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Branching-ratio approximation for the self-exciting Hawkes process
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We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point
processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large
time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies
the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly
estimated using numerical likelihood maximization. We employ our method to support recent theoretical and
experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in
fact critical (now and in the recent past) in light of the long memory of financial market activity.
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I. THE SELF-EXCITING HAWKES PROCESS

The Hawkes model [1,2] is a simple and powerful frame-
work for simulating or modeling the arrival of events which
cluster in time (e.g., earthquake shocks and aftershocks, neural
spike trains, and transactions on financial markets). In one
dimension, the model is a counting process N (t) with an
intensity λ(t) (the expected number of events per unit time)
given by a constant term μ and a “self-exciting” term which
is a function of the event history:

λ(t) = μ +
∫ t

−∞
φ(t − s)dN(s). (1)

This self-exciting term gives rise to event clustering through
an endogenous feedback: past events contribute to the rate
of future events. φ(s) � − is the “influence” kernel which
decides the weight to attribute to events dN(s) occuring at a
lag s in the past. The base intensity μ and the kernel shape φ(t)
are parameters to be varied. A popular choice for the kernel
is the exponential function φ(τ ) = αe−βτ [3,4] but in general
the kernel to be used should depend on the application or the
dynamics of the data to be modeled. Note that for φ(t) = 0 the
model reduces to a Poisson process with constant intensity μ.

By taking the expectation of both sides of Eq. (1) and assum-
ing stationarity {i.e., a finite average event rate E[λ(t)] = �},
we can express the average event rate of the process as
� = μ/(1 − n) � μ where n = ∫

φ(τ )dτ . One can create a
direct mapping between the Hawkes process and the well
known branching process [5] in which exogenous “mother”
events occur with an intensity μ and may give rise to x

additional endogenous “daughter” events, where x is drawn
from a Poisson distribution with mean n. These in turn may
themselves give birth to more “daughter” events, etc.

The value n, which corresponds with the integral of the
Hawkes kernel is the branching ratio and determines the
behavior of the model. If n > 1, meaning that each event
typically triggers at least one extra event, then the process
is nonstationary and may explode in finite time [6]. However,
for n < 1, the process is stationary and has proven useful
in modeling the clustered arrival of events in a wide variety
of applications including neurobiology [7], social dynamics
[8,9], and geophysics [10,11]. The Hawkes model has also
seen many recent applications to finance [12–14], especially as

a means of modeling the very high-frequency events affecting
the limit-order book of financial exchanges [15–19].

One novel application of the Hawkes framework to finance
is as a means of measuring market endogeneity or “reflexivity”
in financial markets [3,6]. In [3], the authors consider midprice
changes in the E-mini S&P futures contracts between 1998 and
2010 and observe that the branching ratio n of the best-fitting
exponential kernel model has been increasing steadily over this
period, from n ≈ 0.25 in 1998 to n ≈ 0.65 in 2010 (see our
Fig. 6 below).1 They argue that this observation implies that
the market has become more reflexive in recent years with the
rise of high frequency and algorithmic trading and is therefore
more prone to market instability and so-called “flash crashes.”

In [20], however, we have argued that due to the presence of
long-range dependence in the event rate of midprice changes
(detectable in both 1998 and 2011) as one extends the window
of observation, the best fitting stationary Hawkes model
must in fact be critical, i.e., have a branching ratio n = 1.
This is backed up by theoretical arguments and empirical
measurements on market data.

Let us however insist that this conclusion only holds if one
believes that Hawkes processes provide an exact representation
of the reality of markets. It is very plausible that the dynamics
of markets is more complicated [and involves, for example,
nonlinearities absent from the Hawkes process defined by
Eq. (1)], but that the best way to represent this dynamics within
the framework of Hawkes processes is to choose n = 1 with a
long-ranged influence kernel.

In this article we introduce a simple approximation for
the branching ratio of the Hawkes process which allows us
to faithfully reproduce the results of [3] which proposes the
statistic as a measure of market instability and as a crash
prediction metric. The interest of our approximation lies in its
great simplicity: one need only estimate the mean and variance
of the event count in a sufficiently large time window. The
approximation also avoids a number of pitfalls [21] inherent
to the significantly more complex approach [4] employed in
[3].

1As in [3] the specific S&P futures contract that we study at any
given moment in time is the most liquid expiry. This is the one closest
to its rollover date.
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The estimator accepts one parameter, a time window size W

during which we measure the mean and variance of the event
count. We note that when we employ our estimator to midprice
changes in the S&P electronic futures market with a fixed
window size W , then the branching ratio estimate obtained
increases over time as reported in [3]. If, however, we allow
the window size to scale appropriately (halving in size every
18 months) to adapt to the decreasing latency of interactions
on the market we recover a constant branching ratio estimate
as proposed in [20]. This result reiterates the need for a scale-
invariant, or at least scale-sensitive means of measuring the
“reflexivity” of financial market events.

II. MAXIMUM LIKELIHOOD ESTIMATION

Given observed events (e.g., midprice changes) at times
t1,t2, . . . ,tn in an interval [0,T ], one can fit the Hawkes
model by maximizing the log likelihood [4,22] over the set
of parameters θ :

ln L(t1, . . . ,tn|θ ) = −
∫ T

0
λ(t |θ )dt +

∫ T

0
ln λ(t |θ )dN(t).

(2)

In the case of the exponential kernel θ = {μ,α,β}. In
practice, the model parameters {μ̂,α̂,β̂} which maximize this
log likelihood are obtained with numerical techniques due
to the lack of a closed form solution.2 The branching ratio
estimate is then n̂ = α̂/β̂.

However, there are a number of pitfalls to using this
procedure as a means of estimating the Hawkes branching ratio
n = ∫

φ(τ )dτ [21]. Arguably the most important of which is
that any estimate of n made in this manner will be heavily
dependent on the choice of kernel model (e.g., exponential,
power law, etc.) It may be that the chosen model cannot
satisfactorily describe the observed events; hence the meaning
of the branching ratio extracted from the maximum likelihood
method is questionable.

Care must also be taken when employing this method in the
presence of imperfect event data as illustrated in [21]. In one
of their figures, the authors present a (negative) log-likelihood
surface which features two minima (one local and one global).
The global log-likelihood minimum does in fact little more
than describe packet clustering inside the millisecond which
arises from the manner in which events arriving at the
exchange at different times are bundled and recorded with the
same timestamp. Subsequent randomization of the timestamps
inside a short time interval (in this case, 1 ms) creates a spurious
high frequency correlation, that makes the global minimum
irrelevant. The local log-likelihood minimum, which is in fact
a better fit to the “true” lower frequency dynamics, does a poor
job at explaining the spurious high frequency clustering and is
punished with a lower log likelihood. Indeed, when the authors
of [21] choose to fit this local minimum they corroborate results
presented in [20].

2Note that the method above is not the only method proposed to
fit the parameters of the Hawkes process for financial applications;
indeed a recent publication [18] proposes a fast albeit still parametric
method for fitting the multivariate exponential Hawkes process.

We believe it is therefore essential to have additional checks
(such as nonparametric methods [15]) at one’s disposal to
support results obtained from likelihood maximization. To
address the pitfalls in the branching ratio estimation that
arise from the model choice we propose a simple model-
independent tool for the branching ratio approximation, in
the next section, which accurately reproduces previous results
of [3] and also indicates the criticality of the relevant Hawkes
process which describes the market.

III. A MEAN-VARIANCE ESTIMATOR FOR THE
BRANCHING RATIO n

We begin with a general expression relating the Fourier
transform of the kernel function to the Fourier transform of
the autocovariance ν(τ ) = E[ dN(t)dN(t+τ )

dt2 ] − �2 of the event
rate (see [1,15] for a derivation):

ν̂(ω) = �

|1 − φ̂(ω)|2 . (3)

Setting ω = 0 we obtain a relation between the branching ratio,
the average event rate, and the integral of the autocovariance
(in the stationary case n � 1):∫ ∞

−∞
ν(t)dt = �∣∣1 − ∫ ∞

0 φ(t)dt
∣∣2 ≡ �

(1 − n)2
. (4)

Therefore, to deduce the branching ratio of the stationary
Hawkes process, we need only find the value of � and∫ ∞
−∞ ν(t)dt . Estimating � is trivial; it is given by the em-

pirical average number of events per unit time. To estimate∫ ∞
−∞ ν(t)dt , we consider the variance of the total event count

NW in a window of length W . Theoretically, this is given by

σ 2
W = E

[∫ W

t=0

dN(t)

dt
dt

∫ W

t ′=0

dN(t ′)
dt ′

dt ′
]

− (�W )2

=
∫ W

t=0

∫ W

t ′=0
ν(t − t ′)dt dt ′

=
∫ W

t=0

∫ W−t

τ=−t

ν(τ )dt dτ

=
∫ W

τ=−W

ν(τ ) (W − |τ |) dτ � W

∫ ∞

−∞
ν(τ )dτ. (5)

We then note that for some constant R, provided that
(1) ν(t) → 0 for |t | > R,
(2) W � R such that (W − |t |)/W ≈ 1 for all |t | < R,
then

σ 2
W ≈ W

∫ ∞

τ=−∞
ν(τ )dτ, (6)

and we find, using Eq. (4):

n ≈ 1 −
√

μW

σ 2
W

:= ñ, (7)

where μW = �W is the average number of events falling
in a window of size W . The above expression has a very
intuitive interpretation. When the variance is equal to the
event rate, the process is obeying Poisson statistics and n = 0.
Any increase in the variance above the event rate indicates
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FIG. 1. Applying the mean-variance branching ratio approxima-
tion method to a simulated Hawkes processes with an exponential
kernel form and scale parameter β = 1.0. α is varied to decide
the branching ratio, and μ is varied to keep the average event rate
fixed at � = 1.0. The process is simulated for T = 100000s, and the
branching ratio estimate is made using Eq. (7) with a window size
W = 20. The mean and [5%,95%] confidence bands are calculated
over an ensemble of 100 processes for each parameter set.

some positive correlations and, within a Hawkes framework,
a positive branching ratio.

Note from Eq. (5) that σ 2
W/W is a biased estimator for∫ ∞

−∞ ν(τ )dτ and for a general W will fall short of its theoretical
value. This means that Eq. (7) will generally underestimate the
branching ratio and only become exact in the limit W → ∞.

In practice, to estimate the branching ratio of an empirical
sample of total length T = mW we substitute the mean and
variance terms in Eq. (7) by their sample estimates:

μ̃W = W
NT

T
≡ 1

m

m∑
i=1

NW (i), (8)

σ̃ 2
W = 1

m − 1

m∑
i=1

(NW (i) − μ̃W )2 . (9)

An estimate obtained in this fashion is asymptotically conver-
gent for large T � W , i.e., m � 1. For a fixed window size W

we can always ensure that our estimate of the variance of NW

is within a desired maximum error with a desired minimum
probability by increasing T and therefore the number of
observations m of NW . Furthermore, we can make Eq. (6)
exact by allowing W to be arbitrarily large.

Note, however, that for any finite m, the average of ñ over
all possible realizations of the process is in fact −∞! This
is because a value σ̃ 2

W = 0 is always possible with a nonzero
probability. For this reason we choose to present the median
of our estimates.

IV. NUMERICAL SIMULATIONS AND IMPLEMENTATION
NOTES

In Fig. 1, we test the estimation procedure described in the
previous section on a number of simulated exponential Hawkes
processes with a variety of branching ratios. To do this we fix
β = 1.0 but vary α = n in the range 0 � α � 0.95. We choose
a base intensity μ = 1 − n such that each process has the same

FIG. 2. Applying the mean-variance branching ratio approxima-
tion method to simulated data. Shaded area represents the [5%,95%]
confidence interval. We note that the branching ratio estimate
converges on the expected value of 0.75 as the window size increases.
For very large W , we lack a sufficient number of event count
observations to estimate the variance of NW with precision and the
confidence interval grows considerably.

average event rate � = 1. We simulate the process for a time
T = 105 using simulation Algorithm 1 described in [23]. This
procedure is prone to edge effects so we disregard the initial
period of size 104 to ensure the process is close to stationarity
in the period studied.

We estimate the branching ratio with a window size W =
20, significantly larger than the time scale of correlation of
our process β−1 = 1. However, the window size chosen is
also sufficiently small that we have a significant number of
independent observations m = (0.9 × 105)/20 with which to
make a reliable estimate of the variance of NW . We see very
good agreement between our branching ratio estimates and the
input branching ratio of the simulation; see Fig. 1.

Note however, that our approximation systematically un-
derestimates the branching ratio since our finite window
size does not completely cover the region of support of the
autocorrelation function. This is particularly visible in Fig. 1
for large n. We now investigate the effect of window size on
the estimate obtained.

A. Choice of window size W

For Eq. (6) to be accurate, we must choose a large W .
However for a finite sample size, large W implies small
m = (T/W ) and therefore less statistical power with which to
estimate the variance of the event count NW . This compromise
is illustrated in Fig. 2 for which we simulate an ensemble
of exponential Hawkes processes with parameters α = 0.75,
β = 1.0, and μ = 0.25. We note that for increasing window
size W , the confidence bands of our estimate converge on the
expected value of n = 0.75.

However when we make the window size too large,
we suffer significant error coming from the estimation of
the variance. For the practical implementation of this
procedure to empirical data we recommend a choice of window
size sufficiently large to capture the bulk of the autocorrelation
present in the event rate, but sufficiently small that one can
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FIG. 3. 1 − ñ for simulated near-critical (n = 0.99,ε = 0.35)
power-law Hawkes process. The value for 1 − ñ that we obtain
approximately scales as ∼W−0.35 for large W . Note that the simulated
process is only “near critical” (with a branching ratio n = 1 − 1 ×
10−2) so for very large W the curve levels off and converges to
1 × 10−2.

expect to obtain reliable estimates of the variance of the event
count in that window.

One can approximate upper and lower confidence intervals
on the branching ratio estimate from a single realization of a
time series by bootstrap resampling. Indeed the simple vari-
ance estimator of Eq. (9) is not optimal and can be improved
with the use of overlapping windows or, for example, a Monte
Carlo sampling scheme which selects random windows with
replacement.

B. Power-law kernel

Finally we test the estimation procedure on a (near) critical
power-law Hawkes process, a type suggested in some recent
publications as a good fit to financial event data [15,20].
Specifically, we consider a kernel with an Omori law form:

φ(τ ) = nετ ε
0

(τ0 + τ )(1+ε) . (10)

In the critical case of n = 1 with 0 < ε < 0.5 this process
will exhibit long-range dependence, with an autocorrelation
function ν(τ ) decaying asymptotically as a power law: ν(τ ) ∼
τ−(1−2ε) [20,24]. The integral of the autocorrelation function is
therefore divergent for large τ ’s, and the variance of the event
count in a window of size W grows with as σ 2

W ∼ W 1+2ε .

The
√

μW

σ 2
W

term in Eq. (7) will in this case not converge to a

finite constant for large W but rather shrink to zero, leading to
1 − ñ ∼ W−ε .

We have simulated such a process with exponent ε = 0.35
and cutoff parameter τ0 = 1.0. To allow our simulation to
attain a stationary state with an average event rate � ≈ 1, we
make our process very near critical by choosing n = 0.99 and
μ = 0.01. We simulate for a very long period T = 1 × 109

and discard the first 0.9 × 109 to ensure the process is close
to stationarity (� > 0.99 at 0.9 × 109). In Fig. 3 we present
the results of a branching ratio estimation using Eq. (7) with a
variety of window sizes W .

FIG. 4. Reproduction of the flash-crash branching ratio analysis
of Filimonov and Sornette using the mean-variance estimator.
Our results compare well with those obtained by maximizing the
likelihood of the exponential model (with 1-s randomization). The
dashed line is the E-mini S&P price. The points are placed at the end
of the 10-min period for which the branching ratio estimate is made.
The shaded region is a [10%,90%] confidence interval generated by
bootstrap resampling.

We note that the branching ratio estimate we obtain is very
much dependent on the choice of window size used. To capture
all the correlation present in the process and obtain estimates
close to the the true input value n = 0.99 we must probe the
correlation on very large scales, by choosing a very large value
for W . The branching ratio obtained indeed varies with window
size according to the law W−ε , in a similar way to the integral
of the kernel φ(τ ); see Fig. 3.

V. EMPIRICAL APPLICATIONS

A. Flash crash revisited

To demonstrate the effectiveness of this simple estimator
we have repeated the flash-crash day branching ratio analysis
of Filimonov and Sornette [3]. We consider nonoverlapping
periods of 10 min in the hours of trading before and just
after the flash crash. For each 10-min period, we calculate the
sample mean and variance of the number of midprice changes
in the 60 windows of length W = 10s contained. The resulting
values are plugged into Eq. (7) to obtain an approximation of
the branching ratio for each period. The results are presented
in Fig. 4.

Note that this simple estimator is biased, and for a general
W , will typically underestimate the value of

∫ ∞
−∞ ν(t)dt and

therefore the branching ratio. Since we consider a window size
W = 10s we have systematically underestimated n in Fig. 4
as measurements of ν(t) on this data have support outside the
interval [−10s,10s]—there is still significant autocorrelation
in the event rate at scales longer than 10s.

However, we have identified that a window size W of
the order of approximately 10 to 30 s produces estimates of
the branching ratio on our data in line with those obtained
by maximising the likelihood of the exponential model after
intrasecond randomization (the method applied in [3].) Note
that we do not fix β in our ML fit but let it settle naturally at
the value which maximizes the log likelihood. We observe
that this value β̂ is very much dependent on the period
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FIG. 5. 1 − ñ, the estimate of the branching ratio as a function of
window size for E-mini S&P midprice changes in 2010. The mean
and variance of NW are estimated on the full year. The change of
power-law behavior occurs around 100 s. Note that we have “stitched”
together all 5-min bins of regular trading hours (09:30 to 16:00 EST)
that contain at least one event (this solves a problem arising from
missing data at half days). We have then detrended the intraday
seasonality by dividing each 5-min event count by a normalized
average event rate for each 5 min of the trading day calculated on the
full year.

of randomization3 of the timestamps. When we randomize
timestamps inside each millisecond we obtain β̂−1 ≈ 10−2 for
periods in 2010 but randomization at larger intervals (e.g.,
the intrasecond randomization of Filimonov and Sornette)
prevents β̂−1 from exceeding values of the order of magnitude
of the scale of randomization.

Note that since our results with W = 10s correspond well
with those obtained using the methods of Filimonov and
Sornette [3], their procedure must also underestimate the
branching ratio. To converge on the true n in expectation,
we must take Eq. (7) in the limit of W → ∞. We do just
this in Fig. 5 for midprice changes of the E-mini S&P futures
contracts in 2010. One notes that as the window size increases,
the branching ratio converges to n = 1 in a nontrivial way. As
reported in [20] for the structure of the kernel at short and long
time scales, two regimes are detectable with a transition around
five min. The branching ratio asymptotically tends towards
n = 1.0 with a scaling exponent ε = −0.37 compatible with
the value of 0.45 estimated in [20] for a 14-yr period. Note that
in taking the limit W → ∞ we consider variation in the event
rate at significant time scales to be explained by the stationary
Hawkes model.

B. Reflexivity: 1998–2013

Using the mean-variance estimator, we can also easily
reproduce the result of [3] that claims to demonstrate that
reflexivity has been increasing in the S&P futures market
since 1998. To do this we set our only parameter W = 30s

3To address the limited precision of the event data in [3], the authors
randomize timestamps uniformly inside the second that they are
reported.

FIG. 6. Estimates of the branching ratio for 15-min windows
using the method of Filimonov and Sornette [3] and estimates using
the mean-variance estimator with a window size of W = 30s. Note
that our MLE results differ somewhat from the plot presented in [3].
We attribute this to differences in the data source or identification of
midprice changes.

and estimate the branching ratio in periods of 15 min. In Fig. 6
we present the 2-month medians of these estimates beside
the median of the branching ratio estimate obtained using the
exponential maximum likelihood approach after intrasecond
randomization.

Since we expect the minimum time scale of correlation
in the data to have decreased over the past decades (due
to decreasing latency with advancing technology) we now
reperform the experiment but with a window size Wt that
follows Moore’s law in such a way to keep the average number
of events in Wt roughly constant. More precisely the window
size Wt halves every 18 months; this describes well the increase
in the high frequency activity of markets (see [20]). The results
of this experiment are presented in Fig. 7 and confirm that the
kernel integral is approximately invariant over time provided
that the measurement window Wt is appropriately rescaled to
account for the changing speed of interactions in the market.
We find this quite remarkable, as this suggests that the amount
of self-reflexivity in financial markets is scale invariant, and
has not significantly increased due to high-frequency trading.

VI. SUMMARY

We have introduced a simple estimator for the branching
ratio of the Hawkes self-exciting point process. The method
is straightforward to apply to empirical event data since it
requires only a rudimentary calculation on the mean and
variance of the event rate. The estimator does not suffer
from the bias inherent to the contentious question of the
choice of kernel in the likelihood maximization approach,
and furthermore it avoids the need for complicated numerical
minimization techniques.

Despite its simplicity, our estimator can accurately repro-
duce results obtained for the branching ratio using this prior
method. The estimator presented is indeed a biased estimator,
but it can be made asymptotically unbiased in the limit of
large W and T , for which we observe that the branching ratio
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FIG. 7. Estimates of the branching ratio on 2-month periods
using the mean-variance estimator with a window size that follows
Moore’s law: Wt = W0e

−c(t−t0) with c = − ln(1/2)/(18 months) and
t0 = 1998. We again stitch together periods of regular trading hours
and detrend the event count by the intraday U shape for each year.
When W is appropriately rescaled, the branching ratio estimate is
approximately constant through time, for all values of W0, and tends
to n = 1.0 for large W0.

for empirical midprice changes of the E-mini S&P futures
contracts approaches unity in line with previous theoretical
and empirical results [20].

Furthermore we demonstrate that if the window size is
allowed to scale with Moore’s law and adapt to the changing
speed of interaction in the market over the past fifteen years,
then the branching ratio approximation recovered is constant
supporting prior observations of the invariance of the Hawkes
kernel and branching ratio over time in [20].

Finally, let us reiterate the caveat made above: the Hawkes
analysis of the activity in financial markets leads to the
conclusion that the process must be critical. However, it might
well be that the dynamics of markets is more complicated
and requires nonlinearities absent from the Hawkes process
defined by Eq. (1). More work on this issue would be highly
interesting, and is in progress in our group.
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