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Correlations between intrinsic dynamics and local topology have become a new trend in the study of
synchronization in complex networks. In this paper, we investigate the influence of topology on the dynamics
of networks made up of second-order Kuramoto oscillators. In particular, based on mean-field calculations, we
provide a detailed investigation of cluster explosive synchronization (CES) [Phys. Rev. Lett. 110, 218701 (2013)]
in scale-free networks as a function of several topological properties. Moreover, we investigate the robustness of
discontinuous transitions by including an additional quenched disorder, and we show that the phase coherence
decreases with increasing strength of the quenched disorder. These results complement the previous findings
regarding CES and also fundamentally deepen the understanding of the interplay between topology and dynamics
under the constraint of correlating natural frequencies and local structure.
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I. INTRODUCTION

Synchronization plays a prominent role in science, nature,
social life, and engineering [1–3]. In recent years, much
research has been devoted to investigate the effects of network
topology on the emergence of synchronization [3,4]. For in-
stance, the Kuramoto oscillators undergo a second-order phase
transition to synchronization, and the onset of synchronization
is determined by the largest eigenvalue of the adjacency
matrix [5].

Until 2011, only continuous synchronization transitions
were known to occur in networks of first-order Kuramoto
oscillators [3]. However, Gómez-Gardeñez et al. [6] reported
the first observation of discontinuous phase synchronization
transitions in scale-free networks, triggering further works on
the subject [7–16]. Gómez-Gardeñez et al. [6] considered a
new kind of interplay between the connectivity pattern and
the dynamics. More specifically, the authors considered the
natural frequencies of the oscillators to be positively correlated
with the degree distribution of the network by assigning to
each node its own degree as its natural frequency, rather than
drawing it from a given symmetric distribution independent of
network structure, as performed in previous works [3].

The phenomenon of explosive synchronization was proved
to be an effect exclusively due to the microscopic correlation
between the network topology and the intrinsic dynamics of
each oscillator. Abrupt phase transitions were also previously
observed in other dynamical processes in complex networks,
such as in the context of explosive percolation in random [17]
and scale-free [18,19] networks. Similar to explosive syn-
chronization, the explosive percolation has also a dynamical
constraint related to the connectivity patterns, which is called
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the Achlioptas process [17]. However, Costa et al. [20]
considered a representative model and demonstrated that
the explosive percolation transition is actually a continuous,
second-order phase transition with a uniquely small critical
exponent of the giant cluster size.

Relevant to model several physical systems [21–24], the
second-order Kuramoto model has also been investigated un-
der the constraint of correlation between the natural frequency
and the degree distribution. Recently, we studied analytically
and numerically how the inclusion of an inertia term in
the second-order Kuramoto model influences the network
dynamics [25]. We observed a discontinuous synchronization
transition as in the case of the second-order Kuramoto model in
a fully connected graph with unimodal symmetric frequency
distributions [22]. However, differently from that observed
in [6], where the authors found that nodes in scale-free
networks join the synchronous component abruptly at the
same coupling strength, we verified that nodes perform a
cascade of transitions toward the synchronous state grouped
into clusters consisting of nodes with the same degree.
This phenomenon is called cluster explosive synchronization
(CES).

Here, we extend the previous findings presented in [25].
More specifically, we analyze the parameter space for both
branches in the hysteretic synchronization diagram, showing
how the transition from a stable limit cycle to stable fixed
points takes place as a function of the node degree and coupling
strength. Furthermore, we also show that the critical coupling
strength for the onset of synchronization, considering the
adiabatic increasing of the coupling strength, decreases as a
function of the minimum degree of the network. In addition,
considering the same increase of the coupling strength, we
show that the onset of synchronization decreases when the ex-
ponent of power-law degree distribution is increased. However,
the onset of synchronization is weakly affected by the exponent
of power-law degree distribution when the coupling strength is
decreased adiabatically. Finally, to address the question of how
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robust discontinuous transitions are against degree-frequency
correlations, we include an additional quenched disorder on
the natural frequencies. More precisely, we show that the
phase coherence decreases, contributing to greatly increasing
the irreversibility of the phase transition.

It is important to remark that different kinds of clusterlike
synchronization transitions have been widely studied in the
context of network theory in which patterns or sets of
synchronized elements emerge [26,27], when ensembles of
coupled oscillators are nonidentical [28] or under the influence
of noise [29] or delay [30]. Eigenvalue decomposition can also
be applied to analyze clusters of synchronized oscillators [31].
Moreover, recent investigations on cluster synchronization
have revealed the interplay of the symmetry in the synchroniza-
tion patterns [27,30,32]. Here, the term “cluster” is redefined
and nodes with the same degree are considered to pertain
to the same cluster, in contrast to the common definition of
a cluster of nodes consisting of oscillators with a common
phase [28]. Our definition is based on the dynamical behavior
observed in the system composed of second-order Kuramoto
oscillators whose natural frequency is correlated with the
network structure [25].

This paper is organized as follows: In Sec. II, we define the
second-order Kuramoto model with correlation between the
frequency and degree distributions in uncorrelated networks.
Section III is devoted to the derivation of the self-consistent
equations to calculate the order parameter as a function of the
coupling strength in order to determine the synchronization
boundaries in Sec. IV. In Sec. V, we present our analytical
and numerical results. Our final conclusions are developed in
Sec. VI.

II. THE SECOND-ORDER KURAMOTO MODEL

A. The model

The second-order Kuramoto model consists of a population
of N coupled oscillators whose dynamics are governed by
phase equations of the following universal form [25]:

d2θi

dt2
= −α

dθi

dt
+ �i +

N∑
j=1

λijAij sin(θj − θi), (1)

where θi is the phase of unit i (i = 1, . . . ,N), α is the
dissipation parameter, �i is the natural frequency, λij is the
coupling strength, and Aij is an element of the adjacency
matrix A, where Aij = 1 if the oscillators i and j are connected
or Aij = 0 otherwise. Here, we consider a homogeneous
coupling λij = λ, ∀ i,j .

To get analytical insights into how the topology effects the
dynamics, we assume that the natural frequency �i of a node
i is proportional to its degree according to

�i = D(ki − 〈k〉), (2)

where D is the strength of the connection between the natural
frequency and degree. In analogy with power grid networks
modeled by the second-order Kuramoto model, the choice
of �i as in Eq. (2) assumes that in scale-free topologies,
a high number of nodes play the role of consumers (nodes
with ki < 〈k〉) and nodes with high degrees play the role of
power producers (nodes with ki > 〈k〉). Note that the relation

∑
j �j = 0 is satisfied, which means that the total consumed

power (�i < 0) is equivalent to the total generated power
(�i > 0).

Substituting Eq. (2) in Eq. (1), we have [25]

d2θi

dt2
= −α

dθi

dt
+ D(ki − 〈k〉) + λ

N∑
j=1

Aij sin(θj − θi). (3)

In this case, all oscillators try to rotate independently at
their own natural frequencies, while the coupling λ tends to
synchronize them to a common phase. The local connection
between oscillators is defined by the adjacency matrix A.

B. Mean-field theory

To study the system analytically in the continuum limit, we
define ρ(θ,t ; k) as the density of oscillators with phase θ at
time t , for a given degree k, which is normalized as∫ 2π

0
ρ(θ,t ; k)dθ = 1. (4)

In uncorrelated complex networks, the approximation Aij =
kikj /(N〈k〉) is made and a randomly selected edge con-
nects to a node with degree k and phase θ at time
t with the probability kP (k)ρ(θ,t ; k)/〈k〉, where P (k)
is the degree distribution and 〈k〉 is the average de-
gree. The coupling term at the right-hand side of
Eq. (3) is rewritten accordingly, i.e.,

∑N
j=1 Aij sin (θj − θi) =∑N

j=1 kikj sin (θj − θi)/(N〈k〉), which in the continuum limit
takes the form k

∫∫
P (k′)k′ρ(θ ′,t ; k′) sin (θ ′ − θ )dk′dθ ′/〈k〉.

Thus, the continuum version of Eq. (3) is given by

d2θ

dt2
= −α

dθ

dt
+ D(k − 〈k〉)

+ λk

〈k〉
∫∫

k′P (k′)ρ(θ ′,t ; k′) sin(θ ′ − θ )dθ ′dk′. (5)

To visualize the dynamics of the phases, it is natural to
follow [5,33] and define the order parameter r as reiψ(t) =∑

i kie
iθi (t)/

∑
i ki , where ki is the degree of the node i and

ψ is the average phase. This order parameter is different from
reiψ(t) = ∑

i e
iθi (t)/N , which accounts for the mean-field in

fully connected graphs [34].
The order parameter r quantifies the phase coherence. For

instance, if the initial values of θ and θ̇ are randomly drawn
from a uniform distribution and each oscillator rotates at its
intrinsic frequency, then r ≈ 0. On the other hand, if the
oscillators act as a giant synchronous component, r ≈ 1.

In the continuum limit, the order parameter r can be
expressed as

reiψ = 1

〈k〉
∫∫

P (k)kρ(θ,t ; k)eiθ(t)dθ dk. (6)

Seeking to rewrite the continuum version in terms of the mean-
field quantities r and ψ , we multiply both sides of Eq. (6) by
e−iθ , take the imaginary part, and we include it in Eq. (5),
obtaining

θ̈ = −αθ̇ + D(k − 〈k〉) + kλr sin(ψ − θ ), (7)
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which is the same equation that describes the motion of a
damped driven pendulum.

In the mean-field approach, each oscillator appears to
be uncoupled from each other, and they interact with other
oscillators only through the mean-field quantities r and ψ .
The phase θ is pulled toward the mean phase ψ . In the case
of positive correlation between frequencies and degree, we
cannot set ψ as constant, since the frequency distribution is
not necessarily symmetric.

To derive sufficient conditions for synchronization, we
choose the reference frame that rotates with the average phase
ψ of the system, i.e., we define φ(t) = θ (t) − ψ(t). If φ̇(t) = 0,
the oscillator is synchronized with the mean field. Defining
C(λr) ≡ (ψ̈ + αψ̇)/D and substituting the new variable φ(t)
in the mean-field equation (7), we obtain [25]

φ̈ = −αφ̇ + D[k − 〈k〉 − C(λr)] − kλr sin φ. (8)

III. ORDER PARAMETER

The solutions of Eq. (8) exhibit two types of long-term
behavior, depending on the size of natural frequency D[k −
〈k〉 − C(λr)] relative to kλr . To obtain sufficient conditions
for the existence of the synchronous solution of Eq. (8), we
derive the self-consistent equation for the order parameter
r , which can be written as the sum of the contribution rlock

due to the oscillators that are phase-locked to the mean field
and the contribution of nonlocked drift oscillators rdrift, i.e.,
r = rlock + rdrift [35].

A. Locked order parameter

Let us assume that all locked oscillators have a degree k in
the range k ∈ [k1,k2]. These oscillators are characterized by
φ̇ = φ̈ = 0 and approach a stable fixed point defined implicitly
by φ = arcsin ( |D[k−〈k〉−C(λr)]|

kλr
), which is a k-dependent con-

stant phase. Correspondingly, ρ(φ,t ; k) is a time-independent
single-peaked distribution and

ρ(φ; k) = δ

[
φ − arcsin

(
D[k − 〈k〉 − C(λr)]

kλr

)]
for k ∈ [k1,k2], (9)

where δ is the Dirac delta function. Therefore, the contribution
of the locked oscillators is expressed as

rlock = 1

〈k〉
∫ k2

k1

∫ 2π

0
P (k)keiφ(t)

× δ

[
φ− arcsin

(
D[k−〈k〉 − C(λr)]

kλr

)]
dφ dk, (10)

whose real part yields

rlock = 1

〈k〉
∫ k2

k1

kP (k)

√
1 −

(
D[k − 〈k〉 − C(λr)]

kλr

)2

dk.

(11)

We consider first a scale-free network with a degree dis-
tribution given by P (k) = A(γ )k−γ , where A(γ ) is the
normalization factor and γ = 3. Substituting the degree distri-
bution P (k) and applying the variable transformation x(k) =

D[k − 〈k〉 − C(λr)]/λkr , we obtain the following implicit
equation for the contribution of the locked oscillators:

rlock = A(γ )

2D〈k〉 [(x(k2)
√

1 − x2(k2)) + arcsin x(k2)

− (x(k1)
√

1 − x2(k1) + arcsin x(k2))]. (12)

B. Drift order parameter

We analyze the drifting oscillators for k ∈ kdrift ≡
[kmin,k1] ∪ [k2,kmax], where kmin denotes the minimal de-
gree and kmax is the maximal degree. The phase of the
drifting oscillators rotates with period T in the stationary
state, so that their density ρ(φ,t ; k) satisfies ρ ∼ |φ̇|−1 [35].
As

∮
ρ(φ; k)dφ = ∫ T

0 ρ(φ; k)φ̇ dt = 1, this implies ρ(φ; k) =
T −1|φ̇|−1 = �

2π
|φ̇|−1, where � is the oscillating frequency of

the running periodic solution of φ [35]. After substituting
ρ(φ; k) into Eq. (6), we get

rdrift = 1

2π〈k〉
∫

k∈kdrift

∫ T

0
kP (k)�|φ̇|−1eiφ(t)φ̇ dt dk. (13)

Without loss of generality, we assume that φ̇ < 0 for k ∈
[kmin,k1] and φ̇ > 0 for k ∈ [k2,kmax]. Thus the real part of
Eq. (13) becomes

rdrift = 1

2π〈k〉
(

−
∫ k1

kmin

+
∫ kmax

k2

) ∫ T

0
kP (k)� cos (φ)dt dk.

(14)

A perturbation approximation of the self-consistent equations
enables us to treat Eq. (14) analytically. After performing some
manipulations motivated by [35], we get

rdrift =
(

−
∫ k1

kmin

+
∫ kmax

k2

) −rk2λα4P (k)

D3[k − 〈k〉 − C(λr)]3〈k〉dk.

(15)

Thus, the self-consistent equation for the order parameter r is
obtained by summing the contribution of locked and drifting
oscillator as

r = rlock + rdrift, (16)

which are obtained from Eqs. (11) and (15), respectively.

C. Determining C(λr)

The summation of Eqs. (11) and (15) gives us the analytical
solution for the order parameter r . However, there is a quantity
to be determined, namely the term C(λr). Considering the sum
of Eqs. (10) and (13) and taking its imaginary part, we get

0 = 1

〈k〉
∫ k2

k1

kP (k)
D[k − 〈k〉 − C(λr)]

kλr
dk + 1

2π〈k〉

×
(

−
∫ k1

kmin

+
∫ kmax

k2

) ∫ T

0
kP (k)�|φ̇|−1 sin φ dt dk. (17)

Following a similar procedure to approximate
∫ T

0 cos φ(t)dt

in Eq. (14) [35] for the integral
∫ T

0 sin φ(t)dt in Eq. (17), we
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obtain

0 = 1

〈k〉
∫ k2

k1

kP (k)
D[k − 〈k〉 − C(λr)]

kλr
dk

+ 1

2〈k〉
(∫ k1

kmin

+
∫ kmax

k2

)
rk2λα2P (k)

D2[k − 〈k〉 − C(λr)]2
dk.

(18)

Therefore, through Eq. (18) we yield the evolution of C(λr)
as a function of the coupling λ, and then, together with
Eqs. (11) and (15), we have the full recipe to calculate the
order parameter r .

IV. PARAMETER SPACE AND SYNCHRONIZED
BOUNDARIES

It is known that systems governed by the equations of motion
given by Eq. (8) present a hysteresis as λ is varied [35–37].
Therefore, we consider two distinct cases: (i) Increase of the
coupling strength λ. In this case, the system starts without
synchrony (r ≈ 0) and, as λ is increased, approaches the
synchronous state (r ≈ 1). (ii) Decrease of the coupling
strength λ. Now the system starts at the synchronous state
(r ≈ 1) and, as the λ is decreased, more and more oscillators
lose synchrony, falling into the drift state.

Next, we study the following problem: why do phase
transitions occur for a continuously varying coupling strength?
We illustrate the phase transitions using the parameter space
of the pendulum. For convenience, we nondimensionalize
Eq. (8) by τ = √

kλrt [38], and we set β ≡ α/
√

kλr and
I ≡ D[k − 〈k〉 − C(λr)]/(kλr), yielding the dimensionless
version:

d2φ

d2τ
+ β

dφ

dτ
+ sin φ = I. (19)

The variable β is the damping strength and I corresponds
to a constant torque (cf. a damped driven pendulum). The
bifurcation diagram in the β-I parameter space of Eq. (19) has
three types of bifurcations [36]: homoclinic and infinite-period
bifurcation periodic orbits, and a saddle-node bifurcation of
fixed points. An analytical approximation for the homoclinic
bifurcation curve for small β was derived using Melnikov’s
method [36,39], and the curve is tangent to the line I = 4β/π .

The parameter space is divided into three different areas
corresponding to the stable fixed point, the stable limit cycle,
and bistability. When I > 1 or D(k − 〈k〉) > kλr in Eq. (7),
in the stable limit cycle area, there is no stable fixed point
and the oscillators evolve to the stable limit cycle, regardless
of the initial values of θ and θ̇ . Therefore, in this case, the
oscillators are drifting and contribute to rdrift. When I < 1 and
I is below the homoclinic bifurcation curve, only stable fixed
points exist and the oscillators converge to the stable fixed
points and contribute to rlock, regardless of the initial values.
Otherwise, depending on the situation of the decreasing or
increasing coupling strength, the oscillators within the bistable
area converge to the stable fixed point (contributing to rlock) or
the stable limit cycle (contributing to rdrift), respectively.

Our change of time scale allows us to employ Melnikov’s
analysis to determine the range of integration [k1,k2] in the
calculation of r = rlock + rdrift.

A. Increasing coupling: Synchronized boundary

When the coupling strength λ is increased from λ0, the
synchronous state emerges after a threshold λI

c has been
crossed. Here we derive self-consistent equations that allow
us to compute λI

c .
The stable fixed point and the stable limit cycle coexist

in the bistable area. Whether the oscillator will converge to
the fixed point or rotate periodically depends crucially on the
initial values of θ and θ̇ for given parameter values of β and I .
As the coupling strength increases, the bistable area vanishes
and we only get the stable limit cycle in this region. The
stability diagram for the increasing case is shown in Fig. 1(a).
Therefore, as we can see from this figure, for I > 1, Eq. (19)
has only one stable limit cycle solution. If 4β/π � I � 1,
the system is no longer bistable and only the limit cycle
solution exists. If the coupling strength is increased further,
the synchronized state can only exist for I � 4β/π , where
Eq. (19) has a stable fixed-point solution sin (φ) = I . Solving

= 20kDegree

= 8kDegree

Stable limit cycle

Stable fixed point

Stable limit cycle

Stable fixed point

Degree k = 20

Degree k = 8

(a)

(b)

FIG. 1. (Color online) Parameter space of the pendulum
[Eq. (19)]: (a) for increasing coupling strength and (b) decreasing
coupling strength. The red (dark gray) area indicates the existence of
a stable fixed point, whereas the gray area indicates the parameter
combinations that give rise to a stable limit cycle. The dots in
the parameter space represent oscillators with degree k = 8 and
degree k = 20, which start with incoherence in (a) [coherence in
(b)] and approach synchronous states (incoherence) for increasing
(decreasing) coupling strength λ with α = 0.1, D = 0.1, 〈k〉 = 10,
C = −3, N = 3000, and P (k) � k−γ , where γ = 3.
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the inequalities

|D[k − 〈k〉 − C(λr)]|
kλr

� 1 (20)

and
|D[k − 〈k〉 − C(λr)]|

kλr
� 4α

π
√

kλr
, (21)

we get the following range of kI for the phase-locked
oscillators:

kI ∈ [
kI

1 ,kI
2

] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
〈k〉+C(λr)

1+λr
,
〈k〉+C(λr)

1−λr

]
if λr < b,[

〈k〉+C(λr)
1+λr

,KI
2

]
if b < λr < 1,[

KI
1 ,KI

2

]
otherwise,

(22)

where b = 16α2

π2[〈k〉+C(λr)]+16α2 and

[
KI

1 ,KI
2

] ≡
[
B −

√
B2 − 4D4[〈k〉 + C(λr)]2

2D2
,

× B +
√

B2 − 4D4[〈k〉 + C(λr)]2

2D2

]
,

where

B = 2D2[〈k〉 + C(λr)] + 16α2λr

π2
. (23)

Since λr is present in all equations, we define a new variable
y = λr and analyze the self-consistent equations computing
r = y/λ.

To visualize the dynamics and deepen the understanding of
phase transitions, we sketch in Fig. 1(a) the phase trajectories
of two randomly selected oscillators with degree k = 8 and 20.
When the coupling strength is close to 0, the oscillators are in
the stable limit cycle area and each node oscillates with their
own natural frequency. One can see that the critical coupling
for the onset of synchronization of the oscillator with degree
k = 8 is lower and thus the small degree oscillator converges
to the fixed point at lower coupling strength.

B. Decreasing coupling: Synchronized boundary

With a decreasing coupling strength λ, the oscillators
start from the phase-locked synchronous state and reach the
asynchronous state at a critical coupling λD

c . To calculate
this threshold, we again investigate the range of degree kD

of the phase-locked oscillators. Imposing the phase-locked
solution in Eq. (8), we obtain sin φ = |D[k−〈k〉−C(λr)]|

kλr
� 1 and

find that the locked oscillators are the nodes with degree k in
the following range as a function of λr:

kD ∈ [
kD

1 ,kD
2

] ≡
[ 〈k〉 + C(λr)

1 + λr
D

,
〈k〉 + C(λr)

1 − λr
D

]
, (24)

when λr < D, or kD
1 = 〈k〉+C(λr)

1+ λr
D

and kD
2 → kmax otherwise.

This allows us to calculate rD and λD
c from the self-consistent

Eqs. (11) and (15).
Following the same procedure for increasing coupling

strength, we also sketch phase trajectories of two oscillators
with degree k = 8 and 20, respectively, in the parameter
space as shown in Fig. 1(b). For high coupling strength, the

population acts like a giant node and r 
 1. If I < 1, only a
stable fixed point exists, whereas the oscillators converge to
fixed points. The oscillators with degrees k � 20 are dragged
out of synchronization more easily. For I > 1, the oscillators
with degree k = 20 are easier to be out of synchronization
compared to the ones with degree k = 8. In this way, the order
parameter r would first slightly decrease and then abruptly
drop to lower values.

V. ANALYTICAL RESULTS AND SIMULATIONS

A. Simulations on scale-free networks

We demonstrate the validity of our mean-field analysis by
conducting numerical simulations of the second-order Ku-
ramoto model with α = 0.1 and D = 0.1 on Barabási-Albert
scale-free networks characterized by N = 3000, 〈k〉 = 10,
kmin = 5, and the degree distribution P (k) ∼ k−γ , with γ = 3.
Again, due to hysteresis, we have to distinguish two cases.
First, we increase the coupling strength λ from λ0 by amounts
of δλ = 0.1, and we compute the order parameter rI for λ =
λ0,λ0 + δλ, . . . ,λ0 + nδλ. Second, we gradually decrease λ

from λ0 + nδλ to λ0 in steps of δλ. Before each δλ step, we
integrate the system long enough (105 time steps) to arrive
at stationary states, using a fourth-order Runge-Kutta method
with time step dt = 0.01.

Figure 2(a) shows the synchronization diagrams for the
model defined in Eq. (3). The system exhibits the expected
hysteretic synchrony depending on initial conditions. In the
case of an increasing coupling strength λ, the initial drifting
oscillators can be entertained to locked oscillators after certain
transience. The order parameter r remains at a low value
until the onset of synchronization, λI

c , at which a first-order
synchronization transition occurs, and r increases continu-
ously after that. In the case of decreasing λ, initially locked
oscillators are desynchronized and fall into drift states once
λ crosses λD

c . For a high coupling strength, all oscillators are
synchronized and r = 1. As the coupling strength is decreased,
the synchronized oscillators fall into unsynchronized states.
As the two discontinuous transitions take place at different
coupling thresholds, the order parameter exhibits hysteresis.

To validate our mean-field analysis with simulation results,
we simultaneously solve Eqs. (12), (15), (18), and (22) [(12),
(15), (18), and (24)] for increasing (decreasing) coupling
strength. Note that the distribution of the natural frequencies is
proportional to the degree distribution, and ψ cannot be set to
a constant as has been done in previous works [40]. Recalling
that C(λr) depends on ψ̇ and ψ̈ , we assume that C(λr) ≈ 0
when λ < λI

c , as each node oscillates at its own natural
frequency. The oscillators with small degree synchronize first
as shown in Fig. 3, and being in high percentage in a scale-free
network, they dominate the mean field. The mean field rotates
with a constant frequency ψ̇ . As before, it is convenient to
analyze the system with y ≡ λr and r = y/λ. As we can
see, the analytical results are in good agreement with the
simulations.

To deepen the understanding of the transition to syn-
chrony, we calculate the average frequency of all oscilla-
tors of degree k [25], 〈ω〉k = ∑

[i|ki=k] ωi/[NP (k)], where

ωi = ∫ t+T

t
φ̇i(τ )dt/T and t is large enough to let all oscillators
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(a)

(b)

FIG. 2. (Color online) Analytical (in blue) and numerical (in red)
analysis of the order parameter r (a) and C(λr) with increasing
coupling strength (b) for synchronization diagrams. We set the
value C(λr) to be 0 if λ < λI

c . The analytical plots are calculated
from Eqs. (12), (15), and (18) with the synchronized boundary
Eq. (22) for increasing coupling and for decreasing coupling (24).
Here the simulations are conducted with α = 0.1, D = 0.1, and
Barabási-Albert scale-free networks characterized by N = 3000,
〈k〉 = 10, and kmin = 5.

reach stationary states. Figure 3(a) shows that each cluster,
an ensemble of oscillators with same degree, oscillates
independently before the onset of synchronization. Oscillators
with small degree, denoted by a solid line, join the synchronous
component simultaneously at λI

c . For further increasing cou-
pling strength λ, more clusters, denoted by dashed lines,
join the synchronized component successively according to
their degrees, starting from smaller ones, and correspondingly
C(λr) increases.

What happens inside each cluster at the onset of synchro-
nization? We define the order parameter of each cluster denoted
by 〈r〉k , 〈r〉k = ∫ t+T

t
rkdt/T , where rke

iψk = ∑
[i|ki=k] e

iθk /

[NP (k)]. When λ < λI
c and initial values of θ are selected

at random from [−π,π ], the oscillators of each cluster
follow the same dynamics. Therefore, the oscillators are
uniformly distributed over the limit cycle and 〈r〉k ≈ 0 as
shown in Fig. 3(b). The order parameter of the synchronized
clusters denoted by a solid line in Fig. 3 jumps to 1 at the
onset of synchronization. After that, other clusters join the
synchronized component and 〈r〉k approaches 1 as denoted by
the dashed lines.

In Fig. 4, we show the synchronized boundary kI ∈ [kI
1 ,kI

2 ]
as a function of the coupling strength λ calculated from
analytical expressions and extensive simulations for increasing

FIG. 3. (Color online) (a) Average frequency 〈ω〉k and (b) order
parameter 〈r〉k of each cluster from simulations with 〈k〉 = 10. Solid
lines denote synchronized clusters at the onset of synchronization.
Dashed lines denote clusters composed of large degree nodes. The
simulation parameters are the same as in Fig. 2.

λ. The analytical and simulation results are in good agreement.
Note that the discontinuity of evolution of the synchronized
boundary gives rise to a first-order phase transition in Fig. 2(a).
After the transition to synchrony, the low boundary kI

1 stays
constant at the minimal degree kmin = 5, and, as more clusters
join the synchronized component, the upper boundary kI

2
increases with λ.

FIG. 4. (Color online) Synchronized degrees from analytical and
simulation results with increasing coupling strength. The yellow (light
gray) shading shows the range of synchronized degrees from the
simulations, and the red (dark gray) shading shows the range from
the analytical results.
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(a)

(b)

FIG. 5. (Color online) Results with increasing coupling strength
λ. Part (a) shows the order parameter r vs λ. The red (blue) curve
denotes the simulation (analytical) results. Part (b) shows C(λr)
vs λ. The critical coupling is 0.6. As in Fig. 2(b), we take the
value from solid lines. The analytical results are obtained from
Eqs. (12), (15), (18), and (22). Here the simulations are conducted
with α = 0.1, D = 0.1, and Barabási-Albert scale-free networks
characterized by N = 3000, 〈k〉 = 12, and kmin = 6.

The above results are based on scale-free networks with the
average degree 〈k〉 = 10. To show more details, following the
above process, we analyze the increasing coupling case with
an average degree 〈k〉 = 12 with minimum degree kmin = 6 as
shown in Fig. 5. We integrate Eqs. (12), (15), (18) with (22)
and get the evolution of the C(λr) and the order parameter r

as a function of the coupling strength λ. We observe that the
critical coupling strength in this case is smaller than that of
scale-free networks with an average degree 〈k〉 = 10.

We follow the above process again and investigate the
synchronization inside each cluster. As expected, initially os-
cillators for each cluster oscillate around its natural frequency
and the order parameter r for each cluster remains at a low
value (Fig. 6). Increasing the coupling strength further, a
first-order transition to synchronization occurs at the threshold
λI

c = 0.6. Clusters of nodes with a degree from k = 6 to 10 join
the synchronization component simultaneously. More clusters
join the synchronized component successively starting from
low to high degrees.

We also evaluate the influence of the average degree on
the critical coupling threshold. Figure 7 shows the mean
values of the critical coupling strength 〈λI

c 〉 for increasing λ

with different minimal degrees kmin varying from kmin = 2
to 20. In simulations, we define a transition to synchrony
if the difference between r(λ) and r(λ − δλ) is larger than,
for example, 0.1. Due to the limitation of networks size,

FIG. 6. (Color online) Results are obtained with the same param-
eter values as in Fig. 5. Part (a) shows the evolution of the average
frequency of each cluster 〈ω〉k as a function of λ, and (b) indicates
the evolution of the order parameter of each cluster 〈r〉k of λ. Solid
lines indicate the clusters synchronized at the critical threshold. The
simulation parameters are the same as in Fig. 5.

fluctuations of 〈λI
c 〉 are unavoidable. The plots have been

obtained with the same parameter values as above except
minimal degrees kmin. One can observe that the threshold
values decrease with increasing minimal degrees initially and
become almost constant afterward.

To investigate the system’s dynamical behavior in networks
with different levels of heterogeneity, in Fig. 8 we present
the synchronization diagrams for the forward and backward

FIG. 7. (Color online) Mean values of critical coupling strength
〈λI

c 〉 for increasing coupling with different minimal degrees kmin.
The gray shading indicates the standard deviation. Simulations at
each minimal degree are conducted as in Fig. 2. All networks have
N = 3000.
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1.= 3γ

4.= 3γ

FIG. 8. (Color online) Synchronization diagrams for networks with degree distribution P (k) ∼ k−γ for different exponent γ . The analytical
plots are calculated from the summation of Eqs. (11) and (14). All networks have N = 3000 and 〈k〉 = 10.

continuation of the coupling λ for networks with degree
distribution P (k) ∼ k−γ considering different exponents γ .
As expected, the onset of synchronization decreases for the
forward propagation of coupling strength λ, similar to that
observed in the first-order model [6]. Interestingly, the branch
associated to the backward propagation of coupling λ is
barely affected by the changes of γ . A similar effect was
recently reported in [41], where the authors observed a weak
dependence of critical coupling λD

c on the network size N .

B. Quenched disorder

In the preceding section, we showed that abrupt tran-
sitions occur in scale-free networks of second-order Ku-
ramoto oscillators, but the dependence of such discontinuous
transitions under perturbations in the correlation between
natural frequencies and topological properties is unknown.
To address this question, here we consider the inclusion of
quenched disorder on the natural frequencies in order to
disturb such correlations [13,15]. More precisely, to check
the robustness of cluster explosive synchronization, we set
�i = D(ki − 〈k〉) + εi , where ε ∈ [−q,q] is randomly drawn
from a uniform distribution g(ε). Therefore, the equations of
motion in the continuum limit are given by

φ̈ = −αφ̇ + D[k − 〈k〉 − C(λr)] + ε − kλr sin φ. (25)

As we increase the width of distribution g(ε), the topological
influence on the natural frequency is decreased.

We can calculate the contribution of locked oscillators r
q
lock

through

r
q
lock = 1

〈k〉
∫ q

−q

∫ k
q
2 (ε)

k
q
1 (ε)

kP (k)g(ε)

×
√

1 −
[
D[k − 〈k〉 − C(λr)] + ε

kλr

]2

dk dε, (26)

where the degree range of synchronous oscillators kq ∈
[kq

1(ε),kq
2(ε)] in the presence of quenched disorder is deter-

mined by the conditions

|D[k − 〈k〉 − C(λr)] + ε|
kλr

� 1 (27)

and

|D[k − 〈k〉 − C(λr)] + ε|
kλr

� 4α√
kλr

. (28)

Similarly, one can also get the contribution of drift oscillators
denoted by r

q
drift as follows:

r
q
drift = −

∫
dε

(∫ k
q
1 (ε)

kmin

dk +
∫ kmax

k
q
2 (ε)

dk

)
−rk2λα4P (k)g(ε)

{D[k − 〈k〉 − C(λr)] + ε}3〈k〉�(D [〈k〉 + C(λr) − k] − ε)

+
∫

dε

(∫ k
q
1 (ε)

kmin

dk +
∫ kmax

k
q
2 (ε)

dk

)
−rk2λα4P (k)g(ε)

{D[k − 〈k〉 − C(λr)] + ε}3〈k〉�(D [k − 〈k〉 − C(λr)] + ε),
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(a) (b)

(c)

(d)

= 0q = 1q

= 0q

= 2q

= 6q

FIG. 9. (Color online) Synchronization diagrams with respect to different probabilities q with q = 0 (a), q = 1 (b), q = 2 (c), and q = 6
(d). Analytical results are obtained from the summation of r

q
lock and r

q
drift. Here, we use the same network topology as in Fig. 2 with N = 3000,

α = 0.1, D = 0.1, and set g(ε) = 1/2q with ε ∈ [−q,q].

where �(·) is the Heaviside function. Figure 9 shows the
synchronization diagrams considering the same network con-
figuration as in Fig. 2, but taking into account different values
for the quenched disorder. As we can see, the phase coherence
of the lower branches decreases, enlarging the hysteresis area
with increasing q. Interestingly, the upper branches decrease
as the strength of the quenched disorder is increased and
the onset of the transition increases accordingly. Therefore, the
additional quenched disorder decreases the phase coherence
and diminishes the abrupt transitions.

VI. CONCLUSION

In summary, we have shown that the cluster explosive
synchronization happens in the second-order Kuramoto model
presenting a correlation between natural frequency and degree,
as verified for the first-order Kuramoto model [6]. The syn-
chronization diagram exhibits a strong hysteresis due to the dif-
ferent critical coupling strengths for increasing and decreasing
coupling strength. As a function of the coupling strength, we
have derived self-consistent equations for the order parameter.
Furthermore, the projection of the phase transition on the
parameter space of a pendulum has enabled the derivation of
the analytical expression of the synchronized boundaries for
increasing and decreasing coupling strength. We have solved
the self-consistent equation and the synchronized boundaries
simultaneously, and the analytical results have been compared
to the simulations and both show good agreement. Moreover,
following the same process, numerically and analytically, we

have shown that the onset of synchronization for increasing
coupling strength decreases with increasing scaling exponents,
but the onset of synchronization for decreasing coupling
strength keeps constant.

To evaluate the robustness of abrupt transitions against the
degree-correlated natural frequency, an additional quenched
disorder is included. Numerically and analytically, we show
that phase coherence and abrupt transitions decrease with the
increasing of the strength of the quenched disorder.

The hysteresis in scale-free networks with different scaling
exponents has also been investigated here, but the underlying
mechanism for the occurrence of hysteresis in scale-free
networks remains open. The impact of topology on dynamics
with more sophisticated correlation patterns between local
structure and natural frequencies as well as the formulation of
the model considering networks of stochastic oscillators [42]
are subjects for further work.
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[6] J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno,
Phys. Rev. Lett. 106, 128701 (2011).

[7] I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña-Nadal, J.
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