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In economic and financial networks, the strength of each node has always an important economic meaning,
such as the size of supply and demand, import and export, or financial exposure. Constructing null models of
networks matching the observed strengths of all nodes is crucial in order to either detect interesting deviations of
an empirical network from economically meaningful benchmarks or reconstruct the most likely structure of an
economic network when the latter is unknown. However, several studies have proved that real economic networks
and multiplexes topologically differ from configurations inferred only from node strengths. Here we provide a
detailed analysis of the world trade multiplex by comparing it to an enhanced null model that simultaneously
reproduces the strength and the degree of each node. We study several temporal snapshots and almost 100 layers
(commodity classes) of the multiplex and find that the observed properties are systematically well reproduced
by our model. Our formalism allows us to introduce the (static) concept of extensive and intensive bias, defined
as a measurable tendency of the network to prefer either the formation of extra links or the reinforcement of
link weights, with respect to a reference case where only strengths are enforced. Our findings complement the
existing economic literature on (dynamic) intensive and extensive trade margins. More generally, they show that
real-world multiplexes can be strongly shaped by layer-specific local constraints.
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I. INTRODUCTION

Over the past 15 years, there has been a dramatic rise of
interest in the mechanisms of network formation [1,2]. One
of the reasons lies in the fact that the dynamics of a wide
range of important phenomena (e.g., disease spreading and
information diffusion) is strongly affected by the topology of
the underlying network mediating the interactions. Economic
networks are particularly relevant for the emergence of many
processes of societal relevance such as globalization, economic
integration, and financial contagion [3].

In order to identify the nontrivial structural properties
of a real network, one needs to appropriately define and
implement a null model. Comparing a real network with
a null model allows one to reveal statistically significant
structural patterns. Substantial effort has been devoted to the
definition of null models for graphs [4–12]. In economics,
the use of purely random models is not new and spans from
industrial agglomeration [13,14] to international trade [15].
Identifying the observed properties of real economic networks
carrying nontrivial information allows one to select the “target
quantities” that economic models should aim at explaining
or reproducing. In particular, if a random network model
where only a set of local node-specific properties are enforced
turns out to reproduce a real-world network satisfactorily well,
then there is no need to know additional information besides
the chosen constraints. The latter are therefore maximally

informative, and the relevant (economic) models should aim at
reproducing the observed values of the constraints themselves.
On the contrary, a bad agreement indicates the need for
additional information.

An important economic case study is the World Trade
Web (WTW) or International Trade Network (ITN), where
nodes are world countries and links represent international
trade relationships. At the aggregate level, various authors
have focused on the binary version of the WTW [16–18],
showing (among several other patterns) the presence of a
“disassortative” pattern and a stable negative correlation
between node degree and clustering coefficient. The relevant
role played by the topology on the whole network structure
is undeniable. In fact, the observed properties turn out to
be important in explaining macroeconomics dynamics. For
instance, the degree of a country has substantial implications
for economic growth and a good potential for explaining
episodes of financial contagion [19,20].

The introduction of null models in the analysis of the WTW
has allowed to (re)interpret the results of the network approach
in the light of traditional economic analyses [21], where
most country-specific macroeconomic variables (total trade,
number of trade partners, etc.) can be rephrased in terms of
first-order (local) properties of nodes. Recent studies [22–24]
have shown that much of the binary architecture of the WTW
can be reproduced by a null model controlling for the (in- and
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out-)degrees of all countries. This null model is known as the
Binary Configuration Model (BCM). The agreement between
the BCM and the real WTW holds both at the aggregate level
and at a “multiplex” [25–28] level (i.e., for every different
commodity-specific layer of the network) [22,23]. This result
has important consequences for trade modeling, because it
highlights the need for revised macroeconomic theories aimed
at reproducing the degrees of all countries, in contrast with
the standard approach which considers the number of trade
partners irrelevant.

Despite its fundamental role, the binary version of the
WTW suffers from an important limitation: It ignores the
magnitude of the observed trade relationships, thus giving
only partial information about the network. Indeed, it turns
out that the binary and weighted versions of the WTW differ
substantially [29–31]. For example, the edge weight and node
strength distributions are highly left-skewed, indicating that
few intense trade connections coexist with a majority of
low-intensity ones [32] and that countries with many partners
are also the richest and most (globally) central. However, the
latter trade very intensively with only few of their partners
(which turn out to be themselves very connected), forming
few but intensive trade clusters (i.e., triangular patterns) [30].

Recent works [23,33] have extended the binary null model
analysis [22] to the weighted version of the WTW, now
randomizing the latter while preserving each country’s (in-
and out-)strength. This null model is known as the Weighted
Configuration Model (WCM). Surprisingly, these studies
found a very bad agreement between observed and expected
higher-order weighted properties, mainly because the random-
ized network is in general much denser than the observed one
and often almost fully connected. Other works obtained similar
results using different methodologies [11,32,34–36].

The standard interpretation of these findings calls for the
existence of higher-order mechanisms shaping the structure
of the WTW as a weighted network, suggesting the im-
possibility to reconstruct the WTW from purely country-
specific information. Again, this interpretation has important
consequences for economic modeling. In fact, reproducing the
observed strengths or other purely weighted properties which,
unlike the degrees, represent the main target of traditional
macroeconomic theories (the most popular example being that
of gravity models [37–40]) appears quite useless in order to
explain the network structure. Even if for the opposite reason,
this conclusion calls again for a change of perspective in the
way economic models approach the international trade system.
However, in this paper we show that this interpretation should
be considerably revised.

There is another attractive reason for using null models in
network analysis, namely the possibility of reconstructing an
(unobserved) network from its local properties. We recently in-
troduced an enhanced method to build ensembles of networks
simultaneously reproducing the strength and the degree of each
node [41]. The method, called Enhanced Configuration Model
(ECM) because it is an augmented version of both the BCM
and the WCM, builds on prior theoretical results introducing
the generalized Bose-Fermi distribution [42], which is the
appropriate probability function characterizing systems with
both binary and nonbinary constraints. The application of the
ECM allowed us to show that, for many real networks where

the specification of the strengths alone give very poor re-
sults, the joint specification of strengths and degrees can recon-
struct the original network to a great degree of accuracy [41].

While we already analyzed one (aggregated and static)
snapshot of the WTW as part of the analysis described above,
this is not enough to conclude that those results can be
straightforwardly extended to different temporal snapshots and
different layers of this economic multiplex. Indeed, Ref. [41]
focused on a diverse set of networks of very different nature
(biological, social, etc.) but included no temporal analysis and
no multiplex analysis. As we have already mentioned, in the
particular case of the WTW carrying out a deeper analysis
has a special importance for its macroeconomic implications,
because understanding the empirical role of local constraints
changes the theoretical approaches to the trade system and can
highlight some important flaws in standard macroeconomic
modeling. Previous investigations of the international trade
network revealed similarities but also differences across
the layers of the multiplex (at both binary and weighted
levels) [43]. Moreover, increased product complexity appears
to yield increased product-specific network complexity [44].
Finally, the country-product associations reveal a highly non-
trivial nested structure [45] which contradicts the mainstream
economic expectation and, similarly, the product-product
network displays a strong core-periphery structure [46]. These
product-related heterogeneities imply that it is not obvious
whether one should expect that the results obtained on a single,
aggregate instance of the WTW are robust over time and across
different commodity classes.

Given the importance of the problem and its more general
implications for the understanding of economic networks, in
this paper we carry out an in-depth investigation of the WTW
spanning several years and different commodities. Our results
show that, when considered together, the total trade (strength)
and the number of trade partners (degree) of all world
countries are enough in order to reproduce many higher-order
properties of the network for all levels of disaggregation and
all temporal snapshots in our analysis. In order to fully explain
the structure of the WTW, binary constraints must therefore be
added to the weighted ones. Economically, this suggests that
additional higher-order mechanisms besides those accounting
for the joint evolution of degrees and strengths are not really
necessary in order to explain the structure and dynamics of
the WTW. On the other hand, we also show that degrees and
strengths are “irreducible” to each other, i.e., any minimal
macroeconomic model aiming at reproducing the WTW
should not discard any of the two quantities.

Our work complements the existing economic literature
about the so-called extensive and intensive margins of
trade [47–49], defined as the preference for the network to
evolve by establishing new connections or by strengthening
the intensity of existing ones respectively. While extensive and
intensive margins are traditionally defined at an intrinsically
dynamical level, we define the new concept of extensive and
intensive biases as a purely static notion and for each pair
of countries separately. We focus on cross-sectional data and
evaluate whether, at a given point in time, pairs of countries
are “shifted” along the intensive or extensive direction as
compared to an appropriate null model. Thus, our methodology
does not establish whether the WTW proceeds along the
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extensive or intensive margin in the traditional “dynamical”
way, i.e., by accounting for the variation of trade connections
and/or their weights over time. On the contrary, it allows
us to identify a bias towards either the extensive or the
intensive direction in a novel, static fashion by exploiting
a mathematical property of the null model specifying both
strengths and degrees. Moreover, the entity of the bias can be
exactly quantified for each pair of countries, allowing different
pairs of nodes to be characterized by opposite tendencies.

Our paper is organized as follows. In Sec. II we introduce
the trade data used and briefly summarize the methodology
we employ to specify both strengths and degrees in weighted
networks [41,50]. In Sec. III we apply the methodology first
to a reference year, then to several temporal snapshots, and,
finally, to different aggregation levels (commodity classes) of
the world trade multiplex. In Sec. IV we discuss some general
economic implications of our results and their relation with
the more traditional literature about intensive and extensive
margins of trade.

II. DATA AND METHODOLOGY

As we mentioned, our analysis builds on previous studies
of the WTW that showed that the degree sequence is able
to replicate the purely binary topology very well [22], while
the strength sequence is completely unable to replicate the
weighted structure [33]. We aim at understanding whether
the joint specification of strengths and degrees allows us to
successfully replicate the weighted structure. To this end, we
use exactly the same data set as Refs. [22,33], so consistent
comparisons can be made. Such data set is described in
Sec. II A. We also use a similar, but appropriately generalized,
methodology. This is introduced in Sec. II B.

A. The world trade multiplex

As in Refs. [22,33], we employ international trade data
provided by the United Nations Commodity Trade Database
(UN COMTRADE [51]) in order to build a time sequence
of binary and weighted trade multiplexes. The sample refers
to 11 years (1992–2002) and the money unit is current U.S.
dollars. The choice of this time span allows us construct a
time-varying multiplex with a constant number of N = 162
countries and a constant number of C = 97 layers (commodity
classes), evolving over T = 11 years. When necessary, we will
also aggregate all or part of the layers to obtain different levels
of resolution.

We chose the classification of trade values into C = 97
possible commodities listed according to the Harmonized
System 1996 (HS1996 [52]). For each year t (1 � t � T )
and each commodity c (1 � c � C), the starting data are
represented as a matrix whose elements are the trade flows
directed from each country to all other countries [53]. The
matrix elements specifying the multiplex are denoted by e

(c)
ij (t),

where e
(c)
ij (t) > 0 whenever there is an export of good c

from country i to country j and e
(c)
ij (t) = 0 otherwise. Rows

and columns stand for exporting and importing countries
respectively. The value of e

(c)
ij (t) is in current U.S. dollars

(USD) for all commodities.
Given the commodity-specific (multiplex) data e

(c)
ij (t), we

can compute the total (aggregate) value of exports eAGG
ij (t)

from country i to country j summing up over the exports of
all C = 97 commodity classes:

eAGG
ij (t) ≡

C∑
c=1

e
(c)
ij (t). (1)

The particular aggregation procedure described above, intro-
duced in Ref. [43], allows us to compare the analysis of the C

commodity-specific layers of the multiplex with a (C + 1)-th
aggregate network, avoiding possible inconsistencies between
the original aggregated and disaggregated trade data.

We put special emphasis on the 14 particularly relevant
commodities identified in Ref. [43] and reported in Table I.
They include the 10 most traded commodities (c =
84,85,27,87,90,39,29,30,72,71 according to the HS1996)
in terms of total trade value (following the ranking in year
2003, [43]), plus 4 commodities (c = 10,52,9,93 according to
the HS1996) which are less traded but still important for their
economic relevance. The 10 most traded commodities account
for 56% of total world trade in 2003; moreover, they also
feature the largest values of trade value per link (see Table I).
Taken together, the 14 most relevant commodities account
in total for 57% of world trade in 2003. As an intermediate
level of aggregation between individual commodities and fully
aggregate trade, we also consider the network formed by the
sum of the 14 special commodities. In this way we can also
draw conclusions about the robustness of our methodology
with respect to different levels of aggregation.

In our analyses, we will focus on the undirected (sym-
metrized) representation of the network for obvious reasons
of simplicity, even if the extension to the directed case is
straightforward once the method in Ref. [41] is appropriately
generalized. In any case, several works have shown that the
percentage of reciprocated interactions in the WTW is steadily
high [22,29,33], giving us reasonable confidence that we can
focus on the temporal series of undirected networks. We
therefore define the symmetric matrices

w̃
(c)
ij (t) ≡

⌊
e

(c)
ij (t) + e

(c)
ji (t)

2

⌉
,

(2)

w̃AGG
ij (t) ≡

⌊
eAGG
ij (t) + eAGG

ji (t)

2

⌉
,

where �x� represents the nearest integer to the nonnegative
real number x [54]. The above matrices define an undirected
weighted network where the weight of a link is the average of
the trade flowing in either direction between two countries.

In order to wash away trend effects and make the data
comparable over time, we normalized our weights according
to the total trade volume for each year:

w
(c)
ij (t) ≡ w̃

(c)
ij (t)

w̃
(c)
TOT

, wAGG
ij (t) ≡ w̃AGG

ij (t)

w̃AGG
TOT

(3)

where w̃
(c)
TOT = ∑N

i=1

∑N
j=i+1 w̃

(c)
ij and w̃AGG

TOT =∑N
i=1

∑N
j=i+1 w̃AGG

ij . In such a way, we end up with
adimensional weights that allow proper comparisons over
time and consistent analyses of the evolution of network
properties.
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TABLE I. The 14 most relevant commodity classes (plus aggregate trade) in the year 2003 and the corresponding total trade value (USD),
trade value per link (USD), and share of world aggregate trade. From Ref. [43].

Value per % of aggregate
HS Code Commodity Value (USD) link (USD) trade

84 Nuclear reactors, 5.67 × 1011 6.17 × 107 11.37%
boilers, machinery and mechanical appliances;
parts thereof

85 Electric machinery, equipment and parts; 5.58 × 1011 6.37 × 107 11.18%
sound equipment; television
equipment

27 Mineral fuels, mineral oils & 4.45 × 1011 9.91 × 107 8.92%
products of their distillation;
bitumin substances; mineral wax

87 Vehicles, (not railway, tramway, 3.09 × 1011 4.76 × 107 6.19%
rolling stock); parts and accessories

90 Optical, photographic, 1.78 × 1011 2.48 × 107 3.58%
cinematographic, measuring,
checking, precision, medical or
surgical instruments/apparatus;
parts & accessories

39 Plastics and articles thereof. 1.71 × 1011 2.33 × 107 3.44%
29 Organic chemicals 1.67 × 1011 3.29 × 107 3.35%
30 Pharmaceutical products 1.4 × 1011 2.59 × 107 2.81%
72 Iron and steel 1.35 × 1011 2.77 × 107 2.70%
71 Pearls, precious stones, metals, coins, etc. 1.01 × 1011 2.41 × 107 2.02%
10 Cereals 3.63 × 1010 1.28 × 107 0.73%
52 Cotton, including yarn and woven fabric thereof 3.29 × 1010 6.96 × 106 0.66%
9 Coffee, tea, mate & spices 1.28 × 1010 2.56 × 106 0.26%
93 Arms and ammunition, parts and accessories thereof 4.31 × 109 2.46 × 106 0.09%
ALL Aggregate (all 97 commodities) 4.99 × 1012 3.54 × 108 100.00%

B. The enhanced configuration model

Our methodology makes intense use of the ECM [41],
defined as an ensemble of weighted networks with given
strengths and degrees. In some sense, the ECM unifies the
BCM and the WCM, which have been separately used in
previous analyses of the same data [22,33].

One can show [50,55] that most of the algorithms developed
to randomize a real-world network suffer from severe limita-
tions and give biased results. To overcome these limitations,
we use a recently proposed unbiased method [41] based on
the maximum-likelihood estimation [56] of maximum-entropy
ensembles of graphs [50]. One of the attractive features of
this method is its fully analytical character, which allows
us to obtain the exact expressions for the expected values
without performing explicit averages over numerically sam-
pled networks of the ensemble. Recently, a fast and unbiased
algorithm has been released to computationally implement
this procedure [55]. We briefly recall the main steps of this
approach and of the enhanced network reconstruction method
that, building on some general theoretical results [42], can be
derived from it.

First, we need to specify a set of constraints {Ci}. The
constraints are the network properties that we want to preserve
during the randomization procedure, according to the specific
network and research question. Generally, these constraints are
local, such as the strength sequence defining the WCM, but the
methodology can also account for nonlocal constraints in some
cases [57,58]. In order to construct the ECM, defined an en-

semble of weighted networks where both the degree sequence
and the strength sequence are specified [41], we choose

{Ci} ≡ {ki,si}, (4)

where ki stands for the i-th node degree and si for the i-th
node strength.

Second, we need to find the analytical expression for
the probability P (W ) that (under the chosen constraints)
maximizes the Shannon-Gibbs entropy,

S(W ) ≡ −
∑
W

P (W ) ln P (W ), (5)

over the ensemble of allowed networks. Note that P (W )
stands for the occurrence probability of the graph W in the
ensemble of allowed weighted graphs, and the sums are over
all such graphs. For our purposes, the allowed graphs are all the
undirected networks with N vertices and non-negative integer
edge weights. Each such network is uniquely specified by its
N × N symmetric weight matrix W , where the entry wij =
wji ∈ N represents the weight of the link connecting nodes i

and j . The maximization of Shannon’s entropy is done under
the constraints

∑
W P (W ) = 1 (this ensures the normalization

of the probability) and 〈Ci〉 ≡ ∑
W P (W )Ci(W ) = Ci for all

i (this fixes the desired structural properties). The formal
solution [50] of this constrained maximization problem can
be written as

P (W |�θ ) ≡ e−H (W,�θ )

Z(�θ )
, (6)
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where

H (W,�θ ) ≡
∑

i

θiCi(W ) (7)

is the graph Hamiltonian and

Z(�θ) ≡
∑
W

e−H (W,�θ ) (8)

is the partition function. The Hamiltonian is a linear com-
bination of the constraints {Ci}, with the coefficients {θi}
being the conjugate Lagrange multipliers introduced in the
constrained-maximization problem.

For the ECM, it is possible to show [41,42] that

P (W |�x,�y) =
∏
i<j

qij (wij |�x,�y), (9)

where �x and �y are two N -dimensional Lagrange multipliers (N
stands for the number of nodes) controlling for the expected
degrees and strengths respectively (with xi � 0 and 0 � yi <

1 for all i) and qij (w|�x,�y) is the conditional probability to
observe a link of weight w between nodes i and j . The latter
has the explicit expression [41,42]

qij (w|�x,�y) = (xixj )�(w)(yiyj )w(1 − yiyj )

1 − yiyj + xixjyiyj

. (10)

The third step of the procedure prescribes to find the values
of the Lagrange multipliers �x∗,�y∗ that maximize the log-
likelihood of generating the observed weighted network W ∗
(which is one particular network in the ensemble considered).
The log-likelihood reads

L(�x,�y) ≡ ln P (W ∗|�x,�y) =
∑
i<j

ln qij (w∗
ij |�x,�y), (11)

representing the logarithm of the probability to observe the
empirical graph W ∗. The maximization of the likelihood is
equivalent to the requirement that the desired constraints are
satisfied on average by the ensemble of networks [56], i.e., in
this case 〈ki〉 = ki(W ∗) and 〈si〉 = si(W ∗) for all i [41].

As a final step, one can use the Lagrange multipliers �x∗,�y∗ to
compute the expected value 〈X〉 of any (higher-order) network
property X(W ):

〈X〉 ≡
∑
W

X(W )P (W |�x∗,�y∗). (12)

Comparing 〈X〉 with the observed value X(W ∗) allows us to
verify whether the “reconstructed” value of the property is
indeed close to the empirical one.

We will also compare the predictions of the ECM with those
of the WCM. The latter can be obtained by setting �x = �1 and
maximizing the likelihood with respect to �y alone, thus finding
another vector �y∗∗ 
= �y∗ [41].

A computationally fast and statistically unbiased algorithm
to obtain the values of the Lagrange multipliers maximizing
the likelihood of both the ECM and WCM (along with other
maximum-entropy ensembles) has been recently introduced
under the name of the “Max & Sam” (“maximize and sample”)
method [55]. We will use that algorithm in our analysis.

III. RESULTS

In this section, we first analyze in detail the aggregated
trade network in the reference year 2002. Our choice of
this particular snapshot is dictated by the need to compare
our results with that of Refs. [22,33], as we mentioned.
We then consider the temporal evolution of the system.
Finally, we perform a multiplex analysis on the disaggregated,
commodity-specific layers of the WTW.

A. Analysis of the aggregated network

For simplicity of the notation, in this subsection we indicate
with A the adjacency matrix and with W the weighted matrix
representing the aggregate network in year 2002, i.e., wij ≡
wAGG

ij (2002). In general, we can relate the entries of the matri-
ces A and W through the zeroth power using the notation w0

ij =
aij , where we conventionally define 00 ≡ 0. This notation will
be useful later to calculate the expected values of various
structural properties. It also allows us to express the properties
of purely topological properties, which, in principle, depend
on the adjacency matrix A, as functions of the matrix W .

We are interested in assessing to what extent the ECM is
able to replicate the higher-order properties characterizing the
WTW over time. Therefore we first apply the ECM to the
data, thus finding the vectors �x∗ and �y∗, and then we use these
vectors to calculate the expected values of the chosen higher-
order properties. For consistency with Refs. [22,33], we focus
on the average nearest neighbor degree, the average nearest
neighbor strength (denoted by knn

i and snn
i , respectively),

the binary clustering coefficient, and the weighted clustering
coefficient (denoted by ci and cw

i , respectively). In what
follows, we first recall the analytical expressions of these
higher-order quantities. Then, for the sake of clarity, we write
down the explicit expressions for the expected value of the
same quantities under the ECM, i.e., the particular form taken
by Eq. (12) for each property under study.

The average nearest neighbor degree is defined as

knn
i (W ) ≡

∑
j 
=i w

0
ij kj

ki

=
∑

j 
=i

∑
k 
=j w0

ijw
0
jk∑

j 
=i w
0
ij

, (13)

where ki = ∑
j 
=i w0

ij stands for the i-th node degree and
represents the average of the degrees of the partners of node i,
i.e., it provides a measure of the connectivity of the neighbors
of that node.

The binary clustering coefficient has the expression

ci(W ) ≡
∑

j 
=i

∑
k 
=i,j w0

ijw
0
jkw

0
ki∑

j 
=i

∑
k 
=i,j w0

ijw
0
ki

(14)

and measures the tendency of node i to form triangles, i.e.,
it counts how many closed triangles are attached to node i,
divided by the maximum number of triangles achievable by a
node with degree ki .

The average nearest neighbor strength is defined as

snn
i (W ) ≡

∑
j 
=i w

0
ij sj

ki

=
∑

j 
=i

∑
k 
=j w0

ijwjk∑
j 
=i w0

ij

, (15)

where si = ∑
j 
=i wij stands for the i-th node strength and

measures the average strength of the neighbors of vertex
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i. Similarly to its binary counterpart (knn
i ), snn

i reveals the
“intensity” of connectiviy of the neighbors of a node, now
taking edge weights into account.

Finally, the weighted clustering coefficient [59] can be
defined as

cw
i (W ) =

∑
j 
=i

∑
k 
=i,j (wijwjkwki)1/3∑

j 
=i

∑
k 
=i,j w0

ijw
0
ki

(16)

and measures the propensity of node i to be involved in
triangular relations, taking into account the weights of such
relations.

In order to compute the expected value of the above
properties, it is necessary to compute the expected product
of (powers of) distinct matrix entries. The independence of
pairs of nodes in the ECM [41] ensures that〈 ∑

i 
=j 
=k,...

wα
ijw

β

jk . . .

〉
=

∑
i 
=j 
=k,...

〈
wα

ij

〉〈
w

β

jk

〉 〈. . . 〉.
Each individual term in the product is given by

〈
w

γ

ij

〉 =
+∞∑
w=0

wγ qij (w|�x∗,�y∗) = x∗
i x∗

j (1 − y∗
i y∗

j )Li−γ (y∗
i y∗

j )

1 − y∗
i y∗

j + x∗
i x∗

j y∗
i y∗

j

,

where Lin(z) ≡ ∑+∞
l=1 zl/ ln is the nth polylogarithm of z [41].

The simplest cases γ = 1 and γ = 0 yield the expected weight

〈wij 〉 ≡ x∗
i x∗

j y∗
i y∗

j

(1 − y∗
i y∗

j )(1 − y∗
i y∗

j + x∗
i x∗

j y∗
i y∗

j )
(17)

and the connection probability

pij ≡ 〈
w0

ij

〉 = x∗
i x∗

j y∗
i y∗

j

1 − y∗
i y∗

j + x∗
i x∗

j y∗
i y∗

j

, (18)

respectively [41].
As a result, the expected values of the purely topological

(weight-independent) properties can be obtained by simply
replacing w0

ij = aij with pij [41]:

〈
knn
i (W )

〉 ≡
∑

j 
=i pij 〈kj 〉
〈ki〉 =

∑
j 
=i

∑
k 
=j pijpjk∑

j 
=i pij

, (19)

〈ci(W )〉 ≡
∑

j 
=i

∑
k 
=i,j pijpjkpki∑

j 
=i

∑
k 
=i,j pijpki

, (20)

where, by construction, 〈ki〉 ≡ ki for all i. For the expected
value of snn

i we have [41,42]:

〈
snn
i (W )

〉 ≡
∑

j 
=i pij 〈sj 〉
〈ki〉 =

∑
j 
=i

∑
k 
=j pij 〈wjk〉∑
j 
=i pij

, (21)

where 〈si〉 ≡ si , ∀i. Finally, the expected value of cw
i is

〈
cw
i (W )

〉 =
∑

j 
=i

∑
k 
=i,j

〈
w

1/3
ij

〉〈
w

1/3
jk

〉〈
w

1/3
ki

〉
∑

j 
=i

∑
k 
=i,j pijpki

. (22)

In Fig. 1 we show, for the snapshot in year 2002, the
scatter plots between node degree (ki) and higher-order binary
properties (knn

i ,ci), as well as those between node strength
(si) and higher-order weighted properties (snn

i ,cw
i ). From an

economic point of view, knn
i and ci give information about
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FIG. 1. (Color online) Comparison between the observed undirected binary and weighted properties (red points) and the corresponding
ensemble averages of the WCM (green points) and the ECM (blue points) for the aggregated WTW in the 2002 snapshot. Top left: average
nearest neighbor degree knn

i versus degree ki . Top right: binary clustering coefficient ci versus degree ki . Bottom left: average nearest neighbor
strength snn

i versus strength si . Bottom right: weighted clustering coefficient cw
i versus strength si .
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indirect interactions over paths of length 2 and 3, respectively,
since terms of the form aij ajk and aij ajkaki are involved in the
definitions of these quantities. In accordance with the existing
literature, we find decreasing trends of both knn

i and ci versus
ki . This confirms that it is very likely to find nodes with
many trade partners connected to nodes with small degree
(disassortativity), while trade partners of poorly connected
nodes are highly interconnected. Similar considerations hold
true when we consider edge weights, as snn

i and cw
i involve

indirect paths of length 2 and 3, respectively, now including
mixed information about topology and weights. Intensively
trading countries are found to be connected with poorly
trading countries, confirming a dissasortative pattern (even
if less prominent than in the binary case) at a weighted
level.

Besides the observed values of the aforementioned quan-
tities, in Fig. 1 we also plot the corresponding expected
values predicted by the ECM, as well as those predicted
by the WCM. The latter represent the starting point of our
analysis, because they are intended to merely replicate the
results in Ref. [33]. Indeed, we confirm that the WCM is in
striking disagreement with the observed values. While, at a
binary level, the empirical degree correlations and clustering
structure of the ITN are excellently reproduced by the BCM
(which uses only the knowledge of the degree sequence) [22],
at a weighted level the observed network properties differ
markedly from the predictions of the WCM (which, naively, is
the obvious extension of the BCM to weighted graphs) [33].
These results are robust over time and for various reso-
lutions (i.e., for different levels of aggregation of traded
commodities).

It is important to realize the origin of the disagreement
between the WCM and the real network. We note that the
expected values under the WCM are similar to those predicted
for a fully connected topology. Indeed, for a complete network
we have

〈ki〉 = N − 1, (23)

〈
knn
i

〉 = N − 1, (24)

〈c〉 = 1, (25)

〈
snn
i

〉 =
∑

i si

N − 1
= 2WTOT

N − 1
, (26)

where N stands for the number of nodes in the network, while
WTOT is the total weight of all edges. The above predictions can
be confirmed in Fig. 1. So the main reason why the WCM fails
is the fact that it generates unrealistically dense (and sometimes
almost fully connected) networks [33,41]. We also note that,
despite the apparent good agreement between the observed
weighted clustering coefficient and its expected value under
the WCM (Fig. 1), one can show that the empirical total level
of clustering is in general higher than the one predicted by
WCM, both throughout the temporal evolution of the system
and across its commodity-specific layers [33].

We note that another study [36] also applied a variant
of the WCM (basically assuming non-negative but real-
valued, instead of integer-valued, edge weights) to the WTW.

However, the quantities used therein to test the model against
the data did not depend in any way on the adjacency matrix
A, i.e., they were entirely topology independent. As a result,
the authors concluded that the observed WTW is a typical
member of the WCM. Our analysis, together with Ref. [33],
shows that monitoring more (topological) properties leads to
the opposite conclusion. Indeed, it is easy to show that the
variant of the WCM used in Ref. [36] predicts a rigorously
fully connected network, precisely because the assumption of
real-valued weights implies a zero probability of missing links
(zero weights). Therefore the real-valued WCM encounters
the limitations discussed above in an even more extreme
way.

We now come to the predictions of the ECM shown in Fig. 1.
In marked contrast with the WCM, the ECM performs very
well and reproduces both the binary and weighted properties
of the WTW. First, we find a definitely improved agreement
for the binary trends (knn

i and ci versus ki): The ECM shows
an expected trend that follows the data very closely. For these
binary properties, the predictions of the ECM are even closer
to the observed cloud of points than the monotonic curves
predicted by the BCM for the same network, as a visual
comparison with the results shown in Ref. [22] immediately
reveals. Second, we also find a significantly better agreement,
with respect to the WCM, between the observed and the
randomized weighted trends (snn

i and cw
i versus si).

These results imply that the knowledge of both the number
of trade partners of each node and the total amount of trade
flowing through each country is highly informative about the
higher-order and nonlocal dynamics of the whole network.
More generally, the local binary information is crucial in order
to predict the weighted structure itself. In turn, this means
that the weighted information alone does not allow a deep
understanding of the topology of the network. We therefore
confirm our recent finding [41] that the naı̈ve expectation
that weighted quantities are per se more informative than
the corresponding binary ones is fundamentally incorrect. To
further validate these findings, in what follows we explore the
evolution of the same properties over time and across different
layers of the trade multiplex.

B. Temporal evolution

We first test the robustness of our results over time by
replicating the previous analysis on the 11 yearly snapshots
of the aggregated network. We measure the same properties,
as well as their expected values, as defined in Sec. III A,
where now the matrices A and W refer to each of the
various snapshots of the system, i.e., wij ≡ wAGG

ij (t) for
t = 1992,1993, . . . 2002.

We show our results in the following, more compact way.
We consider the four network properties defined in Eqs. (13)–
(16) separately, and for each network property we take the
list of observed values (e.g., {knn

i }) and the list of expected
values under the ECM (e.g., {〈knn

i 〉}). For each of the two
lists, we compute the following three metrics: (i) the average
value of the list; (ii) the standard deviation of the list; and
(iii) the Pearson correlation coefficient between the list and
the list of “natural” constraints that we used above as the
independent variable in the relevant scatter plot (e.g., {ki}). As
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FIG. 2. (Color online) Temporal evolution of the average nearest neighbor degree (knn
i ) from 1992 to 2002 and comparison with the

corresponding maximum-entropy ensembles with specified degrees and strengths (ECM). (a) Average of knn
i across all vertices (red, obs.; blue,

randomized); (b) standard deviation of knn
i across all vertices; (c) correlation coefficient between knn

i and ki ; (d) correlation coefficient between
knn

i and 〈knn
i 〉. Red, observed values; blue, expected values. The 95% confidence intervals of all quantities are represented as vertical bars.

a fourth metric, we also calculate (iv) the Pearson correlation
coefficient between the list of expected values and the list
of observed values (e.g., between {knn

i } and {〈knn
i 〉}). Each

of these four metrics summarizes one aspect of the scatter
plot (of the type shown in Fig. 1) for the structural property
under consideration, thereby allowing us to compactly track
the evolution of the system over time.

It should be noted that the use of the correlation coefficient
(iv) is more appropriate than that of the coefficient (iii), since a
perfect agreement between model and data implies an equality
between expected and observed properties. Such an equality
is a proper form of linear correlation for which we expect
the Pearson correlation coefficient to achieve its maximum
value 1. In case of partial agreement, a value below 1 correctly
indicates a lack of equality (i.e., a lack of linearity) between
expected and observed values. By contrast, as clear from
Fig. 1, there is a nonlinear correlation between higher-order
properties (e.g., knn

i ) and the chosen constraints (e.g., ki).
Therefore we do not expect the correlation coefficient (iii) to be
in general close to ±1: rather, we merely expect that a perfect
agreement between model and data leads to similar values of
the coefficients derived from expected and observed values.
However, in case of partial agreement we can no longer expect
a consistency between the two, since the nonlinear character of
both observed and expected trends might have an uncontrolled
effect on the linear correlation coefficient. Thus our choice of

including the correlation coefficient (iii) is mainly due to the
need of comparing our results with previous studies, as we
now discuss.

The analysis described above is shown in four figures (one
for each structural property) of four panels each (one for each
metric). Specifically, Figs. 2, 3, 4, and 5 show the temporal evo-
lution (time series) of the four metrics mentioned above, for the
average nearest neighbor degree, binary clustering coefficient,
average nearest neighbor strength, and weighted clustering
coefficient respectively. For each property and each point in
time, we also plot the associated 95% confidence intervals.
Again, this kind of visualization coincides intentionally with
that used in previous analyses of the same data, where the
BCM [22] and WCM [33] were used. Our use of the same four
metrics and the same four properties allows us to compare the
performance of the ECM, i.e., of the combination of degrees
and strengths, with that of the other two null models where
only one constraint is used.

Figures 2 and 3 show that the time series of both average
value and standard deviation of the average nearest neighbor
degree and clustering coefficient are all perfectly replicated by
the ECM predictions over time. The correlation coefficient (iii)
of both knn

i and ci with ki is the only metric where there is some
minor disagreement; however, this cannot be interpreted as a
statistically significant deviation, as we discussed. The tight
agreement between observed and expected values over time
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FIG. 3. (Color online) Temporal evolution of the binary clustering coefficient (ci) from 1992 to 2002 and comparison with the corresponding
maximum-entropy ensembles with specified degrees and strengths (ECM). (a) average of ci across all vertices (red, obs.; blue, randomized);
(b) standard deviation of ci across all vertices; (c) correlation coefficient between ci and ki ; (d) correlation coefficient between ci and 〈ci〉. Red,
observed values; blue, expected values. The 95% confidence intervals of all quantities are represented as vertical bars.

is best confirmed by the correlation coefficient (iv), which
is always very close to 1. All these results are perfectly in
line with what is obtained using the BCM, i.e., when only
the degree is enforced as a constraint, on the purely binary
representation of the same data [22]. This means that, by
simultaneously preserving degrees and strengths, the ECM
does not diminish the ability of the BCM to predict the binary
topology of the WTW (as we have seen in Fig. 1, the ECM
actually improves the already good fit of the BCM to the
data).

Figures 4 and 5 show that also for the weighted network
properties there is an excellent agreement between the ob-
served values and the corresponding expectations over the
ECM for the whole period. The ECM is able to accurately
reproduce the temporal trends of the average of both snn

i and
cw
i , as well as their standard deviation. The correlation (iii)

of these properties with node strength is also well replicated
by the ECM in the whole period. Finally, the correlation
coefficient (iv) between observed and randomized properties
is almost 1 all the time. These results differ substantially from
what is obtained using the WCM on the same data [33]. Again,
the WCM is completely unable to replicate the observed trends.
The addition of purely binary information, embodied in the
number of node partners, makes the ECM very powerful in
predicting the higher-order properties of the WTW, throughout
the temporal window considered.

C. Information-theoretic comparison
of the WCM and the ECM

Before proceeding to the analysis of individual layers
of the trade multiplex, we perform an important check of
the statistical appropriateness of the results obtained so far.
This check is needed for the following reason. It is obvious
that, by including more constraints, the ECM achieves a
better fit than the WCM. However, in principle, the gain
in accuracy (better fit) might be smaller than the loss in
parsimony (more parameters), i.e., the ECM might overfit the
network. To rigorously make this assessment, we perform an
information-theoretic comparison of the two models in terms
of the achieved trade-off between accuracy and parsimony.

Information-theoretic criteria exist [60] to assess whether
the increased accuracy of a model with more parameters comes
at the price of an excessive loss of parsimony. The most popular
choice is the Akaike’s Information Criterion (AIC), showing
that the optimal trade-off between accuracy and parsimony is
achieved by discounting the number of free parameters from
the maximized log-likelihood [60].

To compute AIC, we therefore first need to calculate
the maximized log-likelihood of the two models. As we
mentioned, the WCM can be obtained as a particular case
of the ECM by setting xi = 1 for all i, i.e., by “switching
off” the Lagrange parameters controlling for the degrees. The
log-likelihood of the WCM is therefore the reduced function
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FIG. 4. (Color online) Temporal evolution of the properties of the ANNS snn
i in the 1992–2002 snapshots of the observed undirected WTW

and of the corresponding maximum-entropy ensembles with specified degrees and strengths: (a) average of snn
i across all vertices (red, obs.;

blue, randomized); (b) standard deviation of snn
i across all vertices; (c) correlation coefficient between snn

i and si ; (d) correlation coefficient
between snn

i and 〈snn
i 〉. Red points stands for observed values, blue for the randomized ones; the 95% confidence intervals of all quantities are

represented as vertical bars.

L(�1,�y) of N variables and is maximized by a new vector
�y∗∗ 
= �y∗, where (�x∗,�y∗) stands for the solution of the ECM
and (�1,�y∗∗) for the solution of the WCM for the same observed
network.

Given the maximized log-likelihood of our two competing
models, we calculate the size-corrected [60] version of AIC,
denoted as AICc, as follows:(

AICECM
c

) ≡ −2L(�x∗,�y∗) + 4N + 8N (2N + 1)

N2 − 5N − 2
, (27)

(
AICWCM

c

) ≡ −2L(�1,�y∗∗) + 2N + 4N (N + 1)

N2 − 3N − 2
. (28)

The last term on the right-hand side of both equations provides
the correction to AIC when the number of parameters is not
negligible with respect to the sample cardinality (as a rule
of thumb, when n/k < 40, n being the cardinality of the
sample and k being the number of parameters [60]), thus
further reducing the probability of overfitting. Notice that,
when n 
 k2, the additional term converges to 0, recovering
the standard form of AIC for the ECM [41]. Precisely for this
reason, AICc should be always employed regardless of the
value of n/k [60].

The model that achieves the best trade-off between accuracy
and parsimony is the one with the smallest value of AICc.
However, if the difference of the AICc values is small, the

two models will still be comparable. A quantitative criterion
to statistically interpret the differences of AICc is given by
the so-called Akaike weights, which quantify the weight of
evidence in favor of a model, i.e., the probability that the
model is the best one among the (two) models considered. In
our case, these weights read

wECM
AICc

≡ e−AICECM
c /2

e−AICECM
c /2 + e−AICWCM

c /2
, (29)

wWCM
AICc

≡ 1 − wECM
AICc

. (30)

Given a real network, a low value of wECM
AICc will indicate that

the addition of the degree sequence is redundant (the relevant
local constraints effectively reduce to the strength sequence, so
the standard WCM is preferable), while a high value of wECM

AICc

will indicate that, in addition to the strength sequence, the
degrees must be separately specified. We stress that the result
of this procedure is not predictable a priori (it depends on the
numerical values of {si} and {ki}) and can only be achieved af-
ter a comparison of the two model on the specific data at hand.

In Table II we show the results for the two competing
models, for the particular year 2002. We also used the Bayesian
information criterion (BIC), [60], which puts a higher penalty
on the number of parameters. Both criteria yield (up to machine
precision) a unit probability that the ECM is the best model.
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FIG. 5. (Color online) Temporal evolution of the properties of the WCC cw
i in the 1992–2002 snapshots of the observed undirected WTW

and of the corresponding maximum-entropy ensembles with specified degrees and strengths: (a) average of cw
i across all vertices (red, obs.;

blue, randomized); (b) standard deviation of cw
i across all vertices; (c) correlation coefficient between cw

i and si ; (d) correlation coefficient
between cw

i and 〈cw
i 〉. Red points denote observed values and blue the randomized ones; the 95% confidence intervals of all quantities are

represented as vertical bars.

This confirms that the addition of the degree sequence as
a constraint is nonredundant and extremely informative for
the prediction of the WTW properties. We systematically
found the same result for all temporal snapshots considered
in Sec. III B and all commodity classes that will be illustrated
in Sec. III D (values not shown for brevity).

The above finding implies that the world trade multiplex
is yet another system consistent with the “irreducibility
conjecture” we proposed in Ref. [41]. This conjecture states
that, in real-world weighted networks, the strengths are not
necessarily more informative than the degrees; rather, they
are a complementary piece of information. Strengths and
degrees are therefore “irreducible” to each other, because they
constrain the network in fundamentally different ways.

An important macroeconomic implication is that any
model aimed at reproducing the WTW (statically, over time,
and/or across its layers) should not discard any of the two

TABLE II. AICc and BIC values, along with the associated AICc

and BIC weights for the two null models (WCM and ECM) applied
to the WTW in 2002.

AICc BIC wAICc
wBIC

WCM 209,972 211,179 0 0
ECM 165,731 168,137 1 1

quantities. This conclusion sets an important challenge for
future models of trade, given that most models in the literature,
and most notably gravity models [39,40], mainly focus on
weighted properties (trade volumes) and largely discard purely
topological information.

D. Multiplex analysis: Commodity-specific trade networks

We conclude our empirical analysis by studying the
individual networks formed by imports and exports of single
(classes of) commodities.

As we described in Sec. II A, our data set resolves the
trade multiplex into C = 97 layers. While it is unfeasible to
replicate the analysis described so far on each of the C × T =
97 × 11 = 1067 networks resulting from the evolution of the
C layers over T years, we selected the same subset of layers
as in Refs. [22,33]. This choice allows us to gain information
about the performance of the ECM on layers with a broad range
of sparseness and edge weight: While the aggregate WTW con-
sidered above is a highly dense network (with density around
0.5) with large total weight, the commodities we selected
vary considerably in their intensity and level of connectivity.
The selection includes the two least-traded commodities (in
terms of total trade value, i.e., total edge weight) in the
entire data set (“Arms and ammunition,” c = 93, and “Coffee,
tea, mate & spices,” c = 9), two intermediate ones (“Plas-
tics,” c = 39, and “Optical, photographic, cinematographic,
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FIG. 6. (Color online) Average nearest neighbor degree (knn
i ) versus node degree (ki) in the 2002 snapshots of the commodity-specific

(disaggregated) versions of the observed binary undirected WTW (red points) and corresponding average over the maximum entropy ensemble
with specified degrees and strengths (blue points): (a) commodity 93, (b) commodity 09, (c) commodity 39, (d) commodity 90, (e) commodity
84, and (f) aggregation of the top 14 commodities (see Table I for details). From (a) to (f), the intensity of trade and level of aggregation
increases.

measuring, checking, precision, medical or surgical instru-
ments,” c = 90), the most-traded one (“Nuclear reactors,
boilers, machinery and mechanical appliances,” c = 84), plus
the network formed by combining all the top 14 commodities
described in Sec. II A together (see Table I for details). The last
sub-network represents an intermediate level of aggregation
between single commodities and the completely aggregated
data analyzed in Sec. III A. The six (classes of) commodities
described above, plus the fully aggregated network itself, form
a set of seven (combinations of) layers in increasing order of
trade intensity, link density, and aggregation.

We consider the scatter plots of both binary and weighted
higher-order properties for the 2002 snapshot of the above
layers, as we did in Sec. III A for the aggregate network. This
is shown in Figs. 6, 7, 8, and 9 for the average nearest neighbor
degree, binary clustering coefficient, average nearest neighbor
strength, and weighted clustering coefficient respectively.
Remarkably, we find that the results obtained in our aggregated
analysis also hold for individual commodities, independently
of the level of aggregation. Also for the temporal evolution
and information-theoretic analysis of the system, our results
are very similar to those found for the aggregate network in
Secs. III B and III C, respectively, but are not shown here for
the sake of brevity.

The binary results confirm, and slightly improve, the
performance of the BCM on the same data [22]. However,
the excellent agreement between observed and randomized
weighted properties in the commodity-specific case is more

surprising and represents a marked improvement with respect
to the predictions of the WCM for the same system [33].
The case of the weighted clustering coefficient is particularly
interesting in this sense. Indeed, while for the aggregate
network the WCM gives a reasonable prediction of (only)
this quantity (see Fig. 1), this outcome is not robust to
disaggregation: Individual layers of the empirical multiplex
show a deviation from the WCM, which increases with the
sparseness of the layer [33]. On the contrary, Fig. 9 shows that
the ECM accurately replicates the observed clustering, as well
as all the other properties under investigation, for every level
of disaggregation.

In general, we observe a slightly worse agreement in layers
with smaller density or volume (this is especially true for
the weighted properties). However, this appears to be mainly
due to the fact that the empirical scatter plots associated with
less traded goods are more dispersed (due to less statistics). As
expected, this effect is even more pronounced for the weighted
quantities, because the range of allowed values for the strength
is wider than that for the degree.

IV. DISCUSSION

We now discuss our result in the light of various lines of
research in economics. In particular, we focus on the role
of local properties in economic networks and on the relation
between our results and the established knowledged about
intensive and extensive margins of trade.
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FIG. 7. (Color online) Binary clustering coefficient (ci) versus node degree (ki) in the 2002 snapshots of the commodity-specific
(disaggregated) versions of the observed binary undirected WTW (red points) and corresponding average over the maximum entropy ensemble
with specified degrees and strengths (blue points): (a) commodity 93, (b) commodity 09, (c) commodity 39, (d) commodity 90, (e) commodity
84, and (f) aggregation of the top 14 commodities (see Table I for details). From (a) to (f), the intensity of trade and level of aggregation
increases.

A. The role of local properties in economic networks

In economic and financial networks, the total strength of
the connections reaching a node has generally an important
meaning, such as the size of supply and demand, import
and export, or financial exposure. Hence, generating random
ensembles of networks matching the observed strengths of
all nodes is crucial in order to detect interesting deviations
of a known empirical network from economically meaningful
benchmarks, to reconstruct the most likely structure of an
unknown network from purely local information, or, finally,
to define a model of economic networks specified by node-
specific properties.

Our results show that, in order to correctly reproduce
the whole structure of the WTW as a weighted network,
the degree sequence must be constrained in addition to the
strength sequence. From the general point of view of network
reconstruction, these findings consolidate and widely extend
the results in Ref. [41]. We confirmed the effectiveness of
the ECM in reproducing the higher-order properties of the
WTW starting from local constraints and successfully tested
the robustness of the model with respect to several temporal
snapshots and levels of aggregation. So while the strength
sequence (a weighted constraint) turns out to be uninformative
about the binary topology of the WTW, the degree sequence
(a binary constraint) plays a fundamental role in reproducing
its weighted structure. This highly asymmetric role of binary
and weighted constraints is a nontrivial result.

From an economic perspective, the fact that purely local
information is enough in order to reproduce the large-scale
structure of the WTW implies that parsimonious models of
international trade can largely discard additional mechanisms
besides those accounting for the number of partners and total
trade of world countries. The importance of reproducing and/or
explaining the degrees of all world countries, first pointed out
in Ref. [22], is confirmed by our study and shown to hold even
when one considers the weighted representation of the WTW.
This strengthens the view that theories and models of trade,
when aiming at explaining the international network structure,
should seriously focus on the number of trade partners of
countries as an important target quantity to replicate.

Of course, the above considerations leave an important
point open, namely the role played by other properties of
(expected) economic relevance in shaping the structure of
the international trade network. For instance, gravity models
[37–40] predict that both country-specific (mainly the GDP)
and dyadic quantities, such as geographic distance (which is
a proxy of trade resistance) and other extra factors (such as
common currency, common language, borderding conditions,
etc.), do play an important role. The GDP is directly related
(and roughly proportional) to the total trade of a country, i.e.,
its strength [29,61]. It is also related to the number of trade
partners, i.e., the degree, in a highly nonlinear way [17]. So
by controlling for both strengths and degrees, our approach
is indirectly controlling for the GDP of countries as well.
The surprising agreement between our model and the data
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FIG. 8. (Color online) Average nearest neighbor strength (snn
i ) versus node strength (si) in the 2002 snapshots of the commodity-specific

(disaggregated) versions of the observed binary undirected WTW (red points) and corresponding average over the maximum entropy ensemble
with specified degrees and strengths (blue points): (a) commodity 93, (b) commodity 09, (c) commodity 39, (d) commodity 90, (e) commodity
84, and (f) aggregation of the top 14 commodities (see Table I for details). From (a) to (f), the intensity of trade and level of aggregation
increases.

does not, however, imply that the other aforementioned dyadic
factors (involving pairs of countries) are unimportant. Rather,
our analysis shows that, among the country-specific factors,
the ones that only affect the strengths are definitely less
informative than those that impact both strengths and degrees.
Adding the distances, or other dyadic factors, can in principle
lead to an even better agreement between model and data.
On the other hand, it is interesting to notice that geographic
distances are sometimes outperformed by purely topological
properties (such as the reciprocity [58]) in explaining the
structure of the WTW, and in general gravity models are
much less effective than maximum-entropy ensembles in
reproducing the binary structure of the WTW [39,40]. The
main reason for this ineffectiveness is that, depending on
their specification, gravity models tend to predict a network
that is either too dense (in the simplest setting, even fully
connected [40]) or that topologically differs too much from
the observed WTW [39].

B. Intensive and extensive margins

Another series of important economic considerations con-
cerns the relationship between our findings and the so-called
extensive and intensive margins of trade. These two concepts,
first introduced by Ricardo [47], are widely used in economics
and should not be confused with the notion of intensive and
extensive variables in statistical physics and thermodynamics.
In the context of international trade, extensive and intensive
margins refer to tendency of the network to evolve through the

creation of new trade connections or through the reinforcement
of existing ones respectively [48,49].

Even if both margins are known to be relevant, neither a
systematic treatment of their role in the prediction of interna-
tional trade relationships, nor an agreement on their relative
importance can be found in the economic literature. Some
works agree on the relevance of extensive margins. For in-
stance, a cross-country analysis reveals that extensive margins
account for the 60% of exports of the larger economies [62],
and another study shows that increasing extensive margins
means augmenting exports of developing countries [63].

At the same time, a large body of work stresses the relevance
of intensive margins. For instance, intensive margins repre-
sented a fundamental factor in the period 1970–1990 [48,64]
and have been particularly relevant for China’s exports growth
in the period 1992–2005 [65] and for Colombian countries’
exports [66]. It has also been claimed [67] that the majority
of trade growth is due to the intensive margin rather than
the extensive one. This view stresses the importance of
focusing on a dynamical comparison (e.g., introducing the
concepts of “survival” and “deepening” to characterize export
relationships) rather than on a standard static approach.

The controversial results existing in the literature appear to
be mainly due to the different levels at which the two margins
are examined [67]: Some works define extensive margins at
the country-product level, others at the product level, and
still others at the country level. This problem, together with
the composite effect of international changes on trade, can
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FIG. 9. (Color online) Weighted clustering coefficient (cw
i ) versus node strength (si) in the 2002 snapshots of the commodity-specific

(disaggregated) versions of the observed binary undirected WTW (red points) and corresponding average over the maximum entropy ensemble
with specified degrees and strengths (blue points): (a) commodity 93, (b) commodity 09, (c) commodity 39, (d) commodity 90, (e) commodity
84, and (f) aggregation of the top 14 commodities (see Table I for details). From (a) to (f), the intensity of trade and level of aggregation
increases.

determine mixed and contradictory results. For example, trade
liberalization affects trade flows in two ways. On the one hand,
since trade becomes less costly, the trade volumes increase
(intensive margin at product level). On the other hand, more
firms trade and more goods are traded (extensive margin both at
product and country-product level). It has been observed [38]
that the elasticity of substitution should also be taken into
account, because it has opposite effects on the two margins:
high elasticity makes the intensive margin more sensitive to
changes in trade barriers (trade costs), whereas the extensive
margin is less sensitive to this effect.

To the best of our knowledge, in the economic literature
there has been no systematic analysis of the predictive power of
extensive and intensive trade margins so far. Starting from one
snapshot of the international trade network, is the knowledge
of the growth of trade along the intensive and/or extensive
margin enough to predict the structure of the network at a later
time?

Even if our results cannot fully answer such question, they
suggest a plausible scenario. We first note that a change in
the degree (number of partners) of a country implies that the
network is evolving along the extensive margin of trade. On
the other hand, a change in the strength (total volume) can
be either be due to changes in the number of partners or to
changes of the amount of trade for existing links. This means
that, while changes in the degree only reflect the extensive
margin, changes in the strength reflect both the extensive
and intensive margins: this is a second asymmetry between

the different pieces of information encoded into the degrees
and the strengths. It is also another indication that the WCM,
by enforcing the strengths alone, cannot distinguish between
the two margins, while the ECM can isolate the extensive
information (degrees) from the combined one (strengths).

Our findings imply that if the structure of the international
trade network is known at time t , and if the growth (or decrease)
of both strengths and degrees from time t to time t + �t is
also known, then it is possible to predict the structure of the
network at time t + �t with great accuracy. By contrast, if only
the growth of the strengths is known, the future structure of the
network cannot be satisfactorily predicted. These results can
be interpreted in terms of the fact that a combined knowledge
of intensive and extensive margins (in this case, the change of
the strengths) does not allow us to correctly model the network,
while if the extensive margin (change of the degrees) is also
separately specified (thus indirectly controlling for the residual
intensive margin as well), then the model can successfully
explain the data.

C. Intensive and extensive biases

We finally show that our results offer additional and impor-
tant interpretations about the intensive-extensive dichotomy in
a way that differs from the traditional one in macroeconomics.
While the economic literature has mostly tried to quantify
the extent to which international trade has evolved along
each of the two margins, with the purpose of identifying the
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most important direction of trade growth, our results naturally
suggest a novel, intrinsically static perspective.

It should be noted that the ECM specified by Eq. (10) has an
important abstract property. It is mathematically equivalent to a
network formation process where, between any two (initially
disconnected) nodes i and j , a link of unit weight is first
established with probability pij given by Eq. (18) and then
(if the previous attempt is successful) strengthened by another
unit of weight with probability y∗

i y∗
j . For each pair of vertices,

such weight-increasing attempts are iterated with the same
probability y∗

i y∗
j if the previous attempt was successful and

stop as soon as a failure occurs. This means that the probability
of establishing a unit link for the first time is pij , while that of
reinforcing an existing link by another weight unit is y∗

i y∗
j .

Now, it is easy to show that pij > y∗
i y∗

j if and only if x∗
i x∗

j >

1. Therefore, if x∗
i x∗

j > 1 (x∗
i x∗

j < 1) the creation a link of unit
weight between nodes i and j has a larger (smaller) probability
than the reinforcement of the same link by a unit of weight.
This feature makes the model particularly appropriate to study
the extensive-intensive dichotomy in a novel sense, as the value
of x∗

i x∗
j can bias the network, at a purely static level, towards

the extensive (x∗
i x∗

j > 1) or the intensive (x∗
i x∗

j < 1) direction.
More generally, in the network formation process the

probability of establishing a link of weight w between two
previously disconnected vertices (irrespective of possibile
further reinforcements) is pij (y∗

i y
∗
j )w−1, while that of adding

a weight w (again, irrespective of possible further increases)
to an already existing connection is (y∗

i y
∗
j )w. In this case as

well, the former probability is larger than the latter if and only
if x∗

i x∗
j > 1. So, independently of the value of w, x∗

i x∗
j > 1

implies a tendency towards the extensive direction, while
x∗

i x∗
j < 1 signals a preference for the intensive one.

For the above reasons, we denote x∗
i x∗

j as the “extensive
bias” for the pair i,j . Note that, since the extensive bias is
a product of two country-specific values, it is not possible to
determine, on the basis of the value of x∗

i for a single country,
whether the dominant bias for that country is the extensive or
the intensive one. Thus the preference for one bias turns out to
be an inherently dyadic property.

If x∗
i x∗

j = 1 for all i,j , then the network is neutral with
respect to link creation and link reinforcement. Now, it
should be noted that this is precisely what is obtained in the
WCM (where only the strengths are specified) because, as we
mentioned, the latter can be regarded as a particular case of the
ECM where xi = 1 for all i [41]. In other words, the WCM
assumes that the network is neutral with respect to the two
biases and that there is no preference between the extensive
and intensive direction. By contrast, the ECM assumes that,
for each pair of nodes, there can be a different kind of bias.
Since we found that the WCM and the ECM perform very
bad and very good, respectively, we have a strong empirical
indication that the WTW is not bias-neutral.

The extensive bias x∗
i x∗

j indicates the preference of a spe-
cific pair of countries for the dominant direction, as measured
on a particular snapshot or layer of the WTW. This notion of
extensive or intensive bias should therefore not be interpreted
in the same sense as the extensive or intensive margin, i.e., as a
preferred direction for the dynamical evolution of the network,
but in terms of the “static” deviation of the real network (well

reproduced by the ECM) from the neutral topology expected
under the WCM. In this sense, the WCM is serving as a null
model indicating how an economic network would look if the
extensive and intensive biases were balanced.

These considerations lead us to interpret that, in order to
reproduce the observed structure of the WTW, we need to
enforce realistic extensive and intensive biases as detected by
the ECM through the additional knowledge of the degrees.
From the strengths alone, it is indeed impossible to infer the
bias towards a specific direction.

V. CONCLUDING REMARKS

In this paper we employed a maximum-entropy approach to
the WTW, which is an important example of economic multi-
plex. From a theoretical point of view, our findings completely
reverse the standard results concerning the reconstruction of
weighted networks from local node-specific information. We
proved that it is indeed possible to reproduce at a highly
satisfactory level several higher-order binary and weighted
properties for the WTW, provided that the enforced local
constraints include both strengths and degrees. Our results
are robust across different levels of disaggregation and several
temporal snapshots.

Economically speaking, these and previous results
[22,23,33] allow us to make some considerations in relation to
the extensive and intensive margins of trade, in a novel “static”
fashion. We have shown that the specification of the strengths,
without the separate specification of the degrees, corresponds
to the assumption that (at a static level) the system is neutral
with respect to the two margins, i.e., the extensive and intensive
biases are perfectly balanced. By contrast, if the degrees are
also specified, then for every pair of vertices there is a specific
tendency to favor one of the two directions. The fact that
the latter model reproduces the real WTW very well, while
the former performs very bad, is then a clear indication that the
network is not neutral with respect to the two biases. Without
specifying the extensive biases the graph would be almost
fully connected, while without specifying the intensive ones
we would not be able to predict the magnitude of connections.
This is the reason why both intensive and extensive biases
are needed. We also found that different pairs of countries
have different intrinsic biases towards either the extensive of
the intensive direction. If such dyadic biases are not taken
into account, explaining the observed structure of the WTW
appears impossible.

Despite its static character, our analysis allows us to draw
some interesting implications on the predictive power of trade
margins also from a dynamic perspective. However, a more
rigorous verification of the relationship between trade margins
and extensive-intensive biases through the exploration of a
complementary, explicitly dynamic framework is an important
step to take in future research.

Since the effectiveness of the ECM has been shown for
various other networks, including noneconomic ones [41], the
importance of separately specifying the extensive and intensive
biases might actually be a very general result. Moreover, our
findings represent the first (to the best of our knowledge)
empirical evidence in favor of the idea that, layer by layer, real-
world multiplexes can be strongly shaped by local constraints.
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