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The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size)
distribution of pieces is described by a power law functional form. The exponent of the distribution displays
a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical
response of the system. Recently, experiments and computer simulations have reported an energy dependence
of the exponent increasing with the imparted energy. These novel findings question the phase transition picture
of fragmentation phenomena, and have also practical importance for industrial applications. Based on large
scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy
dependence in fragmentation processes resolving controversial issues on the problem: studying the impact
induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence
occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason
is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity
at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the
subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all
plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of
blending the contributions of universal partial processes.

DOLI: 10.1103/PhysRevE.90.062811

I. INTRODUCTION

Fragmentation into numerous pieces occurs when a large
amount of energy is imparted to a solid within a short time
[1]. Impact induced fragmentation of heterogeneous materials
is abundant in nature having also a high importance for
industrial applications especially in mining and ore processing
[2-8]. During the past decades research on fragmentation
mainly focused on the statistics of fragment masses (sizes)
obtained by the breakup of heterogeneous materials [1,9,10].
A large number of experimental [1,5-17] and theoretical
studies [13,18-24] have confirmed that the mass distribution
of fragments is described by a power law functional form.
The exponent of the distribution was found to show a
high degree of robustness, i.e., investigations revealed that
the value of the exponent does not depend on the type
of materials, amount of input energy, and on the way the
energy is imparted to the system until materials of a high
degree of heterogeneity are fragmented [1,9,10]. The value
of the exponent is mainly determined by the dimensionality
of the system [13,15,18,19,21,23,25-27] and by the brittle or
ductile mechanical response of the material [28]. The univer-
sality of fragmenting has been shown to be the fingerprint
of an underlying phase transition from the damaged to the
fragmented phase of the breakup process [5,6,14,18].

Recently, experiments on the impact induced fragmentation
of long thin glass rods [29,30] and freely hanging glass plates
[31,32] revealed energy dependence of the mass distribution
exponent, i.e., the exponent was found to increase with the
imparted energy [29-35]. The importance of these findings
originates from the fact that, on the one hand, they question
the universality and hence the phase transition interpretation
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of fragmentation phenomena, and on the other hand, they
have consequences on the design of engineering technologies
used for crushing in mining and ore processing [10]. Recent
computer simulations have also provided an interesting coun-
terexample [23]: mass distributions of pieces obtained by the
breakup of spherical bodies impacting against a hard wall have
been found to get steeper with increasing impact velocity.
However, it proved to be an apparent energy dependence
which occurs solely due to the moving cutoff of the mass
distributions, and hence, it can be transformed out by rescaling
with the average fragment mass [23]. This study highlighted
the importance of scaling and data collapse analysis when
evaluating fragmentation results of finite size systems.

In order to resolve controversial issues on the energy
dependence of the exponent of fragment mass distributions,
in the present paper we study the impact induced breakup of
heterogeneous materials by large scale computer simulations.
Our results demonstrate that energy dependence emerges when
the fragmenting object is embedded in a higher dimensional
space. Studying the fragmentation of platelike objects in three
dimensions we show that energy dependence is obtained for
low plate thicknesses, while it disappears for thick plates. The
reason is that due to the interplay of the geometry of the sample
and of the embedding space a transition takes place in the
system between two fragmentation mechanisms as the impact
velocity is increased: At low velocities the crack structure is
determined by the interference of elastic waves resulting in
an essentially two-dimensional crack pattern with a regular
structure. High velocity impact gradually excites cracking in
the 3D bulk of the solid giving rise to a highly disordered
crack structure and a steeper decay of the mass distribution. In
three-dimensional (3D) bulk samples the transition is hindered
so that a unique exponent emerges. In spite of the observed
nonuniversality of the complete mass distribution, identify-
ing subsets of fragments dominated by different cracking
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mechanisms an astonishing universality of their mass distribu-
tions is revealed at all plate thicknesses. Our study provides a
robust scenario which leads to the energy dependence of mass
distribution exponents in fragmentation phenomena but it still
underlines the importance of universality.

II. DISCRETE ELEMENT MODEL OF FRAGMENTATION

We investigate the fragmentation of platelike objects
induced by impact of a projectile in the framework of a
discrete element model (DEM) developed recently [36]. The
model has proven successful in reproducing key features of
fracture processes of heterogeneous materials. Here we briefly
summarize the main steps of the model construction based on
Ref. [36]. Similar modeling approaches have been also used
in Refs. [21,23,37].

The sample is represented as a random packing of spherical
particles which was generated by sedimenting particles in
a rectangular container [36,37]. The diameter d of the
particles was sampled from a uniform distribution in a narrow
range (d) — Ad/2 < d < (d) + Ad/2, where (d) denotes the
average diameter. The range Ad of diameter values was set
as Ad/(d) = 0.05. In the simulations platelike samples were
constructed with a rectangular basis of side length L and height
H . Simulations were carried out with a fixed extension L = 30
varying the height of the sample H in the range H = 3-15
measured in units of the average particle diameter (d). The
total number of particles in the samples falls between 5000
(H/{d) =3)and 25000 (H/{d) = 15).

In the model, cohesive interaction of particles is provided
by beams which connect the particles along the edges of a
Delaunay triangulation of the initial particle positions. In three
dimensions the total deformation of a beam is calculated as the
superposition of elongation, torsion, as well as bending and
shearing. Crack formation is captured such that the beams,
modeling cohesive forces between grains, can be broken
according to a physical breaking rule, which takes into account
the stretching and bending of contacts,
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Here ¢;; denotes the axial strain of the beam between particles
i and j, while ©;, and ®; are the bending angles of the
beam ends. The parameters gy and ®y, control the relative
importance of the two breaking modes [21,23,25,36,37]. In
the model there is only structural disorder present, i.e., the
breaking thresholds are constant gy, = 0.002 and ®y = 2°,
however, the physical properties of beams such as length,
cross section, and elastic moduli are determined by the random
particle packing. At the broken beams along the surface of
the spheres cracks are generated inside the solid and as a
result of the successive beam breaking the solid falls apart.
The interaction of those particles which are not connected by
beams, e.g., because the beam has been broken, is described by
the Hertz contact law [38]. The Hertz contact ensures that force
can be transmitted through crack faces when they are pressed
against each other. The fragments are defined as sets of discrete
particles connected by the remaining intact beams. The time
evolution of the fragmenting solid is obtained by solving the
equations of motion of the individual particles [38,39] until
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FIG. 1. (Color online) Geometrical setup of the simulations: rect-
angular samples of a square shaped basis were considered in such a
way that the side length L/(d) = 30 of the square was fixed and the
height H/(d) of the sample was varied from 3 to 15. Here a sample is
presented for H/(d) = 11. A particle in the middle of the front side
of the sample was selected; together with its neighbors it got an initial
velocity pointing into sample. The cylinders connecting the particles
represent beams and the white arrow indicates the direction of the
impact velocity. The inset shows a closer view on a small segment of
the sample.

the entire system relaxes meaning that no beam breaking
occurs during one thousand consecutive time steps and there
is no energy stored in deformation. For more details of the
model construction and parameter settings see Refs. [36].

Impact loading was performed in such a way that a single
surface particle was selected in the middle of one of the side
walls of the sample. Together with its contacting neighbors
it got an initial velocity Uy pointing towards the center of
mass of the body. This is equivalent to an experimental setup
where the impactor does not penetrate the target but is stopped
after hitting the target surface as, e.g., in Refs. [32,40]. The
geometrical setup of the simulations and the loading condition
of impact s illustrated in Fig. 1. For the smallest plate thickness
H/(d) = 3 theimpact site practically spans the cross section of
the samples while for higher thicknesses the loading condition
gets close to a pointlike impact.

Computer simulations were performed to determine the
sound speed ¢ of the model material. In the presentation of
the results lengths and velocities are made dimensionless by
dividing them with the average particle diameter (d) and with
the sound speed c, respectively.

III. DAMAGE-FRAGMENTATION TRANSITION

In order to investigate how the overall geometry of the
system affects the outcomes of the breakup process for each
plate thickness H we carried out simulations varying the
impact velocity in a broad range. To accumulate statistics
simulations were repeated 2000 times for each parameter
set with different realizations of the structural disorder. As
a representative example Fig. 2 presents the time evolution of
a plate of thickness H/{(d) = 3 generated by an impact with
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FIG. 2. (Color online) Time evolution of a fragmenting plate of
thickness H/(d) = 3 embedded in the three-dimensional space. The
impact velocity vy/c = 0.2 is slightly above the critical point of
fragmentation. Compressed beams are green while the stretched ones
are red so that the propagation of a shockwave can be observed.
Particles are colored according to the fragment they belong to while
the color (grey) of fragments is randomly selected from a palette.
Panel (d) presents the final state of the system where the sample is
reassembled by placing the particles back to their original position.

initial velocity vg/c = 0.2. The sample breaks into a large
number of pieces due to the shockwave generated by the impact
resulting in a broad distribution of fragment sizes. The figure
also shows the final reassembled body where fragments can
be easily identified. Of course, the degree of breakup strongly
depends on the value of the impact velocity vg: at low vy the
sample just gets damaged around the impact site, i.e., some
beams break and small fragments comprising a few particles
are ejected but the main part of the body retains its integrity.
To achieve complete fragmentation, where even the largest
fragment is significantly smaller than the original body, the
impact velocity has to exceed a critical value v.. To quantify
the degree of breakup we determined the average mass of
fragments (M,/M,) as the ratio of the second M, and first
M, moments of fragment masses. The kth moment M}, of the
fragment mass in a single simulation is defined as

M, = Zm:c - mfnax’ (2)

where m; denotes the mass of single pieces, while My is
the largest fragment mass. The sum runs over all fragments.
The ratio of the two moments M,/ M, was determined in single
simulations and then it was averaged over fragmentation events
at each impact velocity vg. The inset of Fig. 3 shows that
gradually increasing vy the average fragment mass increases
due to the creation of larger fragments. Since the largest
fragment is always removed from the moments in Eq. (2),
the decreasing branch of (M, /M) is caused by the absence of
a dominating piece. Hence, the position of the sharp maximum
can be identified with the critical value v, of the impact velocity
where complete breakup occurs. The result demonstrates that
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FIG. 3. (Color online) Inset: Average mass of fragments

(M,/M,;) as a function of the impact velocity v, for all plate
thicknesses H considered. The main panel presents the same data
rescaled with appropriate powers of the plate thickness H to obtain
collapse of the curves.

the system undergoes a transition as the impact velocity is
varied from the damage phase (vy < v.), characterized by the
presence of a dominating piece, to the fragmentation phase
(vo > v.), where no major fragment prevails. The existence
of the damage-fragmentation transition has been verified for
various types of systems both by experiments [3-8,13] and
computer simulations [15,18,19,21,23-27].

In the inset of Fig. 3 the critical velocity v, is an increasing
function of H because the total mass of the sample My
increases with the plate thickness M, o L?H . The main panel
of Fig. 3 presents that rescaling vy and (M,/M;) of the inset
with appropriate powers of the plate thickness H the results
obtained at different thicknesses can be collapsed on a master
curve. The high quality collapse implies the validity of the
scaling form

(Ma/ My)(vo, H) = HP ¢p(vo/ H*), )

where ¢(x) denotes the scaling function. The exponents were
obtained numerically as « = 0.2(3) and 8 = 0.5(2) giving
the best collapse in Fig. 3. It follows from Eq. (3) that the
critical impact velocity v. increases as a power law of the
plate thickness

v, o« H. 4)

In the following we focus on the probability distribution of the
mass of fragments p(m) in the fragmented phase to understand
how it evolves with the impact velocity at different plate
thicknesses.

IV. MASS DISTRIBUTION OF FRAGMENTS

Figure 4 presents the fragment mass distribution p(m) for
several values of the plate thickness H at different impact
velocities. A generic feature of the distributions is that in the
damage phase (vy < v.) p(m) is composed of two distinct
parts: due to the presence of a big residue, a peak of the
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FIG. 4. Mass distribution of fragments at different impact veloc-
ities for four different plate thicknesses H/(d): (a) 3, (b) 5, (c) 11,
(d) 15. In the damage phase the distributions are composed of two
distinct parts, i.e., the large residues form a peak at m /M,y ~ 1, while
the small fragments have a rapidly decreasing distribution. The two
regimes are separated by a gap which gradually disappears as the
critical velocity v, is approached from below. The dashed straight
lines represent power laws of exponents (a) 1.7 and 2.4, (b) 1.7, (c)
1.9, and (d) 1.9.

mass distribution is formed close to m /M, ~ 1 while the
distribution of small pieces has a rapidly decreasing functional
form. The two regimes are separated by a gap which gradually
disappears as the critical impact velocity is approached from
below. It can be observed that in the fragmented phase (vy >
v.) small sized fragments have a power law mass distribution

p(m) occm™, 4)

which is followed by a cutoff regime. The power law over a
broad range first occurs at the critical point.

The important feature of our results presented in Fig. 4 is
that for low plate thicknesses H we observe a gradual increase
of the mass distribution exponent from 7 = 1.7 obtained
at the critical point v, to 7 = 2.4 reached in the limit of
high vy values [see Fig. 4(a)]. However, increasing the plate
thickness in Figs. 4(b)—4(d) this dependence of T on the impact
velocity gradually disappears and for high plate thicknesses
H/(d) > 11 only a single value of the exponent 7 = 1.9
remains. For increasing vy the mass of the largest fragment
must decrease which may result in an apparent increase of the
exponent simply due to the shifting cutoff of the distributions.
However, contrary to Ref. [23] our analysis showed that the
change of 7 in Fig. 4 is the real behavior of p(m); it cannot be
transformed out by rescaling with the average fragment mass.

A. Fragmentation mechanisms

Our computer simulations revealed that the observed
dependence of v on the impact velocity is caused by a
transition between two distinct fragmentation mechanisms,
which emerges due to the interplay of the geometry of the
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FIG. 5. (Color online) Mass distribution of fragments p(m) ob-
tained at the critical point of fragmentation v, for the smallest
thickness H/(d) = 3. Fragments giving dominating contribution to
different ranges of p(m) originate from well defined spatial regions
of the sample. These regions are highlighted in a single sample in
the inset using the same colors (characters) as for the corresponding
ranges of the mass distribution. For comparison we also present the
mass distribution at the highest impact velocity vy/c = 0.5 where
the power law regime is significantly steeper. The slopes of the two
straight lines are t = 1.7 and 7 = 2.4.

sample and of the dimensionality of the embedding space.
It can be seen in Fig. 2 that immediately after impact the
specimen gets damaged in the vicinity of the impact site,
i.e., in a small volume starting from the surface all beams
get broken and single particles (powder in the model) are
ejected from the specimen. The impact loading generates a
shockwave which gets gradually attenuated by the breaking
of beams and by the expansion over a larger volume. At
sufficiently high vy the compression wave can pass through
the sample and reflects back with opposite phase as a tensile
wave at the free boundaries of the rectangular specimen
freely evolving in the three-dimensional embedding space.
In this velocity range the stress field which gives rise to the
formation of extended cracks and final breakup is determined
by the interference pattern of compression and reflected tensile
waves. This mechanism has the consequence that for the limit
of thin plates H <« L the breakup of the specimen at the
critical impact velocity is caused by a relatively regular crack
pattern which is essentially two-dimensional. To demonstrate
how this fragmentation mechanism works Fig. 5 presents
the mass distribution p(m) of pieces at the critical impact
velocity for H/(d) = 3 together with a sample in the inset
where particles of different spatial regions are highlighted by
different colors. It can be observed that p(m) has a power law
behavior over a broad range of fragment masses, however, it is
decorated by distinct maxima. Detailed analysis revealed that
the emergence of the maxima is the fingerprint of the regularity
of the two-dimensional crack structure of the platelike object,
i.e., fragments giving dominating contribution to a maximum
always emerge in the same spatial region of the specimen.
To make it clear in Fig. 5 we assigned colors (characters) to
the maxima of p(m) such that in the inset the same colors
(characters) are used for the particles of the spatial regions
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where the corresponding fragments originate from. It can be
seen that the smallest fragments comprising a few particles
[grey (a)] are generated in the destructed zone close to the
impact point, while larger fragments are formed deeper in the
sample [cyan (c)]. The interference of elastic waves generates
a highly stretched zone along the surface of the plate which
gives rise to the detachment of surface fragments both on the
left and right sides [green (d)] and on the back side [blue (e)].
The two corners of the front side of the sample [red (b)] result
in a slight local maximum of p(m) between the grey (a) and
cyan (c) regions. The largest fragment [yellow (f)] controlling
the cutoff of the distribution is created inside the specimen
close to the back side with a shape elongated perpendicular to
the direction of impact. The two maxima of the yellow region
of p(m) are caused by the fact that the yellow region breaks
into two major pieces with a high probability.

As the impact velocity gets high enough the overall two-
dimensional character of the crack pattern disappears and most
of the cracks are created in the three-dimensional bulk of
the material. This second fragmentation mechanism gradually
becomes dominating with increasing vy. As a consequence,
in Fig. 4(a) the cutoff of p(m) shifts toward smaller m
and the fraction of large fragments decreases in the mass
distribution giving rise to a higher value of the power law
exponent 7. It follows from the above arguments that the
dependence of the mass distribution exponent t on the impact
velocity vy is caused by the gradual crossover from the
planar two-dimensional to the three-dimensional bulk crack
structure. At the critical velocity the 2D character dominates
while in the limit of high vy the crack pattern is completely
three-dimensional. In the intermediate velocity range both
mechanisms are present so that the observed mass distribution
is a blend of their contributions. The crossover is gradual in the
sense that in the highly destroyed zone around the impact site
the crack pattern is three-dimensional already at the lowest
impact velocities which then spreads over the sample as vy
increases. To have a clear view on the two limits of p(m) with
different exponents of the power law regimes in Fig. 5 the mass
distribution is also presented for the highest impact velocity
vo/c = 0.5 we considered. The two straight lines of the figure
represent power laws of exponents t = 1.7 and t = 2.4.

B. Superposition of subsets of fragments

The changing exponent of the mass distribution is the
consequence of the gradual crossover of the crack structure
in the sample as the impact velocity increases. The two- and
three-dimensional crack structures favor fragment formation
in different spatial regions of the sample having also different
extensions. Hence, in order to understand how the crossover
emerges we identified sets of fragments according to their
position in the sample and analyzed how their contributions
to the complete mass distributions evolve with the impact
velocity and plate thickness. The key feature of fragments
is whether they are created in the bulk or on the surface of
the initial body. Since the sample surface is rather irregular, to
identify the position of fragments we construct their bounding
box and compare the location of its corner points to the
bounding box of the original sample. For this purpose in
the final state of the fragmentation process we reassembled
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the sample, as it is illustrated in Fig. 2(d), and determined
the bounding box of each fragment aligning the sides of the
box with the edges of the sample. Based on the position and
extension of the bounding box three types of fragments are
distinguished:

Bulk fragment. If the corners of the bounding box all lie
inside the sample, i.e., their distance from the surface of the
bounding box of the sample is greater than a threshold distance
0.2(d), the fragment is considered to be a bulk fragment.

Surface fragment. If any of the corners, but not all of them,
are within the threshold distance to the surface of the sample’s
bounding box, the fragment is called surface fragment.

Spanning fragment. Those fragments which span the
sample at least in one direction are called spanning fragments.
For spanning fragments all the corners of the bounding box lie
in the vicinity of the sample surface.

Figure 6 demonstrates the identification of the three subsets
of fragments in two plates of different thicknesses. For each
subset a single fragment is highlighted together with its
bounding box.

The spanning fragments are typically formed by cracks,
which connect two opposite sides of the sample. Such cracks
emerge due to the global interference pattern of elastic waves.
In thin plates below and at the critical impact velocity v, most

FIG. 6. (Color online) Identification of fragment subsets based
on the bounding box of fragments and of the complete sample. Two
plates are shown with different thicknesses and impact velocities (a)
H/{d) =5 and vy/c = 0.23, (b) H/{d) = 11 and vy/c = 0.3. For
each subset the largest fragment is highlighted with different colors:
light blue (light grey), green (medium grey), and red (dark grey)
stand for the spanning, surface, and bulk fragments, respectively. The
bounding boxes are indicated by the wire frames.
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FIG. 7. (Color online) Mass distribution of subsets of surface,
spanning, and bulk fragments together with the complete distribution
of all fragments for two plate thicknesses H/{(d) = 5 and 15 in the
upper and lower rows, respectively. In both cases the results are
presented for two values of the impact velocity v, slightly above the
corresponding v, (left column) and for the limit of high speed impact
(right column).

of the mass is comprised in spanning fragments; bulk and
surface pieces can mainly be formed around the destroyed
zone at the impact site. Above v, the fraction of spanning
fragments rapidly decreases, however, they always have the
largest mass so that the spanning fragments determine the
cutoff of the mass distribution p(m) at any vy. Figure 7 presents
the mass distribution of the three subsets of fragments for a
plate of thickness H/(d) = 5 at the critical impact velocity
together with the complete distribution. Note that the partial
distributions are normalized such that their integral is equal
to their fraction in the complete set of fragments. The figure
clearly demonstrates that the cutoff and the large mass regime
of p(m) is controlled by fragments which span the sample in
the direction perpendicular to the plate.

In thin plates surface fragments are generated from span-
ning fragments by cracks formed in the bulk of the specimen
segmenting the spanning cracks. Due to this geometric
constraint, in Fig. 7(a) the low mass regime of p(m) is
dominated by surface fragments, while bulk pieces have only
a minor contribution. It follows that for thin plates the overall
power law character of the complete mass distribution p(m)
originates from a mainly two-dimensional crack pattern. The
power law regime of the complete mass distribution covers a
broad range of fragment masses due to the spanning fragments
and their daughter pieces on the surface of the sample. The
exponent t of the power law regime was obtained by fitting
T = 1.7 £ 0.05 (compare also to Fig. 4).

Figure 7(b) presents the same mass distributions at the limit
of high impact velocities. Here the range of the power law
regime of the complete mass distribution p(m) gets reduced
and the exponent increases to a high value v = 2.4 £ 0.07
(compare also to Fig. 4). As the impact velocity increases bulk
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cracking gets activated which leads to a three-dimensional
crack pattern with a highly disordered structure. Consequently,
the difference of surface and bulk fragments disappears, they
both have the same mass distribution with a high exponent in
Fig. 7(b). Still the spanning fragments have the largest mass
but they are only the remnants of the detached pieces.

Figures 7(c) and 7(d) present the corresponding results for
3D bulk bodies with H/(d) = 15. Compared to the platelike
objects of Figs. 7(a) and 7(b) one can observe that the spanning
pieces do not have a dominant role; at low velocities they are
formed by detachment, while at high velocities they are just
the corners of the sample. Spanning fragments give rise to
distinct humps of the distribution at high m values, however,
also surface fragments have contribution to the cutoff of p(m).
Figure 4 demonstrated that for bulk bodies the fragment
mass distribution exponent practically does not depend on
the impact velocity, it has a unique value v = 1.9 £ 0.05.
According to Figs. 7(c) and 7(d) the reason of the constant
exponent is that the relative fraction of surface and bulk pieces
does not depend on the impact velocity.

C. Universality of partial mass distributions

A very interesting outcome of our study is that in spite of the
velocity dependence of the exponent observed for the complete
mass distribution, the partial distributions of the subsets of bulk
and surface fragments exhibit a high degree of universality.
Figure 8 presents the scaling plot of the mass distributions
of surface and bulk fragments obtained at different impact
velocities for two plate thicknesses. It can be observed that
rescaling the distributions with appropriate powers of the
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FIG. 8. (Color online) Data collapse analysis of the mass dis-
tribution of subsets of surface and bulk fragments for two plate
thicknesses H/{d) = 5 and 15 in the upper and lower rows,
respectively. Rescaling the distributions with appropriate powers of
the impact velocity above the critical point good quality data collapse
is achieved. The bold lines represent fits of the master curves with

Eq. (7).
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impact velocity good quality data collapse is obtained in
all cases. This scaling analysis demonstrates that the partial
distributions obey the scaling law

p(m) = vgllf(mvg), (6)

where the exponent y depends on the plate thickness H.
Note that due to the normalization of the distributions the
same exponent y has to be used along the horizontal and
vertical axis. In Fig. 8 best collapse was obtained with the
exponents H/{(d) = 5: y = 1.3 (surface) and y = 0.2 (bulk);
H/{d) =15: y = 0.7 (surface) and y = 0.25 (bulk). The
scaling function W(x) was fitted with the functional form

W(x) oc x T exp [—(x/x*) ], @)

where the exponent « and the characteristic scale x* only
control the shape of the cutoff. The most remarkable feature of
the results is that best fits of the scaling function W is obtained
with 7 = 1.7 and v = 2.4 for surface and bulk fragments
respectively, for all thicknesses. This result implies that the
partial distributions exhibit universality as it has been observed
for a broad class of fragmentation phenomena. The observed
nonuniversality of the complete distribution of all fragments
originates from the blending of the distributions of subsets
of fragments whose contributions depend both on the impact
velocity and on the plate thickness.

V. DISCUSSION

We investigated the impact induced breakup of heteroge-
neous brittle materials in the framework of a three-dimensional
discrete element model focusing on the mass distribution
of fragments. Based on large scale computer simulations
we resolved recent debates on the universality of the power
law exponent of the mass distribution which is crucial both
from a scientific point of view and for industrial applications.
Simulations were carried out to investigate the impact induced
breakup of platelike objects where both the thickness of the
plate and the impact velocity were varied in a broad range. Our
computer simulations revealed that for thin plates embedded
in the three-dimensional space the power law exponent of
the fragment mass distribution has a strong dependence on
the impact velocity: power law is first obtained at the critical
velocity of impact with an exponent t = 1.7 which then grad-
ually increases to T = 2.4 for high impact velocities. However,
for 3D bulk samples a unique exponent is obtained, T = 1.9;
dependence on the impact velocity can only be pointed out
for the cutoff of the distributions. Note that the value of
the exponent T = 1.7 of p(m) falls close to the theoretical
prediction of Refs. [41,42] based on the branching-merging
scenario of dynamic cracks: if fragments are formed by the
merging of branches of splitting unstable cracks a universal
exponent of the fragment mass distribution T = 2D — 1)/D
was predicted depending solely on the dimensionality D of
the embedding space. For D = 3 the formula yields t = 5/3
in the vicinity of our numerical result, although, in our case
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simulations did not reveal a branching-merging sequence of
cracks. The exponent T = 1.9 of 3D bulk samples is consistent
with other DEM results, e.g., the same exponent was obtained
for the fragmentation of brittle spheres impacted against a hard
wall [21,23].

The reason of the velocity dependent exponent is that due
to the interplay of the geometry of the sample and of the
dimensionality of the embedding space a crossover occurs be-
tween two different fragmentation mechanisms. In the vicinity
of the critical impact velocity the crack pattern is essentially
two-dimensional determined by the interference pattern of
compressive and tensile waves generated by the impact. This
crack pattern has a high degree of regularity which gives rise to
local maxima of the fragment mass distribution on the overall
power law functional form. At increasing impact velocities
bulk cracking gets activated so that the crack structure becomes
three-dimensional with a high degree of randomness.

A similar effect of the interference pattern of elastic waves
has been observed for slender rods where fragmentation was
induced by a hit at the free rod end. The mass distribution
of pieces proved to have discrete humps at certain fractions
of the buckling wavelength [43] similar to what we obtained
for plates. Studying the impact induced breakup of thin glass
plates, in the experiments of Ref. [31] an increase of the mass
distribution exponent was reported with increasing impact
velocity. The authors argued that the effect can be attributed to
the increase of the fractal dimension of the crack pattern, i.e., as
the crack structure gets more and more space filling, the mass
distribution exponent increases and approaches a limit value
[31]. Our results clarify the background of these experimental
findings unveiling the underlying mechanism.

Comparing the bounding box of fragments and that of
the complete sample we decomposed the fragment ensemble
into subsets of bulk, surface, and spanning pieces. The
formation of these fragments is governed by different cracking
mechanisms. Scaling analysis showed a striking universality
of the mass distributions of bulk and surface fragments
with strongly different exponents. The results imply that the
velocity dependence of the exponent of the complete mass
distribution at intermediate velocities v is observed due to the
mixing of the contributions of the subsets of fragments, where
the mixing ratio depends on vy. Our results have the general
consequence that energy dependence of the mass distribution
exponent of fragmentation phenomena can be expected when a
low dimensional object is embedded into a higher dimensional
space allowing for the emergence of a transition in the spatial
structure of cracks generated by the initial shockwave.
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