIDEGREE SEQUENCE {k �m

i } AND GIVEN
EXPECTED MULTISTRENGTH SEQUENCE {s �m

i,α}
Here we want to discuss how the theoretical framework

described in the previous section can be used to generate
weighted multiplex networks sampled from a multiplex
network ensemble. We have chosen to focus specifically
on the case of a multiplex network ensemble in which the
given expected multidegree sequence {k �m

i } and the given
expected multistrength sequence {s �m

i,α} are constrained, but the
framework we outline here of this case can be easily extended
to the other ensembles discussed in this paper. Given Eqs. (60)
and (57), the probability πij (�aij ) can be expressed as a function
of the probability p �m

ij of a multilink �m between node i and node
j , namely

πij (�aij ) = p �mij

ij

M∏
α=1

([
e−(λ �mij

i,α +λ �mij

j,α )]aα
ij −1[

1 − e−(λ �mij

i,α +λ �mij

j,α )])m
ij
α
.

(72)

The productory in Eq. (72) is the conditional probability
of the multiweight �aij , given the multilink �mij . The new
expression for πij (�aij ) suggests a way for sampling networks
from the distribution given by Eq. (56), with πij (�aij ) given by
Eq. (72). In fact for sampling a multiplex network from this
particular ensemble, we draw a multilink �m with probability
p �m

ij for each couple of nodes i and j . Subsequently, given a
particular multilink, whenever mα = 1 we draw the additional
weight aα

ij − 1 from a geometric distribution with parameter

1 − e−(λ �mij

i,α +λ �mij

j,α ) and aα
ij � 1.

Following Eqs. (55) we wrote a MATLAB code [44] that
produces the Lagrangian multipliers and calculates the entropy
value of the ensemble. The algorithm runs until it finds
convergence with precision 10−4 (this value can be always
improved).

VII. COMPARISON BETWEEN THE NULL MODEL
AND THE BIOLOGICAL CASE STUDY

Here our aim is to compare the structural properties of
our biological case study with the networks with the same
multidegree sequence and multistrength sequence generated
by sampling the corresponding multiplex network ensemble.
Starting from our biological duplex network described in
Sec. III, at first we calculated the Lagrangian multipliers
needed for {p �m

ij } and {πij (�aij )}, and, second, we generated
100 different duplex networks. We checked the average values
and fluctuations across our 100 duplexes. In Fig. 3 we
compare the behavior of the average values across the duplexes
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FIG. 3. (Color online) Comparison of the real values of multistrength and multidegree sequence with their related average values calculated
over 100 instances. Angular brackets (〈. . .〉) indicate the real values (the fixed average values of the canonical ensemble), while overbar ( ¯. . .)
defines the average measure over the 100 duplexes. Considering the relative error between the real values and the average values for each node,
�Ei = (x̄i − 〈xi〉)/〈xi〉 i = 1, . . . ,2,835, the average absolute relative error 〈|�E|〉, over all nodes for each measure, ranges from a minimum
of 0.5% to a maximum of 2.4%. In the last panel we display the distribution of the 100 measures of the overlap between the two layers (in the
real duplex this value was 109 056 links). The red line is a Gaussian distribution with the same mean and variance as the empirical distribution.

with the related real values, the assumed fixed average values
of the canonical ensemble. We found that the multidegrees
and the multistrengths are equal in average to the constrained
values showing that the multiplex network framework is able
to reproduce well these properties.

FIG. 4. (Color online) Distributions of the z scores {zi} related
to some fixed values of multistrengths and multidegree in layer 2
(colorectal cancer layer). In each panel we display the 100 values
of z across the sampled instances (gathered in 10 bins) for a chosen
node with that assigned value of multistrength or multidegree. Similar
results are also found for layer 1 (normal samples).

Nevertheless, from sample to sample the individual struc-
tural properties of the nodes (their multidegrees and their
multistrengths) might fluctuate. In Fig. 4 we investigate the
role of the fluctuations by plotting the histogram of the z

scores of values of the multidegrees or of the multistrengths
for single nodes in layer 2 of the duplex networks, the cancer
layer. These distributions are calculated over the 100 multiplex
networks sampled by this ensemble.

VIII. CONCLUSIONS

In conclusion, in this paper we have characterized the rich
interplay between weights and the topology of multiplex net-
works. Multiplex networks describe a large variety of complex
systems ranging from social networks to infrastructures and
biological networks. Many of these multilayer structures are
formed by weighted links, indicating interactions of different
intensity. For example, in transportation networks different
connections are characterized by a different flow of traffic,
in citation and collaboration networks the interactions can be
weighted by the number of collaborators or mutual citations,
and in biological networks the weights can be given by
the strength of chemical bonding or by mutual coexpression
measurements. The correlations between weights and topology
in these networks can be captured by the multistrength and
multi-inverse participation ratio. As an example, we show
that multiplex observables highlight significant differences and
nontrivial similarities between biological processes in healthy
and cancer cells in a gene expression profiling data set.

In this paper we provide a framework based on entropy
of multiplex networks that can be used to construct multiplex
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weighted networks with different levels of correlations be-
tween the weights and the topology of these structures.
Moreover, we have shown how this framework can be applied
to generate null models of complex multilayer networks. We
believe that such a framework can help to develop new methods
to shed light on different properties of multiplex networks that
cannot be inferred if the single layers were taken separately.
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APPENDIX A: EXAMPLES OF UNCORRELATED
WEIGHTED MULTIPLEX ENSEMBLES

1. Multiplex ensembles with given expected total
strength in each layer

As a first example of uncorrelated weighted multiplex,
we consider the case in which we fix the average strength
in each layer α to be equal to Sα . In this case we have
K = M constraints in the system, indicated with a label
α = 1,2, . . . ,M . These constraints are given by

∑
�G

Fα( �G)P ( �G) =
∑

�G

⎛
⎝∑

i<j

aα
ij

⎞
⎠ P ( �G) = Sα. (A1)

The probability distribution of a multiplex in this ensemble is
given by Eq. (32) that reads in this case,

P ( �G) = 1

Z
exp

⎡
⎣−

M∑
α=1

λα

∑
i<j

aα
ij

⎤
⎦ , (A2)

where the partition function Z can be expressed explicitly as

Z =
∑

�G
exp

⎡
⎣−

M∑
α=1

λα

∑
i<j

aα
ij

⎤
⎦

=
M∏

α=1

[(
1

1 − e−λα

)(N

2 )
]

. (A3)

The Lagrangian multipliers λα defining the probability of the
multiplex P ( �G) are fixed by the conditions

Sα = −∂log Z

∂λα

=
(

N

2

)
e−λα

1 − e−λα
. (A4)

Finally, the average weight 〈aα
ij 〉 can be evaluated from Eq. (36)

and is given by

〈
aα

ij

〉 = Sα(
N

2

) , (A5)

which is equivalent to say Sα = ∑
i<j 〈aα

ij 〉.
From Eq. (34) we write the marginal probabilities π (aα

ij ) in
this specific multiplex ensemble as

πα
ij

(
aα

ij

) = e−λαaα
ij (1 − e−λα ). (A6)

Moreover, from Eq. (37) the probability pα
ij of having a

positive weight aα
ij > 0 of the link between node i and node

j in layer α is independent on the pair of nodes (i,j ), i.e.,
pα

ij = pα , and is given by

pα = e−λα . (A7)

Finally, the the probability of a multiplex in this ensemble is
given by Eq. (49) with the marginals πα

ij (aα
ij ) given by Eq. (A6).

The entropy S of this canonical multiplex ensemble is given
by Eq. (50). Using the marginals πα

ij (aα
ij ) given by Eqs. (A6)

and Eq. (A4) the entropy can be rearranged as

S =
M∑

α=1

[((
N

2

)
+ Sα

)
log

((
N

2

)
+ Sα

)

− Sα log Sα −
(

N

2

)
log

(
N

2

)]
. (A8)

If the number of layers M is finite, applying the Stirling’s
approximation in the large N limit we get

S =
M∑

α=1

log

[((
N

2

) + Sα(
N

2

) )]
. (A9)

2. Multiplex ensembles with given expected strength
sequence in each layer

We consider here the multiplex ensemble in which we fix
the expected strength sα

i of every node i, in each layer α. We
have K = M · N constraints in the system indicated with a
label α = 1,2, . . . ,M . These constraints are given by

∑
�G

Fi,α( �G)P ( �G) =
∑

�G

⎛
⎝∑

j �=i

aα
ij

⎞
⎠ P ( �G) = sα

i . (A10)

The probability of a multiplex P ( �G) is given by Eq. (32) that
in this case can be written as

P ( �G) = 1

Z
exp

⎡
⎣−

M∑
α=1

∑
i

λi,α

∑
j �=i

aα
ij

⎤
⎦ , (A11)

where the partition function Z can be expressed explicitly as

Z =
∑

�G
exp

⎡
⎣−

M∑
α=1

∑
i

λi,α

∑
j �=i

aα
ij

⎤
⎦

=
M∏

α=1

∏
i<j

[1 − e−(λi,α+λj,α )]−1, (A12)

and the Lagrangian multipliers λi,α are fixed by the condition

sα
i = −∂log Z

∂λi,α

=
∑
j �=i

e−(λi,α+λj,α )

1 − e−(λi,α+λj,α ) . (A13)

The average weight 〈aα
ij 〉 given by Eq. (36) can be calculated

explicitly as a function of the Lagrangian multipliers, giving

〈
aα

ij

〉 = e−(λi,α+λj,α )

1 − e−(λi,α+λj,α ) , (A14)

which implies, together with Eq. (A13), sα
i = ∑

j �=i〈aα
ij 〉.
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From Eq. (34) we write the marginal probabilities πα
ij (aα

ij )
for specific weight aα

ij as

πα
ij

(
aα

ij

) = e−(λi,α+λj,α )aα
ij [1 − e−(λi,α+λj,α )], (A15)

i.e., the weight of a link is distributed exponentially, with a
mean that depends both on the pair of linked nodes (i,j ) and
on the layer α. Moreover, from Eq. (37) we can evaluate the
probability pα

ij of having a weight different from zero that is
given by

pα
ij = e−(λi,α+λj,α ). (A16)

Finally, the the probability of a multiplex in this ensemble
is given by Eq. (49) with the marginals πα

ij (aα
ij ) given by

Eq. (A15). Therefore the entropy S of this canonical multiplex
ensemble is given by Eq. (50) with the marginals πα

ij (aα
ij ) given

by Eq. (A15).

3. Multiplex ensembles with given expected strength sequence,
given expected degree sequence, and given expected sequences

{uα
i } in each layer

The last example of uncorrelated multiplex that we will
consider is the one in which we fix the expected strength sα

i ,
the expected degree kα

i , and the expected uα
i of every node i in

each layer α. We have K = M · 3N constraints in the system.
These constraints are given by

∑
�G

Fi,α( �G)P ( �G) =
∑

�G

⎛
⎝∑

j �=i

aα
ij

⎞
⎠ P ( �G) = sα

i ,

∑
�G

Fi,α( �G)P ( �G) =
∑

�G

⎛
⎝∑

j �=i

θ
(
aα

ij

)⎞⎠ P ( �G) = kα
i , (A17)

∑
�G

Fi,α( �G)P ( �G) =
∑

�G

⎛
⎝∑

j �=i

(
aα

ij

)2

⎞
⎠ P ( �G) = uα

i ,

with α = 1,2, . . . ,M . We introduce the Lagrangian multipliers
λi,α for the first set of N · M constraints, the Lagrangian
multipliers ωi,α for the second set of N · M constraints, and
the Lagrangian multipliers zi,α for the third set of N · M

constraints. Therefore, the probability P ( �G) of a multiplex
in this ensemble, of general expression given by Eq. (32), in
this specific example is given by

P ( �G) = 1

Z
exp

⎡
⎣−

M∑
α=1

∑
i

λi,α

∑
j �=i

aα
ij

−
M∑

α=1

∑
i

ωi,α

∑
j �=i

θ
(
aα

ij

) −
M∑

α=1

∑
i

zi,α

∑
j �=i

(
aα

ij

)2

⎤
⎦ .

If we define as Iα
ij the series

Iα
ij =

Sα∑
aα

ij =1

exp
[ − (λi,α + λj,α)aα

ij − (zi,α + zj,α)
(
aα

ij

)2]
,

(A18)

where Sα = ∑N
i=1 sα

i . The sum Iα
ij is convergent when (zi,α +

zj,α) > 0, the partition function Z can be expressed as

Z =
M∏

α=1

∏
i<j

[
1 + e−(ωi,α+ωj,α )Iα

ij

]
. (A19)

The Lagrangian multipliers are fixed by the conditions

−∂log Z

∂λi,α

= sα
i , − ∂log Z

∂ωi,α

= kα
i , − ∂log Z

∂zi,α

= uα
i .

(A20)

The average weight of the link (i,j ) in layer α, i.e., 〈aα
ij 〉, is

given by Eq. (36) that in this case reads

〈
aα

ij

〉 = e−(ωi,α+ωj,α )[
1 + e−(ωi,α+ωj,α )Iα

ij

]
⎡
⎣ Sα∑

aα
ij =1

aα
ij exp

(−(λi,α + λj,α)aα
ij

− (zi,α + zj,α)
(
aα

ij

)2)
⎤
⎦ .

From Eq. (34) we write the marginal probabilities πα
ij (aα

ij ) for
this specific ensemble that is given by

πα
ij

(
aα

ij

) = e−(λi,α+λj,α )aα
ij −(ωi,α+ωj,α )θ(aα

ij )−(zi,α+zj,α )(aα
ij )2[

1 + e−(ωi,α+ωj,α )Iα
ij

] . (A21)

Moreover, from Eq. (37) the probability pα
ij that the link

(i,j ) in layer α has weight that differs from zero is given by

pα
ij = e−(ωi,α+ωj,α )Iα

ij[
1 + e−(ωi,α+ωj,α )Iα

ij

] . (A22)

The probability of a multiplex in this ensemble is given by
Eq. (49) with the marginals πα

ij (aα
ij ) given by Eq. (A21) while

the entropy S of this canonical multiplex ensemble is given by
Eq. (50) with the marginals πα

ij (aα
ij ) given by Eq. (A21).

APPENDIX B: EXAMPLES OF CORRELATED WEIGHTED
MULTIPLEX ENSEMBLES

1. Multiplex ensembles with given expected total
multistrength S �m

α

Here we consider a correlated weighted multiplex ensem-
ble, in which we fix the total multistrength �m, given by S �m

α for
a layer α such that mα = 1. Since the number of the possible
multistrengths �m in layer α are given by M · 2M−1, this gives
a number of constraints that is equal to K = M · 2M−1. These
constraints are given by

∑
�G

F �m
α ( �G)P ( �G) =

∑
�G

⎛
⎝∑

i<j

A �m
ij a

α
ij

⎞
⎠ P ( �G) = S �m

α , (B1)

where the multiadjacency matrix element A �m
ij is defined in

Eq. (9). The canonical probability P ( �G) of the multiplex in
the ensembles is given by the general expression given in Eq.
(32) that in this case becomes

P ( �G) = 1

Z
exp

⎡
⎣−

∑
�m�=�0

M∑
α=1

λ �m
α

∑
i<j

A �m
ij a

α
ij

⎤
⎦ , (B2)
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where the partition function Z is given by

Z = Z(N

2 ), (B3)

where

Z =
∑

�m

M∏
α=1

(
e−λ �m

α

1 − e−λ �m
α

)mα

, (B4)

where now, without loss of generality, if mα = 0 we put λ �m
α =

1/2. We can do this because the probability of a multiplex does
not depend on any of these values, and we need to define them
only for simplifying the notation. The Lagrangian multipliers
λ �m

α with mα = 1 are fixed by the conditions

−∂log Z

∂λ �m
α

= S �m
α , (B5)

which yields

S �m
α =

(
N

2

)
1

Z

(
1

1 − e−λ �m
α

) M∏
β=1

(
e−λ �m

β

1 − e−λ �m
β

)mβ

. (B6)

The probability of a multiplex P ( �G) follows Eq. (56) with

πij (�aij ) = e− ∑
α=1,M λ �mij

α aα
ij

Z . (B7)

Later we can compute the average weight of the link ij on the
multilink �m, in the layer α,〈

aα
ijA

�m
ij

〉 =
∑

�G
aα

ijA
�m
ijP ( �G) =

∑
�aij

aα
ijA

�m
ijπ (�aij ). (B8)

Using Eq. (B7) for the explicit expression of π (�aij ) and
comparing the results with Eq. (B6) it is easy to show that

〈
aα

ijA
�m
ij

〉 = S �m
α(

N

2

) . (B9)

The probability of a multilink �m between node i and node
j , p �m

ij = 〈A �m
ij 〉 in this ensemble is independent on the pair of

nodes (i,j ). Therefore we have p �m
ij = p �m with

p �m =
∏M

α=1

(
e−λ �m

α

1−e−λ �m
α

)mα

Z . (B10)

Finally, the entropy S of this ensemble follows Eq. (63).

2. Multiplex ensembles with given expected ν-total strength Sν
α

In presence of many layers M we can consider as constraints
the average ν-total strength Sν

α with ν = 1,2, . . . ,M . With
respect to the previous case, now the number of constraints is
sensibly reduced and is given by M2 constraints,

∑
�G

F ν
α ( �G)P ( �G) =

∑
�G

⎛
⎝∑

i<j

aα
ijA

ν
ij

⎞
⎠ P ( �G) = Sν

α. (B11)

The probability P ( �G) of the multiplex network is therefore
given in terms of M2 Lagrangian multipliers λν

α , i.e.,

P ( �G) = 1

Z
exp

⎡
⎣−

M∑
ν=1

M∑
α=1

λν
α

∑
i<j

Aν
ij a

α
ij

⎤
⎦ , (B12)

where the partition function Z is given by Z = Z(N

2 ) with

Z =
M∑

ν=0

∑
�m|ν( �m)=ν

M∏
α=1

(
e−λν

α

1 − e−λν
α

)mα

. (B13)

The Lagrangian multipliers λν
α are fixed by the constraints

Eq. (B12) that can be also expressed as

−∂log Z

∂λν
α

= Sν
α. (B14)

The probability P ( �G) of the multiplex network is given by
Eq. (56) and the entropy of the ensemble takes the simple
expression given by Eq. (63), where πij (�aij ) is given by

πij (�aij ) = e− ∑M
α=1 λνij

α aα
ij

Z . (B15)

Finally, the probability pν of a ν multilink between any two
nodes of the multiplex network is given by

pν = 1

Z

M∏
α=1

(
e−λν

α

1 − e−λν
α

)mα

, (B16)

while we have that the average weight of a ν multilink is given
by

〈
aα

ijA
ν
ij

〉 = Sν
α(

N

2

) = 1

Z

(
1

1 − e−λν
α

)

×
∑

�m|ν( �m)=ν

mα

M∏
β=1

(
e−λν

β

1 − e−λν
β

)mβ

. (B17)

3. Multiplex ensembles with given expected
multistrength sequence {s �m

i,α}
Here we consider another level of coarse-graining for the

multiplex network and we study correlated weighted multiplex
in which we fix the average strength sequence s �m

i,α for each
node i, in each layer α such that mα = 1, for a given multilink
�m. Following the previous line of reasoning, we can express
properly just N · M · 2M−1 constraints.

These constraints are given by

∑
�G

F �m
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

A �m
ij a

α
ij

⎞
⎠ P ( �G) = s �m

i,α, (B18)

with i = 1, . . . ,N , �m = (m1,m2, . . . ,mβ, . . . ,mM ) with mβ =
0,1 and, finally, α = 1, . . . ,M with the condition mα = 1. The
canonical probability P ( �G) of the multiplex in the ensemble
is

P ( �G) = 1

Z
exp

⎡
⎣−

∑
�m�=�0

M∑
α=1

∑
i

λ �m
i,α

∑
j �=i

A �m
ij a

α
ij

⎤
⎦

= 1

Z

∏
i<j

exp

⎡
⎣−

∑
�m�=�0

M∑
α=1

(
λ �m

i,α + λ �m
j,α

)
A �m

ij a
α
ij

⎤
⎦ ,

(B19)
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where the partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij , (B20)

where

Zij =
∑

�m

M∏
α=1

(
e−(λ �m

i,α+λ �m
j,α )

1 − e−(λ �m
i,α+λ �m

j,α )

)mα

, (B21)

where now, without loss of generality, if mα = 0 we put λ �m
α =

1/2. We can do this because the probability of a multiplex and
the partition function do not depend on any of these values,
and we need to define them only for simplifying the notation.
The Lagrangian multipliers λ �m

i,α , with α such that mα = 1, are
fixed by the conditions

−∂log Z

∂λ �m
i,α

= s �m
i,α =

∑
j �=i

〈
aα

ijA
�m
ij

〉
, (B22)

where 〈aα
ijA

�m
ij 〉 is the average weight of the link between node

i and node j on the multilink �m, in the layer α. This quantity
can be computed as

〈
aα

ijA
�m
ij

〉 = 1

Zij

[
1

1 − e−(λ �m
i,α+λ �m

j,α )

] M∏
β=1

[
e−(λ �m

i,β+λ �m
j,β )

1 − e−(λ �m
i,β+λ �m

j,β )

]mβ

.

We can calculate the probability of a vector �aij =
(a1

ij ,a
2
ij . . . ,aM

ij ) characterizing the weights of the links be-
tween node i and node j in all the layers, getting

πij (�aij ) = 1

Zij

e− ∑
α=1,M (λ �mij

i,α +λ �mij

j,α )aα
ij . (B23)

These probabilities satisfy the normalization condition given
by Eq. (58). The probability p �m

ij of a multilink �m between the
node i and the node j is given by

p �m
ij = 〈

A �m
ij

〉 = 1

Zij

M∏
α=1

[
e−(λ �m

i,α+λ �m
j,α )

1 − e−(λ �m
i,α+λ �m

j,α )

]mα

, (B24)

where these probabilities satisfy the normalization condition
given by Eq. (61) and are related to the probabilities π �m

ij (�aij )
given by Eq. (B23) and by Eq. (62).
Probability P ( �G) and entropy S follow Eqs. (56) and (63),
respectively.

4. Multiplex ensembles with given expected ν-multistrength
sequence {sν

i,α}
In the case in which one wants to describe multiplex

networks with many layers M , one can consider to fix the
average ν-multistrength sequence {sν

i,α} with i = 1,2 . . . ,N

and ν = 1,2, . . . ,M . Therefore, the number of constraints of
the previous example is reduced to just N · M2 soft constraints
given by

∑
�G

F ν
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

aα
ijA

ν
ij

⎞
⎠ P ( �G) = sν

i,α. (B25)

In this case, the probability P ( �G) of a multiplex network �G in
this ensemble is expressed in terms of the N × M2 Lagrangian

multipliers λν
i,α and is given by

P ( �G) = 1

Z
exp

⎡
⎣−

∑
i<j

M∑
ν=1

M∑
α=1

(
λν

i,α + λν
j,α

)
Aν

ij a
α
ij

⎤
⎦ ,

where the partition function Z can be expressed as

Z =
∏
i<j

Zij (B26)

with

Zij =
M∑

ν=0

∑
�m|ν( �m)=ν

M∏
α=1

(
e−(λν

i,α+λν
j,α )

1 − e−(λν
i,α+λν

j,α )

)mα

. (B27)

The Lagrangian multipliers are fixed by the conditions in
Eq. (B25) or, equivalently, by

−∂log Z

∂λν
i,α

= sν
i,α =

∑
j �=i

〈
aα

ijA
ν
ij

〉
. (B28)

Therefore the probability P ( �G) of a multiplex network �G in
this ensemble is given by Eq. (56) and the entropy of the
ensemble takes the simple expression given by Eq. (63), where
πij (�aij ) is given by

πij (�aij ) = 1

Zij

e− ∑
α=1,M (λνij

i,α +λνij

j,α )aα
ij . (B29)

Finally, the probability pν
ij that the node i and the node j are

linked by a ν multilink is given by

pν
ij = 1

Zij

∑
�m|ν( �m)=ν

M∏
α=1

[
e−(λν

i,α+λν
j,α )

1 − e−(λν
i,α+λν

j,α )

]mα

, (B30)

while the average weight of the link aα
ij belonging to a ν

multilink is given by

〈
aα

ijA
ν
ij

〉 = 1

Zij

[
1

1 − e−(λν
i,α+λν

j,α )

]

×
∑

�m|ν( �m)=ν

mα

M∏
β=1

[
e−(λν

i,β+λν
j,β )

1 − e−(λν
i,β+λν

j,β )

]mβ

.

(B31)

5. Multiplex ensembles with given expected multidegree
sequence {k �m

i }, given expected multistrength sequence {s �m
i,α},

and given expected sequence {u �m
i,α}

As a fourth case of correlated weighted multiplex ensemble,
we consider the case in which we fix the average multidegree
k �m
i of node i, for each node i = 1, . . . ,N , for �m �= �0. Moreover,

for each node i in layer α we impose the average multistrength
s �m
i,α and the second moment of the weights incident to it

and belonging to a multilink �m, i.e., u �m
i,α . The number of

independent constraints is therefore K = (2M − 1)N + 2M ·
M · N .
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In particular, the constraints we are imposing are the
following:

∑
�G

F �m
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

A �m
ij a

α
ij

⎞
⎠ P ( �G) = s �m

i,α,

∑
�G

F �m
i ( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

A �m
ij

⎞
⎠ P ( �G) = k �m

i , (B32)

∑
�G

F �m
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

(A �m
ij a

α
ij )2

⎞
⎠ P ( �G) = u �m

i,α.

The canonical probability P ( �G) of the multiplex in the
ensembles is

P ( �G) = 1

Z
exp

⎡
⎣−

∑
i<j

∑
�m �=�0

(
ω �m

i + ω �m
j

)
A �m

ij

⎤
⎦

× exp

⎡
⎣−

∑
i<j

∑
�m�=�0

M∑
α=1

(
λ �m

i,α + λ �m
j,α

)
A �m

ij a
α
ij

⎤
⎦

× exp

⎡
⎣−

∑
i<j

∑
�m�=�0

M∑
α=1

(
z �m
i,α + z �m

j,α

)
A �m

ij

(
aα

ij

)2

⎤
⎦ .

(B33)

The partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij

=
∏
i<j

⎛
⎝1 +

∑
�m�=�0

e−(ω �m
i +ω �m

j )
M∏

α=1

(
I

�m,α
ij

)mα

⎞
⎠ , (B34)

where I
�m,α

ij is given by

I
�m,α

ij =
S �m,α∑
aα

ij =1

exp
[−(

λ �m
i,α + λ �m

j,α

)
aα

ij − (
z �m
i,α + z �m

j,α

)(
aα

ij

)2]
,

where S �m,α = ∑N
i=1 s �m

i,α . The Lagrangian multipliers are fixed
by the conditions

−∂log Z

∂λ �m
i,α

= s �m
i,α =

∑
j �=i

〈
aα

ijA
�m
ij

〉
,

−∂log Z

∂ω �m
i

= k �m
i =

∑
j �=i

〈
A �m

ij

〉
,

−∂log Z

∂z �m
i,α

= u �m
i,α =

∑
j �=i

〈(
aα

ij

)2
A �m

ij

〉
. (B35)

The average weight 〈aα
ijA

�m
ij 〉 of the multilink �m between

nodes i and j in the layer α and the probability p �m
ij of a

multilink �m between node i and node j are given, respectively,
by

〈
aα

ijA
�m
ij

〉 = −e−(ω �m
i +ω �m

j )

Zij

[
∂I

�m,α
ij

∂
(
λ �m

i,α + λ �m
j,α

)
]

×
M∏

β �=α

(
I

�m,β

ij

)mβ

p �m
ij = e−(ω �m

i +ω �m
j )

Zij

M∏
α=1

(
I

�m,α
ij

)mα
. (B36)

The probability of a specific multiweight �aij in the between
the nodes (i,j ) is

πij (�aij ) = e−(ω �mij

i +ω �mij

j )

Zij

e− ∑
α=1,M (λ �mij

i,α +λ �mij

j,α )aα
ij

× e− ∑
α=1,M (z �mij

i,α +z �mij

j,α )(aα
ij )2

. (B37)

As previously, probability P ( �G) and entropy S follow
Eqs. (56) and (63), respectively.

6. Multiplex ensembles with given expected ν-multidegree
sequence {kν

i }, given expected ν-multistrength sequence {sν
i,α},

and given expected sequence {uν
i,α}

Finally, we consider the case in which we fix the given
expected ν-multidegree sequence kν

i of node i, for each node
i = 1, . . . ,N , for ν = 1, . . . ,M . In addition, for each node i

in layer α we fix the average ν-multistrength sequence sν
i,α

and the second moment of the weights incident to it for each
ν multilink, i.e., uν

i,α . The N · M · (2M + 1) constraints are
given by

∑
�G

F ν
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

aα
ijA

ν
ij
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⎠ P ( �G) = sν

i,α,
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i ( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

Aν
ij

⎞
⎠ P ( �G) = kν

i ,

∑
�G

F ν
i,α( �G)P ( �G) =

∑
�G

⎛
⎝∑

j �=i

(
aα

ijA
ν
ij

)2

⎞
⎠ P ( �G) = uν

i,α,

(B38)

with i = 1,2, . . . ,N , α = 1,2, . . . M and ν = 1,2, . . . ,M . The
canonical probability P ( �G) of the multiplex in this ensemble
can be expressed in terms of the Lagrangian multipliers λν

j,α ,
ων

i and zν
j,α , i.e.,

P ( �G) = 1

Z
exp

⎡
⎣−

∑
i<j

M∑
ν=1

(
ων

i + ων
j

)
Aν

ij

⎤
⎦

× exp

⎡
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(
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ij a
α
ij
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⎦

× exp

⎡
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M∑
α=1

(
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i,α + zν

j,α

)
Aν

ij

(
aα

ij

)2

⎤
⎦ , (B39)
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where the partition function Z is given by

Z =
∏
i<j

Zij , (B40)

with

Zij = 1 +
M∑

ν=1

e−(ων
i +ων

j )
∑

�m|ν( �m)=ν

M∏
α=1

(
I

ν,α
ij

)mα
, (B41)

where I
ν,α
ij is given by

I
ν,α
ij =

Sν,α∑
aα

ij =1

exp
[−(

λν
i,α + λν

j,α

)
aα

ij − (
zν
i,α + zν

j,α

)(
aα

ij

)2]
,

where Sν,α = ∑N
i=1 sν

i,α

The Lagrangian multipliers are fixed by the conditions
Eq. (B38) that can be also written in terms of the partial
derivatives of the partition function as

− ∂log Z

∂λν
i,α

= sν
i,α =

∑
j �=i

〈
aα

ijA
ν
ij

〉
,

−∂log Z

∂ων
i

= kν
i =

∑
j �=i

〈
Aν

ij

〉
, (B42)

−∂log Z

∂zν
i,α

= uν
i,α =

∑
j �=i

〈(
aα

ij

)2
Aν

ij

〉
.

The probability P ( �G) of a multiplex network �G and the
consequent entropy of the ensemble are given by Eq. (56)
and Eq. (63) with πij (�aij ) given by

πij (�aij ) = e−(ωνij

i +ωνij

j )

Zij

e− ∑
α=1,M (λνij

i,α +λνij

j,α )aα
ij

× e− ∑
α=1,M (zνij

i,α +zνij

j,α )(aα
ij )2

. (B43)

The probability pν
ij that the node i and the node j are linked

by a ν multilink is given by

pν
ij = e−(ων

i +ων
j )

Zij

∑
�m|ν( �m)=ν

M∏
α=1

(
I

ν,α
ij

)mα
. (B44)

Finally, the average weight of the link aα
ij belonging to a ν

multilink is given by

〈
aα

ijA
ν
ij

〉 = −e−(ων
i +ων

j )

Zij

[
∂I

ν,α
ij

∂
(
λν

i,α + λν
j,α

)
]

×
∑

�m|ν( �m)=ν

mα

M∏
β �=α

(
I

ν,β

ij

)mβ
. (B45)
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Guilera, Europhys. Lett. 107, 38002 (2014).

[34] G. Bianconi, A. C. C. Coolen, and C. J. Perez Vicente,
Phys. Rev. E 78, 016114 (2008).

[35] A. Annibale, A. C. C. Coolen, L. P. Fernandes, F. Fraternali, and
J. Kleinjung, J. Phys. A: Math. Theor. 42, 485001 (2009).

[36] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. Bassler, PloSone
5, e10012 (2010).

[37] V. Zlatic, G. Bianconi, A. Dı́az-Guilera, D. Garlaschelli, F. Rao,
and G. Caldarelli, Eur. Phys. J. B 67, 271 (2009).

[38] G. Bianconi, P. Pin, and M. Marsili, Proc. Natl. Acad. Sci. USA
106, 11433 (2009).
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