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Threshold cascade models have been used to describe the spread of behavior in social networks and cascades
of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as
distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different
ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way,
we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response
rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the
other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of
nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear
discontinuously as the network density increases; however, the cascade grows more slowly over time. This
behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet
slowly.
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I. INTRODUCTION

Multiple channels of interaction in a network (or network
layers) can have nontrivial consequences in the system’s
dynamics and function [1–13]. Effects of introducing new
network layers include catastrophic cascades of failure [2],
facilitated cascades [5], and a super-diffusive state [7]. Most
such studies on multiplex networks have assumed identical
dynamics for every node. However, many real-world complex
systems consist of heterogeneous agents who could respond
differently to their multiplex environment. For example, an
individual engaging in a multiplex social network may respond
to her social influences coming from multiple layers, and
how she integrates those layer-level influences may depend
on the individual’s personal and communal characteristics.
The consequences of such a heterogeneous response to the
layer-level influences on dynamic processes on multiplex
networks have yet to be characterized and understood.

The threshold cascade model has provided a theoretical
tool for understanding the spread of behavior in a social
network [14–17] and for studying the cascades of “knock-on”
default among financial institutions [18–21]. In this stylized
model, nodes exist in one of two states, active or inactive (e.g.,
a person changed behavior or not, a bank has defaulted or not).
Initially, each node draws a threshold from a distribution Q(r).
An inactive node with degree k and with m active neighbors
activates when its fraction of active neighbors, m/k, exceeds
its threshold r . The dynamics are iterated starting from a
small fraction ρ0 of initially active “seed” nodes, and then the
cascade size ρ, the fraction of active nodes in the steady state,
is observed. Previous studies showed that, for a wide range
of network densities and threshold distributions, even an ex-
tremely small seed fraction ρ0 can activate a finite fraction of an
infinite-size network, an event called a global cascade [16,17].
Recently, some studies have generalized the threshold model
to temporal networks [22] and to multiplex networks [5,23].
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However, cascades with heterogeneous nodal responses to
their multiplex environments are not yet addressed. On this
basis, in this paper we explore the effects of heterogeneous
responses of nodes to their multiple layers in threshold cascade
dynamics on multiplex networks by generalizing the previous
work [5].

This paper is organized as follows. In Sec. II, we describe
the model. The analytical approach for calculating the cascade
size for multiplex networks with locally treelike layers is
presented in Sec. III. In Sec. IV, we discuss results obtained
from the analytical calculations introduced in Sec. III and from
numerical simulations. Section V concludes with a discussion
of these results and of ways to make the model more realistic.

II. MODEL

To keep theoretical simplicity and analytical tractability,
we consider a mixture of populations of two types of nodes
with simplified response rules—hereafter called “OR nodes”
and “AND nodes”. OR nodes activate as soon as, in at least
one layer, a sufficiently large fraction of their neighbors in that
layer are active. AND nodes are more stubborn: they activate
as soon as, in each and every layer, a sufficiently large fraction
of their neighbors in that layer are active. Figure 1 depicts
examples of cascades in small networks containing (a) all OR
nodes and (b) all AND nodes.

Although highly stylized, the two types of response rules
can be motivated by real-world multiplex system dynamics. In
social systems, for instance, the OR rule would mean that just
one social sphere can convince someone to change behavior,
whereas the AND rule would mean that a person waits to
change behavior until receiving enough influence from all
social spheres. As another example, in banking systems, the
OR rule would mean that a bank engaging in multiple kinds of
lending defaults if, for at least one type of lending, sufficiently
many of its borrowers of that type defaulted and cannot repay
the bank, whereas the AND rule would mean that a bank
defaults once enough of its borrowers of every type have
defaulted.
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FIG. 1. (Color online) Illustration of the threshold model with heterogeneous responses on a two-layer multiplex network. Edges of the
two layers are drawn as green (solid) and orange (dashed) lines, respectively. Circle-shaped nodes use the OR rule, while square-shaped nodes
use the AND rule. Three cases for different fractions of OR nodes E are shown: (a) all nodes follow the OR rule (E = 1); (b) all nodes follow
the AND rule (E = 0); and (c) nodes following either rule are mixed together (0 < E < 1). The numeric label on a node denotes the step at
which the node activates, starting from the initially active seeds (labeled “0”). Unlabeled nodes are those remaining inactive.

The two response rules have opposite effects. If all nodes
respond with the OR rule as depicted in Fig. 1(a), then the
existence of multiple layers facilitates global cascades [5]. On
the contrary, if more nodes follow the AND rule [as illustrated
in Figs. 1(b) and 1(c)], then global cascades become rare or
even impossible. As the system approaches this extreme of
inhibited cascades, global cascades appear discontinuously
as the network densifies. We show that this phenomenon is
associated with a cusp catastrophe and that it suggests ways
to promote or to inhibit cascading phenomena in multiplex
networks.

III. ANALYTICAL APPROACH

A. Mean cascade size ρ

To investigate threshold dynamics on multiplex networks
with heterogeneous layer responses, we first present the analyt-
ical approach for calculating the mean cascade size, applicable
to multiplex networks with sparse, locally treelike layers. The
analytic approach developed for the threshold cascade model
on single-layer networks [17] can be generalized to the case of
multiplex networks with �-layers (“�-plex networks”) [5] by
following a mean-field-type reasoning similar to other models
on multiplex networks [2,12,13].

The expected size ρ of a cascade begun from a fraction ρ0

of initially active seed nodes (chosen uniformly at random)
can be approximated for locally treelike networks as

ρ = ρ0 + (1 − ρ0)
∞∑

k=0

P (k)
k∑

m=0

�∏
α=1

Bkα

mα

(
q(α)

∞
)
F̄ (m,k). (1)

Here, we approximate the (locally treelike) graph as a tree,
and q

(ν)
∞ is the (limiting) probability that a node is activated

by its children, given that its parent in layer ν is inactive.
P (k) is the joint degree distribution of the �-plex network,
with degree vector k ≡ (k1, . . . ,k�). The sum

∑k
m=0 runs

over all �-component vectors m, representing the numbers
of active neighbors in each layer, and thus having entries
mα ∈ {0, . . . ,kα} for each layer index α ∈ {1, . . . ,�}. Bk

m(p)
is shorthand notation for the binomial probability distribution,
(k

m)pm(1 − p)k−m. F̄ (m,k) is the mean response function, the
probability that a node with degree k and m active neighbors
activates, averaged over all thresholds (described in more detail
below). Equation (1) gives the probability that a randomly

chosen node is either a seed node (with probability ρ0, given
by the first term on the righthand side) or is not a seed node
but is activated by its active neighbors through the response
function F̄ [given by the second term on the righthand side of
Eq. (1)].

The probabilities {q(α)
∞ : 1 � α � �} in Eq. (1) are obtained

as the fixed point of coupled recursion equations that are
written vectorially as relations,

qn+1 = g(qn), (2)

with the α-th component of Eq. (2) given by

q
(α)
n+1 = g(α)(qn)

≡ ρ0 + (1 − ρ0)
∞∑

k=0

kαP (k)

zα

kα−1∑
mα=0

{kν }∑
{mν }=0,ν �=α

Bkα−1
mα

(
q(α)

n

)

×
∏
ν �=α

Bkν

mν

(
q(ν)

n

)
F̄ (m,k), (3)

starting from q
(α)
0 = ρ0 for all α ∈ {1, . . . ,�}. Here, q(α)

n is the
probability that a node located n hops from the leaves of the
tree is activated by its children given that its parent in layer
α is inactive. The leaves of the tree are initially active with
probability q

(α)
0 ≡ ρ0.

B. The response functions

The mean response function F̄ used in Eqs. (1)–(3) is
defined by

F̄ (m,k) ≡
∫

Q(r)F (m,k,r) dr, (4)

with the assumption that nodes independently draw their
thresholds r ∈ [0,1]� from a distribution Q(r). The response
function F (m,k,r) is the probability that a randomly chosen
node with degree k, among which m are active neighbors,
and threshold r becomes active. Next we introduce a response
function that has heterogeneous layer response rules.

A node in an �-plex network has kα neighbors in each layer
α ∈ {1, . . . ,�}. At a certain point in time, this node sees that
mα out of its kα neighbors in layer α are active, and the node
responds according to one of the two elementary response
rules, FOR or FAND, defined as follows. FOR denotes the
“OR rule”, for which an inactive node activates when, in at
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least one layer α in which it has neighbors (i.e., in which
kα > 0), the fraction of active neighbors, mα/kα , exceeds its
threshold rα . [Recall the example with a small network shown
in Fig. 1(a).] This OR rule can be implemented in the response
function as

FOR(m,k,r) = max
{
1 mα

kα
>rα

:1 � α � �, kα > 0
}
, (5)

where 1A is the indicator function (1A = 1 if A is true, else
1A = 0). Likewise, the response function of the “AND rule”,
for which nodes activate when enough neighbors in every layer
are active [recall Fig. 1(b)], can be written as

FAND(m,k,r) = min
{
1 mα

kα
>rα

:1 � α � �, kα > 0
}

(6)

[i.e., replace max with min in Eq. (5)].
In our model, a random fraction E (respectively, 1 − E)

of nodes in the network follow the OR (AND) rule, called
the OR (AND) nodes [Fig. 1(c)]. Then, F can be taken to
be the additive mixture of two elementary response functions
[Eqs. (5) and (6)] parametrized by E ∈ [0,1],

F (m,k,r) = EFOR(m,k,r) + (1 − E)FAND(m,k,r). (7)

IV. RESULTS

We illustrate the main results with a simple yet rich case:
an uncorrelated, two-layer (duplex) Erdős-Rényi network [24]
with identical mean degree z in each layer. Also, each node
has the same threshold rα = R for both layers α ∈ {1,2}.
Thus, P (k) = P (k1)P (k2) with Poissonian degree distribution
in each layer, and Q(r) = δ(r1 − R)δ(r2 − R). Extending the
formalism to more than two layers is straightforward and
presented in part in [5]. (The degree distribution of correlated
multiplex networks was introduced [4,25], and their robustness
was recently studied [26].)

A. Facilitating or inhibiting cascades

First, we illustrate how changing the fraction of OR
nodes, E , either facilitates or inhibits global cascades and
can affect the nature of the appearance of global cascades.
We present the (z,R)-phase diagram displaying the regions
of mean degree z and threshold R for which global cascades
are likely and unlikely for various E [Fig. 2(a)]. To obtain
the boundary separating these parameter regions, we find
local maxima of the number of iterations (NOI) of the
recursion relation (2), a procedure comparable to examining
the divergence of relaxation time at a phase transition in critical
phenomena [27] and recently applied to cascading failures in
interdependent networks [28]. This method more accurately
locates the boundaries than the first-order cascade condition
used in previous studies [5,16,17,29] because it accounts for
nodes activated by more than one neighbor.

If E = 1, then all nodes follow the OR rule (5), which
maximally facilitates global cascades compared to the single-
layer case [compare the red boundary with the gray region in
Fig. 2(a)] [5]. One can also assess the effect of multiplexity
by splitting a given network into multiple layers, which is also
found to facilitate cascades for E = 1 [5, Fig. 3].

As E decreases, more nodes follow the AND rule (6), which
inhibits cascades and hence shrinks the cascade region [see the
orange, green, purple, and blue boundaries in Fig. 2(a)]. When
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FIG. 2. (a) The (z,R)-phase diagram of global cascades starting
from ρ0 = 10−3 on duplex ER networks for various fractions E
of OR nodes (lines) and for a single-layer network (gray shaded
region). Global cascades occur on the left of the boundaries, which are
obtained by finding local maxima of the number of iterations (NOI)
of the recursion (2) iterated until successive iterates differ by less than
10−10 (step sizes �z = 0.1,�R = 0.01). The dashed and solid lines
indicate the continuous and discontinuous transitions, respectively.
(b) Cascade size ρ and (c) NOI versus the mean degree z with fixed
threshold R = 0.18 [indicated by the vertical dotted line in (a)] and
E = 0.2,0.5,1.0. The lines are from theoretical calculation (1); the
dots are from numerical simulations with N = 106 nodes, averaged
over 102 realizations. The type of small-z transition changes from
continuous (E ∈ {0.5,1}) to discontinuous (E = 0.2). (c, inset) NOI
at the small-z transitions versus E , displaying a peak at Ec ≈ 0.28.

E is less than approximately 0.3, the cascade region becomes
smaller than the single-layer case, showing that multiplexity
can also impede cascades. If all nodes follow the AND rule
(i.e., E = 0), then global cascades are nearly impossible [see
Fig. 2(a)].

Before proceeding further, we briefly address the issue
of reducibility of multiplex dynamics to an equivalent dy-
namics on single-layer networks with appropriately chosen
heterogeneous threshold distributions. In our example, an
intuitive and reasonable choice would be to set the threshold
equal to R/2 for a fraction E of nodes (to play the role of
OR nodes) and equal to R for the rest (to play the role of
AND nodes) on a single-layer network with twice the mean
degree, zsingle = 2z, as that of the layers of duplex network.
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FIG. 3. (Color online) The (z,R)-phase diagram of global cas-
cades on duplex ER networks for the multiplex model (green line)
and the single-layer model that was designed to replicate the multiplex
model (black line) with E = 0.2. The dashed and solid lines indicate
the continuous and discontinuous transition, respectively. The black
dot separates two different transition types. For the single-layer
model, the mean degree is zsingle = 2z, and the thresholds are given
by R/2 for OR nodes and R for AND nodes. For the duplex model,
the mean degree is zduplex = z in each layer, and the thresholds are
given by R for all nodes.

The obtained (z,R)-phase diagram of this single-layer model
is shown in comparison with that of the original multiplex
model for E = 0.2, the case chosen deliberately to display
discontinuous transitions in the multiplex model (Fig. 3).
The single-layer model differs from the multiplex dynamics
not only quantitatively (different phase boundaries) but also
qualitatively (different transition types). This result suggests
that “reducing” the multiplex dynamics into a single-layer
model should be highly nontrivial when the layer-dependent
response in multiplex dynamics [such as Eqs. (5) and (6)] is
not simply additive but nonlinear.

B. Cusp catastrophe and tricritical-point scaling

Not only does reducing the fraction E of OR nodes
inhibit global cascades; it can also cause cascades to appear
discontinuously. Previous work has shown that if every node
in a single-layer network has the same threshold R, then
the mean cascade size ρ grows continuously and then drops
discontinuously with increasing mean degree z [17]. In our
multiplex model with a mixture of response rules, the small-z
transition for global cascade changes from continuous to
discontinuous when E becomes sufficiently small [Fig. 2(b)].
We find that the NOI for these small-z transitions exhibits a
peak at Ec ≈ 0.28 [Fig. 2(c), inset], and later we show that this
value is where the continuous transition becomes discontinu-
ous. In passing, we note that a discontinuous appearance of
global cascades was also observed in a single-layer network
with heterogeneous thresholds, displaying, however, a quite
different phase diagram [17].

The bifurcation diagram (Fig. 4, inset) confirms this
discontinuous transition. The fixed points q of recursion (2)
are roots of g(q) − q = 0. In numerically simulated cascades,
we observe only the smallest root (plotted as red in the inset
of Fig. 4) because we consider small seed-sizes ρ0 � 1.
Bifurcation analysis of q(1)(=q(2)) reveals that the system
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FIG. 4. (Color online) (Main) Graphical solutions for the fixed
points of the recursion (2) for duplex ER networks with z =
1.5, 1.8, 2.13, 2.3 and R = 0.18, for E = 0.2. (Inset) Bifurcation
diagram of the roots of g(q) − q, with solid and dotted curves
denoting the stable and unstable solutions, respectively. The red curve
denotes the physical solutions for cascades starting from the small
seed ρ0 = 10−3. Global cascades appear discontinuously at z ≈ 2.13.

undergoes a fold catastrophe: as z increases from 0, two new
roots appear in a saddle-node bifurcation, and one of those
roots (the unstable one) annihilates the small, stable root at
another saddle-node bifurcation at the small-z transition point,
leaving only a large stable root (Fig. 4). Thus, as the network
densifies, global cascades appear discontinuously. Increasing
the fraction E of OR nodes beyond Ec ≈ 0.28 eliminates the
fold catastrophe, thereby restoring the familiar continuous
transition [16,17].

In short, the model undergoes a cusp catastrophe [30], illus-
trated in Fig. 5. The cusp point (Ec,zc) marks the parameters
at which the line of continuous transitions and the line of
discontinuous transitions join. This point can be associated
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FIG. 5. (Color online) (Main) The (z,E)-phase diagram of global
cascades of duplex ER networks with threshold R = 0.18. The
gray region indicates where global cascades occur. Continuous and
discontinuous transitions occur along the dotted and solid curves,
respectively, separated by the cusp point C = (Ec,zc) = (0.28,1.36)
marked by a dot. (Inset) The scaling relation along the continuous
transition curve in the new coordinate system (μE ,μz) centered at a
point on the transition curve for various E . The best fit to the straight
line is observed for the coordinate system centered at C. The straight
line has slope 2, drawn as a guideline.
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with tricritical behavior when the initial seed size ρ0 � 1:
the continuous transition line undergoes scaling behavior as
it crosses over to the discontinuous one. To describe the
crossover behavior, one introduces two new variables μE and
μz (called “scaling fields”) [31–33], which are tangential and
normal, respectively, to the continuous transition line. In the
new coordinate system centered at the estimated cusp point
(Ec,zc) = (0.28,1.36), the two scaling fields obey a power-law
relation near the origin as

μz ∼ μ
1/ϕt

E ,

with the crossover exponent ϕt = 1/2 (Fig. 5, inset). Other
choices for (Ec,zc) were not compatible with the scaling.
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FIG. 6. (Color online) (a–d) Example cascade snapshots in a
small duplex ER network of N = 103 nodes with E = 0.2. The
red and blue nodes are active nodes that follow the OR and AND
rules, respectively. Starting from a random 1% of seed nodes (a),
the OR nodes activate in greater numbers in the first few steps
(b). As time proceeds, however, AND nodes activate in greater
numbers (c) and eventually dominate (d). (e) Cumulative numbers
of active OR and AND nodes in a numerically simulated cascade
on a duplex ER network of N = 106 nodes with z = 2.3, just above
the small-z transition point for E = 0.2. Initial exponential growth
(I, yellow) is rapidly slowed due to the “stubborn” AND nodes (II,
green), but once enough nodes are active the activation resumes the
exponential growth, and AND nodes overtake OR nodes (III, blue),
finally reaching saturation (IV, gray).

C. Slowed cascades near the cusp point

Response heterogeneity affects not only whether cascades
appear discontinuously; it also affects who activates when and
how slowly the cascade progresses. As depicted in Fig. 6, a
typical global cascade near the cusp point can be qualitatively
divided into four stages [labeled I–IV in Fig. 6(e)]. Initially,
activation grows exponentially, and the more susceptible OR
nodes activate in greater numbers than the AND nodes, even
though OR nodes are less numerous (because E = 0.2 in
Fig. 6). In stage II, the rates of activation slow for both
types of nodes. What is particularly interesting about stage
II is that the presence of AND nodes significantly delays the
global cascade. If the goal is to prevent large cascades (as
in bank regulation), then stage II provides a crucial window
of opportunity for intervention. After sufficiently many nodes
have activated, the AND nodes activate at a faster rate and
eventually overtake the number of active OR nodes (stage
III), as there are more AND nodes in the network with
E = 0.2. Finally, the activations saturate for a finite system
(stage IV).

V. SUMMARY AND DISCUSSION

Introducing new network layers, such as adding new social
media or creating novel ways of lending, can facilitate or
impede threshold-driven cascades, depending on how nodes
respond to their multiplex surroundings (Fig. 2). For networks
in which most nodes can be activated through any one of the
layers (i.e., for large E), global cascades become likely—even
for networks that would have been too dense to allow global
cascades if there were just one channel of influence. By
contrast, if most nodes wait to activate until their thresholds
are met in each and every layer (i.e., if E is small), then global
cascades occur rarely, if at all. However, when global cascades
do occur in this small-E regime, they appear discontinuously
(and at a larger network density) as the network densifies
(Figs. 2 and 5). At the same time, such discontinuous global
cascades take considerably longer to develop (Figs. 2 and 5).
The AND response rule in our model [Eq. (6)] is analogous
to the rule of mutual connectivity in mutual percolation on
multiplex networks [2]. Therefore, the discontinuous transition
observed in our model shares a similar origin with that
in mutual percolation-type problems in interdependent and
multiplex networks [2,3,12,34–36].

Real multiplex complex systems such as social and financial
systems have considerably greater structural and dynami-
cal complexity than the model studied here, including, for
example, interlayer correlations [4,26], link overlap [37],
heterogeneous network structure [16], heterogeneous thresh-
olds [17], and different types of cascading failure dynamics
on weighted networks [38], to name only a few. Regarding
the multiplex response, the two simplified response rules
studied in this work could be made more realistic by
considering, for example, different combinatorial response
rules and/or time-dependent, adaptive response rules [39]. We
hope that our study of a simple theoretical model can aid
in stimulating extensions that better capture real cascading
phenomena.
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[23] O. Yağan and V. Glifor, Phys. Rev. E 86, 036103 (2012).
[24] P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17

(1960).
[25] K.-M. Lee, J. Y. Kim, S. Lee, and K.-I. Goh, in Networks

of Networks: The Last Frontier of Complexity, edited by
G. D’Agostino and A. Scala (Springer, Heidelberg, 2014).

[26] B. Min, S. D. Yi, K.-M. Lee, and K.-I. Goh, Phys. Rev. E 89,
042811 (2014).

[27] N. Goldenfeld, Lectures of Phase Transitions and the
Renormalization Group (Addison-Wesley, New York, 1992).

[28] R. Parshani, S. Buldyrev, and S. Havlin, Proc. Natl. Acad. Sci.
USA 108, 1007 (2010).

[29] J. P. Gleeson, Phys. Rev. E 77, 046117 (2008); A. Hackett,
S. Melnik, and J. P. Gleeson, ibid. 83, 056107 (2011).

[30] T. Poston and I. Stewart, Catastrophe Theory and its Applica-
tions (Dover, New York, 1996), Chap. 5.

[31] E. K. Riedel and F. J. Wegner, Phys. Rev. Lett. 29, 349 (1972).
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