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Algorithms to find communities in networks rely just on structural information and search for cohesive subsets
of nodes. On the other hand, most scholars implicitly or explicitly assume that structural communities represent
groups of nodes with similar (nontopological) properties or functions. This hypothesis could not be verified, so
far, because of the lack of network datasets with information on the classification of the nodes. We show that
traditional community detection methods fail to find the metadata groups in many large networks. Our results
show that there is a marked separation between structural communities and metadata groups, in line with recent
findings. That means that either our current modeling of community structure has to be substantially modified,
or that metadata groups may not be recoverable from topology alone.
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I. INTRODUCTION

Detecting communities in networks is one of the most pop-
ular topics of network science [1]. Communities are usually
conceived as subgraphs of a network, with a high density of
links within the subgraphs and a comparatively lower density
between them. The existence of community structure indicates
that the nodes of the network are not homogeneous but divided
into classes, with a higher probability of connections between
nodes of the same class than between nodes of different
classes. This can have various reasons. In a social network,
for instance, the communities could be groups of people with
common interests, or acquaintanceships; in protein interaction
networks, they might indicate functional modules, where
proteins with the same function frequently interact in the cell,
hence they share more links; in the web graph, they might be
web pages dealing with similar topics, which therefore refer
to each other.

One of the drivers of community detection is the possi-
bility to identify node classes, and to infer their attributes,
when they are not directly accessible via experiments or
other channels. However, community detection algorithms are
usually informed only by the network structure (in many cases
this is all the information available). So, one postulates that
structural communities coincide or are strongly correlated with
the node classes, which correspond to their intrinsic features or
functions. In a sense, the field has been silently assuming that
structural communities reveal the nontopological classes. This
is confirmed by the fact that community detection algorithms
are typically tested on a (low) number of real networks where
the classification of the nodes is available, such as, e.g.,
Zachary’s karate club [2], Lusseau’s dolphins’ network [3],
and the college football network [4]. This way, one implicitly
tunes hypotheses and/or parameters such to get the best match
between the communities detected by the method and the
metadata groups of those systems.

Our goal is testing this basic hypothesis. This has finally
become possible, due to the availability of several large
datasets with information on the classification of the nodes
(the node metadata). In recent work, Yang and Leskovec have
studied the topological properties of metadata groups in social,
information, and technological networks [5–7]. They found
that they have peculiar properties, some of which are in contrast

with the common picture of community structure. For instance,
it seems that overlapping communities have a higher density of
links in the overlapping than in the nonoverlapping parts [7],
which is the opposite of what one usually thinks.

In this paper, we will compare the community structure
detected by popular community detection algorithms on a
collection of network datasets with the metadata node groups
of the networks. Comparisons will be carried out both at the
level of the whole partition, and at the level of the individual
communities. We find that the match between topological and
supposed “ground truth communities” (metadata groups) is not
good, for all methods employed in the analysis. This questions
the usefulness of (purely topological) community detection
algorithms to extrapolate the hidden (nontopological) features
of the nodes.

Before we proceed, it is worthwhile to clarify some
nomenclature. We take community to represent a connected
subgraph with a density of internal links which is appreciably
higher than the density of external links. The term cluster
is often used interchangeably with “community” within the
physics literature, but has a more general meaning within
computer science. For clarity, the sets of nodes derived
from the network metadata (which are hopefully detected
by methods) are known as metadata groups. These are not
assumed to represent structural communities until proven.
The term ground truth is used in other literature to refer to
these metadata groups in order to invoke the concept of a true
result to which we will attempt to match. We avoid the term
here because of the reason above. The term partition formally
refers to a complete, nonoverlapping set of communities, but
in this work we loosen the definition to any set of communities.
While some datasets do have strict partitions, others can have
overlapping nodes (nodes in multiple groups) and nodes in no
groups.

In Sec. II, we will introduce our collection of datasets and
the community detection methods used in the study. Section III
reports some basic structural properties of the metadata groups.
Sections IV and V expose the results of the comparison
between detected communities and metadata groups, both at
the level of the partition as a whole (Sec. IV) and at the level
of the individual groups (Sec. V). In Sec. VI, we will discuss
the implications of the results.
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TABLE I. Basic properties of all datasets used in this analysis. fb100 consists of 100 unique networks of universities, so we show the
ranges of the number of nodes and edges of the networks, as well as of the metadata groups of the various partitions. amazon consists of
a hierarchical set of 11 group levels, we report the range of the number of groups. The number of groups is calculated after our indicated
preprocessing (see text).

Name No. Nodes No. Edges No. Groups Description of group nature

lfr 1000 9839 40 Artificial network (lfr, 1000S, μ = 0.5)
karate 34 78 2 Membership after the split
football 115 615 12 Team scheduling groups
polbooks 105 441 2 Political alignment
polblogs 1222 16782 3 Political alignment
dpd 35029 161313 580 Software package categories
as-caida 46676 262953 225 Countries
fb100 762–41536 16651–1465654 2–2597 Common students’ traits
pgp 81036 190143 17824 email domains
anobii 136547 892377 25992 Declared group membership
dblp 317080 1049866 13472 Publication venues
amazon 366997 1231439 14–29432 Product categories
flickr 1715255 22613981 101192 Declared group membership
orkut 3072441 117185083 8730807 Declared group membership
lj-backstrom 4843953 43362750 292222 Declared group membership
lj-mislove 5189809 49151786 2183754 Declared group membership

II. DATA AND COMMUNITY DETECTION METHODS

A. Network datasets

We collected many networks with node metadata that can
be used for creating different node classes to approximate
communities, which we refer to as metadata groups. These
datasets can roughly be classified in two groups: classical
and big datasets. Full details on all datasets can be found
in Appendix A.

The first group contains real and synthetic networks that
have regularly been used for testing community detection
algorithms. Zachary’s karate club network (karate) is a
classic testbed for community detection algorithms [2]: it
has two natural communities, corresponding to the split of
the club in two factions. So is football, which represents
matches played between U. S. college football teams in year
2000 [4]; the metadata groups are team conferences.polblogs
is the network of political blogs after the 2004 elections in the
U. S. [8], grouped by political alignment. polbooks represent
copurchased books on politics on Amazon bookstore around
the time of 2004 elections, and grouped by political align-
ment [9]. We also used a state-of-the-art artificial network with
built-in (topological) communities, the LFR benchmark [10],
with 1000 vertices, small communities, and mixing parameter
of μ = 0.5 (lfr).

The second group contains more recent and challenging
networks. The Debian package dependencies (dpd) are de-
pendencies of software packages in Debian Linux distribu-
tion, grouped by crowd-sourced tag assignment. The Pretty
Good Privacy network (pgp) contains email addresses with
signatures between them, with groups represented by the
email domains [11]. The Internet topology at the level of
autonomous systems (as-caida) is collected by the CAIDA
project, and is grouped by countries [12,13]. The Amazon
product copurchasing network (amazon) has groups of product
categories [14]. anobii is a book recommendation social

network popular in Italy, where users can join groups [15,16].
The dblp network of coauthorships in computer science
literature has publication venues as groups [17]. The Facebook
university networks (fb100) consist of 100 separate networks
of Facebook users at U. S. universities from 2005 [18]. The
multiplicity was used to provide statistics. The groups are
freely entered by users and are formed with different criteria
(such as field of study or graduation year) provided in the node
metadata. The network of Flickr users (flickr) consists of
photo-sharing users who join user groups to share content [19].
The LiveJournal network consists of users friendships and
explicit group memberships. We have two independent sources
for this network, jl-backstrom [17] and lj-mislove [19],
which are analyzed separately. The Orkut social network
(orkut) consists of users and groups they join.

We present the list of datasets in Table I. We converted
all networks to undirected, unweighted networks, and take
their largest connected component. This is the largest weakly
connected component (LWCC) of the directed graphs. Any
graph members outside of this LWCC are dropped. The
numbers of Table I refer to the LWCC of each network.

In general, the metadata groups in the data can be
disconnected within the graph. We applied the following
preprocessing steps. Each group’s connected components over
the network were taken as separate groups for the analysis.
That means that several distinct groups may end up having
the same node membership. On the other hand, community
detection methods would not be able to associate disconnected
groups, so it is necessary to proceed like this. Any group with
less than three members is dropped, from both the metadata
partition and the detected partition. The comparison is limited
to the set of nodes belonging to both the metadata and the
detected partition after the above preprocessing steps. Since in
some cases the fraction of nodes of the system belonging to
such intersection can be quite low, we report results only when
it exceeds 10%.
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B. Community detection methods

We have a collection of community detection methods
with available codes. These methods come from a variety of
different theoretical frameworks. Some of them are designed
to detect overlapping communities, others can only deliver
disjoint communities. Not all methods run to completion on
the largest datasets in a reasonable time; such dataset and
method combinations are excluded from the analysis.

Louvain is a greedy agglomerative method based on modu-
larity [20]. Infomap [21] is based on information compression
of random walks. We also used a variant InfomapSingle [22],
which returns a single partition instead of a hierarchy.
LinkCommunities [23] is a method that clusters edges instead
of nodes. CliquePerc [24,25] scans for the regions spanned
by a rolling clique of certain size. Conclude [26] uses edge
centrality distances to grow communities. COPRA [27] uses
propagation of information to classify communities (label
propagation). Demon [28] exploits node-local neighborhoods.
Ganxis [29] (formerly SLPA) is based on label propagation.
GreedyCliqueExp [30] begins with small cliques as seeds
and expands them optimizing a local fitness function.

III. STRUCTURAL PROPERTIES OF NODE
GROUPS FROM METADATA

Here, we show some basic topological features of the meta-
data groups of our datasets. Figure 1 reports the distribution
of the group sizes, which is skewed for all datasets. Power
law fits of the tails deliver exponents around −2. This is in
agreement with the behavior of the size distributions for the
communities found by community detection algorithms on
real networks [1].

The link density of a subgraph S is the ratio between the
number of links joining pairs of nodes of S and the total
maximum number of links that could be there, which is given
by nS (nS − 1)/2, nS being the number of nodes ofS. In Fig. 2,
we see the link density of the metadata groups versus their

FIG. 1. (Color online) Distribution of sizes of metadata groups.
Each curve corresponds to a specific dataset of our collection.

FIG. 2. (Color online) Link density versus size of the metadata
groups. Each curve corresponds to a specific dataset of our collection.

sizes. Clearly, the larger the size of the group, the lower the
link density. This is because real graphs are typically sparse,
so the total number of links scales linearly with the number of
nodes. This holds for parts of the network too, modulo small
variations, so the link density decreases approximately as a
power of the number of links of the group (with exponent
close to −1). Since the latter is proportional to the group size,
we obtain that the link density decreases as the inverse of the
group size, as we see in Fig. 2.

Finally, in Fig. 3 we report the relation between the group
embeddedness and its size. The embeddedness of a group is
the ratio between the internal degree of the group and the
total degree. The internal degree of a group is given by the
sum of the internal degrees of the group’s nodes, i.e., twice

FIG. 3. (Color online) Embeddedness versus size of the metadata
groups. Each curve corresponds to a specific dataset of our collection.
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the number of links inside the group. The total degree of the
group is the sum of the degrees of its nodes. A group is “good”
if it has high embeddedness, i.e., if it is well separated from
(loosely connected to) the rest of the graph. We notice that
some of the datasets of our collection have groups with fairly
large values of the embeddedness (e.g., Amazon), so they are
fairly well separated from the other groups. For the largest
datasets we have, the online social networks, embeddedness is
very low (and fairly independent of group size). In this case,
their detection by means of community detection algorithms
is more difficult.

IV. PARTITION LEVEL ANALYSIS

The similarity of partitions can be computed in various ways
(see Ref. [1]). Here, we stick to the normalized mutual infor-
mation (NMI), a measure taken from information theory [31].
Since the nontopological group structure of several datasets
is made of overlapping groups, we use the generalization
of the NMI proposed by Lancichinetti et al., that allows for
the comparison of covers (i.e., of partitions into overlapping
groups) [32].

Many metadata as well as detected partitions do not cover
all nodes present in the network. Often, these coverages
mismatch, leaving many nodes present only in one of the
compared partitions. In order to circumvent this problem we
decided to follow the best possible scenario (which generally
increases the score), by using only the nodes present in both
partitions. In some cases, the fraction of overlapping nodes
was very small, so we did not calculate NMI scores if the
coverage was less than 10%. This only applies to comparisons
between metadata and detected partitions, for comparisons
between partitions detected with different methods we used
the full sets returned by the algorithms.

The overview of all the NMI scores is conveniently pre-
sented in what we call “NMI grids,” like the one in Fig. 4. Each
grid refers to a specific network. In addition to the NMI scores
between the metadata groups structure and the one detected by
each algorithm, we also show the similarity between structural
partitions detected by different methods. Since some methods
may deliver different hierarchical partitions, the tiles involving
those methods are further subdivided.

A. pgp NMI grid analysis

As an example, we provide a detailed discussion of the pgp
NMI grid of Fig. 4 (the others are shown in the Appendix). The
main conclusions are consistent across all datasets, though.
Hierarchical layers were ordered by their granularity, 0 being
the lowest, most granular one. For some algorithms layers
are partitions obtained using different parameter values (see
Appendix B).

First, we compare partitions returned by different algo-
rithms, including all returned layers (all tiles except bottom
row). On the diagonal we have the mutual comparison of
different layers delivered by the same algorithm. The diagonal
of each tile is, of course, black, as one is comparing each layer
with itself, which yields an NMI score of 1. Off-diagonal
elements show similarity between different layers. Most
algorithms return a group of layers which are quite similar

FIG. 4. (Color online) NMI grid of the pgp dataset. Each tile
represents the NMI scores of the comparison of the structural
partitions obtained from different algorithms and the metadata
partition(s) (bottom stripe), and of the comparisons between partitions
obtained by different algorithms. Each tile contains a grid within,
corresponding to different partitions delivered by the algorithm (hi-
erarchical levels or partitions obtained for given parameter choices).
The color of each element of a tile indicates the NMI score, with
values discarded due to low coverage marked with hatched green.

to each other (Infomap, Louvain, Oslom). Comparing the
results of one algorithm versus those of other algorithms, we
can see, for instance, that the highest layer of Infomap is
similar to some extent only to middle layers of Louvain.
The lowest layer of CliquePerc is much more similar to
layers found by other algorithms than to higher layers of
CliquePerc. Layers of LinkCommunities (threshold values
0.25, 0.5, 0.75) show varying behavior: the threshold value of
0.25 yields the most similar partitions to the ones obtained by
the other algorithms, except for Copra and Oslom, and to some
extent CliquePerc. Lower levels of Infomap, Louvain,
and Oslom tend to be more similar to the layers returned by
other algorithms. We can also draw conclusions about the
general behavior of algorithms. For instance, Demon returns a
partition that is not very similar to partitions returned by other
algorithms (this is more pronounced in other datasets).

The bottom row is metadata versus detected partitions,
where we can see how similar is the metadata partition to the
detected ones, which is the focus of our work. The intersections
of metadata partitions and higher order CliquePerc layers
cover less than 10% of total nodes, so we discarded these
results, indicated with hatched green in the figure. Most of the
algorithms return scores that are similar, around 0.3. Ganxis
layers have almost the same scores (they are also very similar
among themselves) whereas Infomap and Louvain layers are
very different, the lower ones scoring better.
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FIG. 5. (Color online) NMI scores between structural communities and metadata groups for different networks. Scores are grouped by
datasets on the x axis. The height of each column is the maximal NMI score between any partition layer of the metadata partitions and any
layer returned by the community detection method, considering only those comparisons where the overlap of the partitions is larger than 10%
of total number of nodes.

B. Overall NMI scores

In order to compare how well different algorithms detect
metadata groups, we took the best scores of each dataset-
algorithm pair and present them on Fig. 5. In real-world
applications one would not know what the returned layers
represent and, consequently, which one of them corresponds
more truthfully to the partition one would like to detect.
So, the NMI scores we derive are in general higher than
the ones obtained by comparing individual levels with each
other.

The results can be separated into three groups. The
highest recall of metadata groups is in the case of the
artificial dataset lfr, as it is expected, since many community
detection algorithms are tested on the LFR benchmark. The
second group consists of small, classical datasets (karate,
football, polblogs, polbooks) that are often used for
testing community detection methods. These NMI scores are
fairly high, but not as high as for lfr. The third group includes
the big datasets of our collection. Here, algorithms were not
very successful in finding the metadata groups. The only
exception is amazon, for which we find a much higher score
than for the others because it has many levels for the metadata
groups, some of which turn out to be partially recoverable.
Scores for the other networks rarely go above 0.3; for some
datasets they lie even below 0.1.

A possible explanation of the result could be that the
optimization process at the basis of several techniques is not
successful, and that the partition delivered by those methods
corresponds to a value of the measure far from the sought
extreme. We reject this hypothesis though. For one thing,
some of the community detection techniques we adopted are
not based on optimization procedures (e.g., CliquePerc),
still they do not seem to lead to better results. Furthermore,
for as-caida we have computed the value of Newman-
Girvan modularity Q for the metadata partition, and the ones
obtained through the Louvain method, corresponding to the
hierarchical level most similar to the metadata partition and
to the level yielding the best approximation to the modularity
maximum. They are 0.3839, 0.5064, and 0.5176, respectively.

So, the values of Q of Louvain’s partitions are far higher
than the one corresponding to the metadata partition. We
could not repeat this test for the other datasets because the
metadata partitions are overlapping (they are nonoverlapping
only in the case of as-caida), while Louvain computes
nonoverlapping partitions. Since there is no straightforward
extension of modularity to the overlapping case, it is not
possible to make meaningful comparisons of the values.

V. COMMUNITY LEVEL ANALYSIS

The previous section shows that global measures indicate
that partitions returned by community detection methods do
not align with partitions built from metadata, but what about
specific groups? Can we detect any of the groups well? Are
some groups reflected in the graph structure and detectable,
but lost in the bulk noise of the graph? This is what we wish
to investigate here.

The basis of our analysis is the Jaccard score between
two groups. Let Ci represent (the set of nodes of) the known
group i, and Dj represent (the set of nodes of) the detected
community j . The Jaccard score between these two sets is
defined as

J (Ci,Dj ) = |Ci ∩ Dj |
|Ci ∪ Dj | , (1)

with | . . . | set cardinality, ∩ set intersection, and ∪ set union.
The Jaccard score ranges from one (perfect match) to zero and
roughly indicates the fraction of nodes shared between the two
sets: the match quality.

The recall score measures how well one known group is
detected. The recall score of one known group Ci is defined
as the maximal Jaccard score between it and every detected
community Dj :

R(Ci) = max
Dj ∈{D}

J (Ci,Dj ). (2)

It is near one if the group is well detected and low otherwise.
We can study the distribution of these scores to see how many
groups can be detected at any given quality level. Recall
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FIG. 6. (Color online) Recall of known groups plotted versus group rank (sorted by recall) for various datasets and methods. Every known
group is compared with every detected community in any layer. We see that performance is usually poor (close to zero) for all networks except
for some of the classic benchmarks (uppermost row of diagrams), which are typically used to test algorithms. The metadata groups of some
graphs, such as livejournal, orkut, and flicker have but a little overlap with the detected communities.

measures the detection of known groups, and to measure
the significance of detected communities, we can reverse the
measure to calculate a precision score

P (Dj ) = max
Ci∈{C}

J (Dj,Ci). (3)

The precision score tells us how well one detected community
corresponds to any known group.

We can now directly quantify the two conditions for good
community detection: every known group must correspond
to some detected community, and every detected community
must represent some known group. Both of these measures are
still interesting independently: a high recall but low precision
indicates that the known groups are reflected in the network
structurally, but there are many structural communities that are
not known. We visualize the scores by means of rank-Jaccard
plots which give an overview of the network’s detection
quality. We compute the recall (precision) for every known
(detected) group and sort the groups in order of ascending
Jaccard score. We plot recall (precision) versus the group
rank, sorted by recall (precision) score so that the horizontal
scale is the relative group rank, i.e., the ratio between the
rank of the group and the number of groups (yielding a value
between 0 and 1). Similar to our treatment of the partition-level
analysis, we only plot matchings whose intersection covers
more than 10% of total nodes in the graph. In our final
plots, the average value of the curve (proportional to the
area under it) is the average recall or precision score over

all groups. The shape of the curve can tell us if all groups
are detected equally well (yielding a high plateau) or if there
is a large inequality in detection (a high slope). Furthermore,
this allows us to compactly represent multiple layers. Each
independent layer of known (detected) groups can be plotted
in the same figure. We would generally look for the highest
curve to know if any layer has a high recall (precision).
When computing recall (precision), unless otherwise specified,
as detected communities we consider the communities of
all partitions delivered by a method, whereas the metadata
groups are those present in all metadata partitions (if more
than one partition is available in either case). This will give
us the maximum possible recall (precision), which might
be far higher than values coming from real applications,
where one typically compares groups of the same partition
(level).

In Figs. 6 and 7, we show the group recall and precision for
every dataset and every community detection method. Similar
to the situation with NMI, with the benchmark graph lfr most
methods are able to recover the true communities. The other
small graphs (b)–(e) also have most of the structure recoverable
by most methods, as they are also used as benchmarks.
However,once we get to large data, (f)–(o), we see a very
different story. The vast majority of these networks have only
a small number of groups detected fairly well and not many
detected communities resemble any of the metadata groups.
Many networks, e.g., the online social networks, have almost
no metadata groups reflected in the detected communities,
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FIG. 7. (Color online) Precision of detected communities for various datasets and methods. All detected communities (in any layer) are
compared to all known groups. Results are similar as for recall (Fig. 6).

and vice versa, by any method. In some networks, such as
pgp and amazon, a fraction of groups are well detected. For
example, amazon has 20% of groups with a maximal recall
Jaccard score greater than 0.6, for any method, and is the
network with best detected communities. The performance of
the methods is comparable in most cases. LinkCommunities
appears to give higher recall than all other methods in most

instances. However, this is due to the fact that it usually
detects many more communities than the other methods, so
there is a higher chance to find a community that gives high
overlap with the metadata groups. However, the precision
of LinkCommunities is very low. On the largest graphs,
Louvain and InfomapSingle have consistently worse recall
than Oslom, but the latter has lower precision. In Table II,

TABLE II. Average Jaccard recall (R) and precision (P) scores for all datasets. The scores are simple averages over all groups. Horizontal
lines separate the classic benchmarks from the large datasets.

Clique P Conclude Copra Demon Ganxis Grd CE Info InfoS LinkC Louvain Oslom

R P R P R P R P R P R P R P R P R P R P R P

lfr 0.92 0.47 0.91 0.82 0.95 0.98 0.28 0.36 0.05 0.45 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.20 0.98 0.90 1.00 1.00
karate 0.48 0.34 0.80 0.50 0.64 0.51 0.71 0.71 0.94 0.63 0.89 0.89 0.80 0.63 0.80 0.63 0.50 0.30 0.68 0.48 0.97 0.97
football 0.91 0.76 0.86 0.77 0.87 0.94 0.30 0.40 0.81 0.87 0.95 0.90 0.95 0.90 0.95 0.90 0.89 0.35 0.95 0.92 0.97 0.86
polbooks 0.60 0.31 0.46 0.25 0.55 0.71 0.37 0.67 0.67 0.62 0.52 0.66 0.60 0.49 0.60 0.49 0.64 0.13 0.64 0.41 0.63 0.63
polblogs 0.67 0.10 0.80 0.24 0.63 0.94 0.57 0.43 0.97 0.96 0.94 0.94 0.91 0.15 0.91 0.15 0.59 0.01 0.87 0.29 0.91 0.29

dpd 0.24 0.15 0.19 0.26 0.05 0.35 0.02 0.24 0.16 0.33 0.04 0.27 0.30 0.24 0.24 0.24 0.53 0.10 0.26 0.27 0.18 0.27
as-caida 0.08 0.04 0.37 0.19 0.01 0.10 0.01 0.17 0.17 0.12 0.11 0.32 0.58 0.11 0.58 0.12 0.55 0.02 0.50 0.09 0.49 0.20
pgp 0.58 0.41 0.43 0.50 0.34 0.57 0.23 0.61 0.47 0.51 0.24 0.49 0.57 0.46 0.45 0.51 0.67 0.31 0.57 0.47 0.37 0.55
anobii 0.37 0.35 0.07 0.50 0.04 0.26 0.02 0.62 0.23 0.35 0.19 0.26 0.17 0.27 0.44 0.28 0.09 0.36 0.20 0.28
dblp 0.57 0.23 0.32 0.26 0.13 0.21 0.34 0.25 0.38 0.20 0.28 0.23 0.52 0.15 0.41 0.18 0.34 0.24
amazon 0.52 0.46 0.38 0.51 0.33 0.52 0.38 0.50 0.48 0.47 0.37 0.53 0.61 0.34 0.49 0.53 0.37 0.69
flickr 0.16 0.28 0.15 0.27 0.12 0.42 0.19 0.29
orkut 0.01 0.16 0.00 0.23
lj-backstrom 0.14 0.26 0.10 0.27 0.09 0.38 0.18 0.26
lj-mislove 0.10 0.25 0.06 0.24 0.07 0.30 0.14 0.25
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we report the average recall and precision for all datasets and
algorithms.

In Appendix D, we further analyze recall and precision
by narrowing the problem to group classes selected based on
size, density or cohesiveness, or attribute types. This includes
a full analysis of the fb100 dataset with its specific attributes
such as student class year, field of study, or residence. We see
that, in general, narrowing the focus to these specific classes
of groups does not allow increased predictive power on most
networks.

In this section, we have broken down the community
detection problem into something more specific: instead of
asking for all known groups to match all detected communities,
we are asking if (a subset of) known groups are found by any
detected communities, or if (a subset of) detected communities
correspond to real known groups. Even if full community
detection does not have high accuracy, a positive answer in
either of these questions can produce a result of practical use.
Instead, we see that recall and precision are highly network
dependent, with most networks producing very low values for
both. This even extends to social networks with user-defined
social groups.

VI. CONCLUSIONS

Algorithms to find communities in networks are supposed
to recover groups of nodes with the same or similar features or
functions. Therefore, whenever a new algorithm is introduced,
it is usually tested not only on artificial benchmark graphs,
but also on real graphs with known node groups derived from
some metadata. A good match between the detected partition
and the attribute-based partition is considered evidence that
the method is reliable. However, the correspondence between
structural communities (the ones detected by an algorithm) and
metadata groups (identified by the nodes’ attributes) has been
given for granted. In this work, we have made a systematic test
of this hypothesis.

We have compared the partitions detected by several
popular community detection algorithms with the partitions
resulting from nontopological features of the nodes, on large
real network datasets. We find that there is a substantial dif-
ference between structural communities and metadata groups.
At the partition level, we find low similarity scores. Precision
and recall diagrams show that detected communities have low
overlap with the metadata groups, and vice versa. A more
detailed analysis, in which one restricts the comparison to
groups of comparable size, link density, or embeddedness,
does not reveal major improvements. Overall, results depend
more on the network than on the specific method adopted,
none of which turns out to be particularly good on any
(large) dataset. It is fair to remark that we have applied
the community detection algorithms on the undirected and
unweighted versions of the datasets. We have done so because
few methods can handle link directions and weights, while we
wanted to test a broad class of techniques. On the other hand, it
is possible that by accounting for link directions and weights,
the comparison between detected communities and metadata
groups could improve.

Our results rely on the classification of the nodes, which
may not always be reliable. However, our collection comprises

a list of very diverse systems, and the message coming from all
of them is the same. Clearly, we cannot exclude that there may
be other datasets whose metadata groups match more closely
the structural communities found by community detection
algorithms. Still, even if there were such datasets, our point
that metadata groups are not necessarily correlated with the
communities found by standard methods, contrary to common
belief, would hold.

We remark that low similarity scores between structural and
metadata partitions were reported by Yang and Leskovec as
well [6]. However, that was not the focus of the work, like in
our case, and we have considered a larger set of methods and
a broader spectrum of datasets.

What kind of implications does this finding have? We
envision two possible scenarios. It may be that our conception
of community structure, which is underlying the methods
currently used, is not correct. Most algorithms usually focus on
things like link densities within the communities, or between
the communities (or both). It may be that metadata groups
are not well represented by link density, for instance, or at
least not by link density alone. Other features, like, e.g.,
degree correlations, density of loops (like, e.g., triangles),
etc., might play a role. Indeed, Abrahao et al. have shown
that structural properties of communities detected with several
algorithms are in general different from those of metadata
groups [33]. Therefore, our best bet would be carrying out
a detailed investigation of the topological properties of the
metadata groups, and trying to infer a general description from
it, which could be used as starting point of the development
of new algorithms. The recent discovery of dense overlaps
between groups, for instance, might inform new techniques,
the Affiliation Graph Model being one example of them [7].

The other possible interpretation is that metadata groups
cannot be inferred from topology alone. There certainly is
a correlation between structural and metadata groups, but
it may be not very strong. Therefore, in order to detect
metadata groups, nontopological inputs might be necessary.
In the most recent literature on community detection, several
such approaches have been proposed, mostly by computer
scientists [34–49].

We stress, however, that structural communities are very im-
portant for the function of a network, as they can significantly
affect the dynamics of processes taking place on the network,
such as diffusion, synchronization, opinion formation, etc. So,
detecting topological communities remains crucial. We are
saying that one should not expect too much in terms of content,
at least not from the algorithms currently in use. We hope that
the scientific community of scholars working on community
detection in networks will seriously reflect on the results of
our analysis, in order to produce more reliable algorithms for
applications.

ACKNOWLEDGMENTS

We thank T. Evans for providing an updated version of the
college football data set. We acknowledge the computational
resources provided by Aalto University Science-IT project.
R.K.D. and S.F. gratefully acknowledge MULTIPLEX, Grant
No. 317532 of the European Commission.

062805-8



COMMUNITY DETECTION IN NETWORKS: STRUCTURAL . . . PHYSICAL REVIEW E 90, 062805 (2014)

APPENDIX A: DATASET DESCRIPTIONS

Here, we will give more detailed descriptions of all
datasets. A full description of each dataset can be found
in the cited references. In some cases, the networks are
created via complex processes in special environments, so
the true meaning of links and groups may not have a simple
interpretation. Nevertheless, the breadth of our data gives us
a wide perspective on real-world, as opposed to artificial,
networks.

lfr (Lancichinetti-Fortunato-Radicchi): Benchmark graph
with 1000 vertices (N = 1000) and “small” communities (min
size = 10, max size = 50), at mixing parameter μ = 0.5 [10].
The other parameters (average degree 20, maximum degree 50,
exponent of degree distribution −2, exponent of community
size distribution −1) are standard. This graph has a clear
community structure that is a standard used to optimize and
test most current algorithms, and thus serves as a baseline
reference for a network with known and detectable structure.

FIG. 8. (Color online) NMI grids of karate, football, polbooks, and polblogs. These datasets have a pronounced community
structure, which is the reason why they are heavily used in the community detection literature. The algorithms are quite successful in detecting
the metadata groups (bottom row) and the cross algorithmic stability is quite good, although still lower than expected.
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The network was created with standard LFR code (see
Ref. [50]).

karate (karate club network): A well known network of
friendships in a karate club in an American University [2]. Af-
ter a dispute between the coach and the treasurer, the club split
in two clubs. We use the standard unweighted version, with
two metadata groups defined by the membership after the split.

football (American college football): Network of Amer-
ican football games between Division IA colleges during the

regular season Fall 2000 [4,51]. Edges exist if two teams
played any game, and groups are conferences, scheduling
groups joined by the schools for the purpose of regular season
scheduling. Each season, conferences mandate and schedule
a certain number of intraconference games played, and other
matches are decided by negotiation between schools. The data
available in Ref. [52]) contain conference assignments for year
2001, and an updated version (used in this paper) contains

FIG. 9. (Color online) NMI grids of lfr, dpd, pgp, and as-caida. The first dataset (lfr) is computer generated. Some algorithms
performed poorly, whereas others scored very well. Other datasets are taken from the real world, and were a bigger challenge. fb100 is a
collection of 100 data sets, so we report the averaged maximum values for each tile, except for LinkCommunities, where the number of layers
is fixed at 3. Groups built using graduation year were detected the best.
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correct conference assignments from Fall 2000, courtesy of
Evans [51].

polblogs (political blogs): A directed network of hy-
perlinks between weblogs on U. S. politics, recorded in
2005 by Adamic and Glance [8]. Links are all front-page
hyperlinks at the time of the crawl. Groups are “liberal”
or “conservative” as assigned by either blog directories
or occasional self-evaluation. The data are available in
Ref. [52]).

polbooks: Network of books about U. S. politics from
2004 U. S. presidential election [9] taken from the online
bookseller Amazon.com. Edges are Amazon recommenda-
tions on each book, indicating copurchasing by others on
the site. Groups are based on political alignment of “liberal,”
“neutral,” or “conservative” through human evaluation. Data
can be found in Ref. [52].

dpd: Software dependencies within the Debian
GNU/Linux operating system [53,54]. Nodes are unique
software packages, such as linux-image-2.6-amd64,

FIG. 10. (Color online) NMI grids of anobii, dblp, and amazon. CliquePerc returned many spurious layers for anobii and dblp,
that were discarded due to poor coverage. More can be told for amazon, which contains hierarchical levels of product categories as different
levels. Deeper levels were discarded, but higher ones are detected, to some degree.
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libreoffice-gtk, or python-scipy. Links are the
“depends,” “recommends,” and “suggests” relationships,
which are a feature of Debian’s APT package management
system designed for tracking dependencies. Groups are
tag memberships from the DebTags project [55], such as
devel::lang:python or web::browser [56]. The network
was generated from package files in Debian 7.1 Wheezy
as of 2013-07-15, “main” area only. Similar files are freely
available in every Debian-based OS. Tags can be found
in the *_Packages files in the /var/lib/apt/ directory

in an installed system or on mirrors, for example, see
Ref. [57].

pgp: The “Web of trust” of PGP (Pretty Good Privacy) key
signings, representing an indication of trust of the identity
of one person (signee) by another (signer) [11]. A node
represents one key usually, but not always, corresponding to
a real person or organization. Links are signatures, which
by convention are intended to only be made if the two
parties are physically present, have verified each others’
identities, and have verified the key fingerprints. Groups

FIG. 11. (Color online) NMI grids of flickr, orkut, lj-backstrom, and lj-mislove. Due to their size, many algorithms could not
be run on these data sets. The detection of the metadata partitions was poor, while the similarity of detected partitions is noticeably higher. This
suggests that there is a large disparity between metadata and topological groups.
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are email domain or subdomain names. The network was
generated using full data downloaded from the keyserver
network [58]. Signatures were not checked for cryptographic
validity. Domains were broken into all subdomains, for
example, the address example@becs.aalto.fi would
be added to the three groups becs.aalto.fi, aalto.fi,
and fi. Large webmail providers and top level domains
were discarded by hand: com, info, net, org, biz,
name, pro, edu, gov, int, gmail.com, yahoo.com,
mail.com, excite.com, hotmail.com

as-caida: Network of the Internet at the level of au-
tonomous systems [59]. Nodes represent autonomous systems,
i.e., systems of connected routers under the control of one or
more network operators with a common routing policy. Links
represent observed paths of Internet Protocol traffic directly
from one AS to another. Groups are countries of registration
of each AS, which are by construction nonoverlapping. Data
come from both the AS Relationships Dataset from 2013-
08-01 [12] and The IPv4 Routed /24 AS Links Dataset from
2013-01-01 to 2013-11-25 [13]. This means that our network
contains every direct link observed by these two subprojects
on the Internet over a period of approximately one year. AS
country assignments from all Regional Internet Registries
(AFRINIC, APNIC, ARIN, LACNIC, and RIPENCC) are
taken from the mirror [60] on 2013-11-25.

amazon: Network of product copurchases on online retailer
Amazon. Nodes represent products, and edges are said to
represent copurchases by other customers presented on the
product page [14]. The true meaning of links is unknown and is
some function of Amazon’s recommendation algorithm. Data
were scraped in mid-2006 and downloaded from Ref. [61].
We used copurchasing relationships as undirected edges.
Product categories, such as Books/Fiction/Fantasy or
Books/Nonfiction can be split into levels, which we used
to make a fully hierarchical network, for example, Books
in layer00, and Books/Fiction and Books/Nonfiction
in layer01, down to layer09. Finally, there is one
layer categs representing full categories, in this example
Books/Fiction/Fantasy and Books/Nonfiction even
though they contain a different number of “/” characters.

anobii: Social network of book recommendation, popular
in Italy. Two types of directed relationships were taken as
undirected links (friends and neighbors). Users can form and
join groups. Data were provided by Aiello [15,16].

dblp: Network of collaboration of computer scientists.
Two scientists are connected if they have coauthored at least
one paper [17]. Groups are publication venues (scientific
conferences). Data can be found in [5,62].

fb100: Facebook social networks. 100 complete (but
separate) Facebook networks at United States universities in
2005. There are all friendships (undirected), as well as six
pieces of node metadata: dorm (residence hall), major, second
major, graduation year, former high school, and gender. These
pieces of metadata were used to form separate levels of groups.
Networks were originally released by Porter [18] and are avail-
able on several sites on the web. The “gender” metadata were
discarded from the analysis as they form one giant network-
spanning group for male and female, with isolated fringes.

flickr: Picture-sharing website and social network, as
crawled by Mislove [19]. Nodes are users and edges exist

if one user “follows” another. Groups are Flickr user groups
centered around a certain type of content, such as Nature or
Finland. The collectors estimate that they have a vast majority
of the LWCC by comparing to a random sampling of users.
21% of users are in groups.

lj-backstrom: LiveJournal social network, as crawled
by Backström [17]. The raw scrape from Livejournal, a
now-dormant blogging service. An edge was put between users
if there is any kind of relationship between them (friend or
follower). Groups are based on groups which users can join.

lj-mislove: LiveJournal social network, as crawled by
Mislove [19]. The data source and node/edge/group interpreta-
tion are the same as in lj-backstrom, but were independently
crawled. 61% of users are in groups.

orkut: Orkut social network, as crawled by Mislove [19].
Nodes are users, edges are bidirectional (undirected) friend-
ships, and groups are user-created groups. This crawl contains

FIG. 12. (Color online) Recall of known as-caida groups, bro-
ken down by size n (of known groups), matched to all detected
communities. We see that most methods do not have a good
performance for most group sizes.
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10% of Orkut’s user population at the time of the crawl (ac-
cording to published figures). Only 13% of users are in groups.

APPENDIX B: COMMUNITY DETECTION
METHOD DESCRIPTIONS

This section contains a complete description of all com-
munity detection methods and parameters used in this work.
Some methods do not scale to the largest datasets, in which
case results are not presented. In analogy to the dataset
preprocessing, we also remove all detected communities of
size less than 3.

Infomap (hierarchical mode): Method based on com-
pression of the information associated to random walks on
networks [21]. Computed with code from Ref. [63] with all
default settings.

InfomapSingle (nonhierarchical mode): Same as
Infomap but restricted to a nonhierarchical partition [22].

FIG. 13. (Color online) Recall of known as-caida groups, bro-
ken down by density, matched to all detected communities. Density is
heavily correlated with inverse size, explaining the apparently higher
performance on less dense groups.

Computed with the same code as Infomap but with the
--two-level.

Louvain: Greedy, hierarchical modularity maximization
algorithm [20]. For each run, it is invoked 10 times and the
execution which has the maximal modularity (for each level)
is taken. The updated code from Ref. [64] is used for the
calculations.

Oslom: Order Statistics Local Optimization Method,
based on community statistical significance [65]. Code from
Ref. [66] is used with all default settings, in particular we run
with 10 trials of the most granular level and 50 hierarchical
trials of higher levels. However, the -singlet option is
given, which causes all communities to be strictly statistically
significant. Nodes not in any community are left as singletons
and then removed by our postprocessing, leaving community
assignments which do not cover the entire network.

FIG. 14. (Color online) Recall of known as-caida groups, bro-
ken down by group embeddedness ξ = kin/ktot, matched to all
detected communities. We see that, unlike size and density, embed-
dedness can very well predict the detectability of metadata groups.
Higher embeddedness directly corresponds to better detectability for
almost all methods.
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CliquePerc: Clique percolation algorithm from [25].
Code from Ref. [67]. We include one layer for each clique size
from k = 3 to kmax for each method. By construction, each
layer does not span the entire network. Layers are numbered
starting from layer 0, which is percolation of cliques with
k = 3 (triangles), up to layer kmax − 3, which is percolation of
cliques with k = kmax.

Copra: A method based on label propagation [27]. Code
from Ref. [68] is used with all default parameters. In particular,
this limits us to nonoverlapping communities with v = 1, as
there is no option for automatically choosing the optimal
parameter.

Conclude: A method using random walkers to re-weight
edges, then network distances are recalculated and used
to optimize weighted network modularity [26]. Code from
Ref. [69] is used with all default options.

FIG. 15. (Color online) Precision of detected communities, bro-
ken down by size, compared to all known as-caida groups. The
recall of each layer of the algorithm is plotted separately to allow us
to see if any individual layers have high performance. This produces
a very messy field of lines, but it is sufficient to see that there are no
outliers in performance.

Demon: A method which combines node knowledge of
local neighborhoods into global communities [28]. Code from
Ref. [70] is used with alldefault options.

Ganxis: Formerly the Speaker-listener Label Propagation
Algorithm (SLPA), a version of a label propagation algo-
rithm [29]. Code version 3.0.2 from Ref. [71] with overlaps
allowed, undirected mode, and one trial. We chose all other
default parameters. The code by default runs with
eleven thresholds r ∈ {0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,

0.4,0.45,0.5}, and all thresholds are kept (in order 0, . . . ,10)
in our analysis.

GreedyCliqueExp: An algorithm, which finds cliques as
seeds and then optimizes a local fitness function around those
seeds [30]. Code from Ref. [72] is used with all default
parameters.

LinkCommunities: Method partitioning links, instead of
nodes, into communities [23]. Code from Ref. [73] is used with
all default parameters. Instead of scanning all thresholds, we

FIG. 16. (Color online) Precision of detected communities, bro-
ken down by density, compared to all known as-caida groups. For
further information, see the caption of Fig. 15.
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use three thresholds: 0.25, 0.5, and 0.75 which are identified
as layers 0, 1, and 2, respectively. All default parameters are
kept. Links which are not part of any community at a given
threshold become singleton links, which become communities
of size two. These communities have no significance, and thus
are filtered out in our postprocessing.

APPENDIX C: NMI GRIDS

Here, we present NMI grids for all datasets (Figs. 8–11).
The description is the same as for pgp in Sec. IV A.

Most of the higher order layers of CliquePerc (and sub-
optimal threshold parameter values in LinkCommunities),
after removing singletons and doubletons, cover a very small
portion of each dataset (less than 10% of the nodes), and are
marked with hatched green. Larger datasets lack the results of
the slowest algorithms due to computational restrictions.

FIG. 17. (Color online) Precision of detected communities, bro-
ken down by community embeddedness, compared to all known
as-caida groups. For further information, see the caption of Fig. 15.
In contrast to Fig. 14, no particular embeddedness predicts a higher
performance.

APPENDIX D: ADDITIONAL COMMUNITY-LEVEL
ANALYSIS

In Sec. V, we showed that when matching community-
to-community, communities detected by various algorithms
often do not correspond to “true” groups, or vice versa. In this
section, we will further this analysis to show that there is little
opportunity for narrowing our scope to increase the predictive
power of community detection methods.

We look at the properties of group size, group density, and
group embeddedness and see if any of these are indicative of a
type of group with a greater predictive power for either recall
or precision. For a group of n nodes, sum of internal degrees
kin, sum of total degrees of ktot, we define the density ρ as

ρ = kin
1
2n(n − 1)

(D1)

and the group embeddedness ξ as

ξ = kin

ktot
. (D2)

Because some bins (parameter ranges) may have very little
data, such as only one group, we only plot bins that have
at least five groups and whose sum of group sizes is at
least 1% of the network. Furthermore, some community

FIG. 18. (Color online) Recall of metadata groups of fb100.
Each diagram refers to a grouping of the students based on one
specific feature (e.g., their dorm, top left). We see that few groups of
any type of metadata are found by any of the community detection
methods.
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FIG. 19. (Color online) Precision of each partition level of sev-
eral community detection algorithms with respect to metadata groups
of fb100, corresponding to a single feature of the students. For those
algorithms returning multiple detected levels, each level is plotted
separately in order to see the performance of each detected layer
individually. This produces a field of lines, but it is sufficient to see
that there are no outliers in performance.

detection methods return multiple covers of the system,
from different input parameters (see Appendix B). When
computing recall, a known group is matched to every detected
community regardless of its detected layer or size, density, or
embeddedness. When computing precision, one could ask if
any one particular layer would have greater predictive power
than all layers taken together. To show this, we plot the
precision of each detected layer separately. If one particular
layer or set of parameters was very good, then we could see
one line above the rest. As we will see, there are no significant
outliers, so the identity of each line does not matter. This

procedure is performed on the precision plots from Figs. 12
to 19.

In Figs. 12–17, we see the recall and precision of the
as-caida dataset broken down by the group properties above.
Copra and Demon did not return sufficient communities in each
bin to perform a meaningful analysis, so their results are not
shown. In Figs. 12 and 15, we see the recall (precision) of
groups as a function of the size of the known (detected) group.
We are able to see some variations in the performance. Most
methods seem to do a better job in detecting large groups
than small ones. A notable exception is LinkCommunities,
which has the highest recall for the smallest metadata groups,
although the precision for the smallest detected communities
is not the highest. In general, the curves are quite close to
each other. For some algorithms, such as GreedyCliqueExp,
InfomapSingle, LinkCommunities, and OSLOM, there is a
more visible spread of the curves.

If we consider density bins, Figs. 13 and 16 show a
consistent pattern as that observed for Figs. 12 and 15, as
link density is correlated to group size: small groups tend to
have higher link density than large groups.

Finally, if one considers embeddedness (Figs. 14 and 17),
both recall and precision are highest for the most embed-
ded groups, i.e., the ones most weakly attached to the
rest of the system, and systematically decreases if embed-
dedness decreases. This is expected, as most algorithms
look for subgraphs which are loosely connected to the
rest of the system, and high embeddedness means high
separation.

The fb100 data set provides us with a unique opportunity
to further understand the factors which allow high community
detection performance. It is a collection including the Face-
book social networks at 100 universities, with different types
of metadata to allow us to form groups of different types.
We can see if methods can better detect groups of a certain
type. The metadata include dorm (the student residence), high
school (the school of each user before attending university),
major (the student’s field of study), majorall [the student’s
major(s) possibly including a second major], and year (the
student’s graduation year). In Figs. 18 and 19, we plot the
recall (precision) of various methods with respect to groups
corresponding to each of the above attributes, averaged over
the 100 universities included in this dataset. None of the
students’ features appear to generate well recoverable groups.
LinkCommunities appears to have a higher recall than most
methods, for each grouping of the students, but it has much
lower precision, due to the much bigger number of detected
groups.
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