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Unzipping DNA by a periodic force: Hysteresis loop area and its scaling
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Using Monte Carlo simulations, we study the hysteresis in the unzipping of double-stranded DNA whose ends
are subjected to a time-dependent periodic force with frequency (ω) and amplitude (G). For the static force, i.e.,
ω → 0, the DNA is in equilibrium with no hysteresis. On increasing ω, the area of the hysteresis loop initially
increases and becomes maximum at frequency ω∗(G), which depends on the force amplitude G. If the frequency
is increased further, we find that for lower amplitudes the loop area decreases monotonically to zero, but for
higher amplitudes it has an oscillatory component. The height of subsequent peaks decreases, and finally the
loop area becomes zero at very high frequencies. The number of peaks depends on the length of the DNA. We
give a simple analysis to estimate the frequencies at which maxima and minima occur in the loop area. We find
that the area of the hysteresis loop scales as 1/ω in the high-frequency regime, whereas it scales as Gαωβ with
exponents α = 1 and β = 5/4 at low frequencies. The values of the exponents α and β are different from the
exponents reported earlier based on the hysteresis of small hairpins.
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I. INTRODUCTION

The advent of single molecule manipulation techniques
has opened up a new vista in the field of biophysics. Using
these techniques, it is now possible to exert mechanical force,
in the pico-newton range, on an individual molecule, giving
important information about molecular interactions [1]. If a
mechanical force is exerted on the strands of double-stranded
DNA (dsDNA), it unzips when the force exceeds a critical
value [2–6]. Below this critical value, the DNA is in the
zipped phase, while above it, the DNA is in the unzipped
phase. Unzipping of a dsDNA has biological relevance. It
is an initial step in processes such as DNA replication and
RNA transcription, where the external force is exerted by
enzymes [7]. The unzipping transition has been studied, both
theoretically and experimentally, over 15 years, and many
important results have been established (see [2,3,5,6,8–15]
and references therein). In recent years, the focus has been
shifted to study the hysteresis in unbinding and rebinding of
biomolecules [16–18] because it can provide useful informa-
tion on the kinetics of conformational transformations, the
potential energy landscape, and it can be used in controlling
the folding pathway of a single molecule [19].

More recently, the behavior of DNA under a periodic force
has been explored by using Langevin dynamics simulation
of an off-lattice coarse-grained model for a short DNA of
N = 16 base pairs [20,21]. It was found that there exists a
dynamical phase transition in which the DNA can be taken
from the zipped state to an unzipped state via a new dynamic
state. It was shown that at low frequencies, the area of the
hysteresis loop, Aloop, which represents the energy dissipated
in the system, scales with Gαωβ , where G is the amplitude
and ω is the frequency of the oscillating force. The scaling
exponents α = β = 1/2 were found [21] to be the same
as that of the isotropic spin system [22]. Moreover, it was
claimed that the above exponents remain the same as the
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length of the DNA changes from N = 16 to 32 base pairs
[23].

The studies of Kumar et al. were restricted to small
chain lengths because their simulations were computationally
expensive due to the excluded volume interactions, which
limit the smallest time scale. However, using Monte Carlo
simulations, we could simulate the DNA of lengths up to
N = 512 to study its behavior under the influence of a periodic
force. For this purpose, we used a (1 + 1)-dimensional model
of dsDNA. This model can be solved exactly in the static
force limit, and it has been studied in great detail via the
generating function and the exact transfer matrix techniques
[8–10]. It has been found that the results obtained from this
model agrees qualitatively with the experimental results, and
other models used for studying DNA unzipping (see [15] and
references therein). By using finite-size scaling on the DNA
of lengths N = 128, 256, and 512, we find that the area of the
hysteresis loop scales as 1/ω at high frequencies, whereas it
scales as Gαωβ with α = 1 and β = 5/4 in the low-frequency
regime. These exponents are completely different from the
values α = β = 1/2 reported in Refs. [21,23].

The paper is organized as follows: In Sec. II, we define our
model and compare it with the model studied by Kumar et al.
[20,21,23]. The results are discussed in Sec. III. We summarize
our results in Sec. IV.

II. MODEL

The model used in this paper has been used previously
in Ref. [24] to study the hysteresis in DNA unzipping by
changing the pulling rate. In this model, the two strands of
a homo-polymer DNA are represented by two directed self-
avoiding walks on a (d = 1 + 1)-dimensional square lattice.
The walks starting from the origin are restricted to go toward
the positive direction of the diagonal axis (z direction) without
crossing each other. The directional nature of the walks takes
care of self-avoidance and the correct base pairing of DNA,
i.e., the monomers that are complementary to each other
are allowed to occupy the same lattice site. For each such
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FIG. 1. (Color online) Schematic diagram of the model. The
strands of the DNA are shown by thick solid lines. The end monomers
of the strands are pulled along the x direction with a periodic force
g(t) = G |sin(ωt)|. The separation between the end monomers, x(t),
follows the external force g(t) with a lag.

overlap, there is a gain of energy −ε (ε > 0). One end of the
DNA is anchored at the origin, and a time-dependent periodic
force

g(t) = G |sin (ωt)| , (1)

with angular frequency ω and amplitude G, acts along the
transverse direction (x direction) at the free end. The strands
of the DNA cannot cross each other, therefore in the negative
cycle of the sine function the strands remain in the zipped
state. By taking the absolute value of the sine function in
Eq. (1), we have converted the negative cycles to positive, thus
reducing the time period by half. Hence the angular frequency
of the external force is ω = πν (ν is the linear frequency).
Throughout the paper, by frequency we mean the angular
frequency. The schematic diagram of the model is shown in
Fig. 1.

In the limit ω → 0, i.e., the static force limit, this model
can be solved exactly via a generating function and the exact
transfer matrix techniques. It has been used previously to
obtain the phase diagrams of the DNA unzipping [8–10].
For the static force case, the temperature-dependent phase
boundary is given by

gc(T ) = −T

2
ln λ(z2), (2)

where λ(z) = (1 − 2z − √
1 − 4z)/(2z) and z2 =√

1 − e−βε − 1 + e−βε . The zero force melting takes place
at a temperature Tm = ε/ ln(4/3) (for details, see Ref. [24]).
In this paper, we will be working at temperature T = 1, and
from Eq. (2) we get the critical force gc(1) = 0.6778 . . . .

We perform Monte Carlo simulations of the model by
using the METROPOLIS algorithm. The strands of the DNA
undergo Rouse dynamics that consists of local corner-flip
or end-flip moves [25] that do not violate mutual avoidance
(the self-avoidance is taken care of by the directional nature
of the walks). The elementary move consists of selecting a
random monomer from a strand, which itself is chosen at
random, and flipping it. If the move results in overlapping
of two complementary monomers, thus forming a base-pair
between the strands, it is always accepted as a move. The
opposite move, i.e., the unbinding of monomers, is chosen with
the Boltzmann probability η = exp(−ε/kBT ). If the chosen

monomer is unbound, whatever remains unbound after the
move is performed is always accepted. The time is measured
in units of Monte Carlo steps (MCSs). One MCS consists
of 2N flip attempts, i.e., on an average, every monomer is
given a chance to flip. Throughout the simulation, the detailed
balance is always satisfied. From any starting configuration, it
is possible to reach any other configuration by using the above
moves. Throughout this paper, without loss of generality, we
have chosen ε = 1 and kB = 1.

At any given frequency ω and the force amplitude G, if the
time t is incremented by unity, the external force g(t) changes,
according to Eq. (1), from 0 to a maximum value G and then
decreases to 0. Between each time increment, the system is
relaxed by a unit time (1 MCS). Upon incrementing t further,
the above cycle gets repeated again and again. Before taking
any measurement, the simulation is run for 2000 cycles so that
the system can reach the stationary state.

At this point, it is worthwhile to compare our model with
the model of Kumar et al. [20,21,23]. In their model, a chain
of length N , whose first N/2 monomers are complementary
to the rest half, is anchored (at origin) from one end, and a
periodic force is acting on the free end along the x direction.
The monomers of the chain are chosen in such a manner
that the ith monomer from the anchored end can bind only
with the (N − i)th monomer of the chain, thus mimicking the
base pair of the DNA. The system evolves in the presence
of an external periodic force, and the distance of the end
monomer from the origin, x(t), is monitored as a function
of time by using Langevin dynamics simulation. If x(t) < 5
(for N = 32), the DNA is taken to be in the zipped state,
otherwise it is in the unzipped state. Their model becomes
similar to ours (see Fig. 1) if, instead of first, the bead at the
center of the chain is anchored, and a periodic force is applied
on the first and the last monomers in opposite directions. In
both models, the forcing is such that the force, averaged over
a cycle, applied on the DNA is not equal to zero. Therefore,
we expect that for a given amplitude G, both models will
have similar steady states in the larger frequency limit. This
is indeed the case. For lower values of G (e.g., G = 0.4 in
Ref. [21] and G = 1 in our case), the steady state is a zipped
configuration, while for higher values of G (e.g., G = 1 in
Ref. [21] and G = 3 in our case), the DNA is in an unzipped
state. There are, however, few differences between the two
models, but that has more to do with the simulation technique.
For example, in Langevin dynamics simulations, friction needs
to be introduced to equilibrate the system. In contrast, Monte
Carlo dynamics is dissipative by definition and brings the
system to equilibrium. Even though the Langevin dynamics
simulations of Kumar et al. are done in three dimensions, the
motion of the end bead is along the direction of an externally
applied force. The quantity of interest is the hysteresis traced
out by the end monomer. For temperatures below the melting
temperature of DNA, the fluctuations of the end bead along
the transverse directions are small, and hence the area of
the hysteresis loop in the transverse directions is negligible.
We have checked this for a self-avoiding polymer in three
dimensions. Therefore, our two-dimensional model captures
the essential physics of dynamic transitions, and we expect
values for the exponents α and β similar to those obtained by
Kumar et al. [21,23].
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We monitor the distance between the end monomers of
the two strands as a function of time, x(t), for various force
amplitudes G and frequency ω. The time averaging of x(t)
over a complete period,

Q = ω

π

∮
x(t)dt, (3)

may be used as a dynamical order parameter [22]. Since the
force is periodic in nature, we obtain the extension x(g) as a
function of force g from the time series x(t), and we average
it over 104 cycles to obtain the average extension 〈x(g)〉. If the
force amplitude G is not very small, and the frequency ω of
the periodic force is sufficiently high to avoid equilibration of
the DNA, the average extension, 〈x(g)〉, for the forward and
the backward paths is not the same and we see a hysteresis
loop. The area of the hysteresis loop, Aloop, defined by

Aloop =
∮

〈x(g)〉dg, (4)

depends upon the frequency ω and the amplitude G of the
oscillating force and also serves as another dynamical order
parameter [22]. We bin the data generated according to values
of g by using Eq. (1). We first divide the interval g ∈ [0,G],
for both the rise and fall of the cycle, into 1000 uniform
intervals, and we obtain the value of 〈x(g)〉 at the end points
of these intervals by interpolation using cubic splines of the
GNU Scientific Library [26]. The area of the loop Aloop is then
evaluated numerically by using the trapezoidal rule on these
intervals.

In this paper, we report the behavior of Aloop at high and
low frequencies at various force amplitudes G. The results for
the dynamical order parameter Q will be published elsewhere
[27].

III. RESULTS AND DISCUSSIONS

In Fig. 2, we have shown the time variation of external force
g(t) and the scaled extension x(t)/N of different monomers for
the DNA of length N = 128 at various G and ω values for three
consecutive cycles. This figure gives us important information
that can be used to estimate the frequency ω∗(G) at which the
loop area Aloop is maximum. From Eq. (1), one can see that for
T = 1, the number of time steps required (say tz) for a given
frequency ω to increase g(t) above the critical force gc(1) are
approximately π/4ω and π/12ω for G = 1 and 3, respectively.
Therefore, for this time, the DNA remains in a zipped state.
The time required to unzip the DNA is given by tu ∼ N . Since
the magnitude of the force continues to increase much beyond
gc, the DNA also keeps on stretching until it reaches a fully
stretched configuration. This takes the time ts ∼ N . Assuming
that the DNA takes the same time (tu + ts) in reaching a zipped
configuration from the fully stretched unzipped state, the total
time that sets the time scale of the dynamics of the DNA is

ttot = 2(tz + tu + ts) =
{

2 (2N + π/4ω) for G = 1,

2 (2N + π/12ω) for G = 3,
(5)

for two different force amplitudes. If ttot matches with the time
period of the oscillating force [see Figs. 2(a) and 2(b)], we get
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FIG. 2. (Color online) (a) The time variation of the external force
g(t) for frequency ω = ω∗ = 2.94 × 10−3 at force amplitude G = 1.
Various lines represent the scaled extension, x(t)/N , of different
monomers for the DNA of length N = 128. Parts (b), (c), and (d)
are the same as (a) for G = 3 for frequencies ω = ω∗ = 4.2 × 10−3,
ω = ωE = 2.24 × 10−2, and ω = ωD = 3.27 × 10−2. Here ω∗(G) is
the frequency at which Aloop is maximum, and ωD and ωE represent
the frequencies marked by points D and E, respectively, in Fig. 3(a).

the maximum loop area. This happens at the frequency

ω = ω∗(G) =
{
π/8N for G = 1,

5π/24N for G = 3.
(6)

The values of ω∗(G) calculated from the above equation for
various lengths of the DNA are tabulated in Table I.

In Fig. 3(a), we have plotted the area of the hysteresis
loop, Aloop, as a function of frequency ω, for DNA of length
N = 128 at force amplitudes G = 1 and 3. The plot shows
that the area of the hysteresis loop is a nonmonotonic function
of the frequency, and its behavior depends on the amplitude
of the periodic force G. For the equilibrium case, i.e., ω = 0,
there is no hysteresis, resulting in a zero loop area. For very
low frequencies, the force changes very slowly, the DNA
gets enough time to relax to this change and it remains
in equilibrium, so the loop area Aloop is very small. Upon
increasing ω, the change in the force in unit time increases,
and there is some lag in the response of the DNA to this
change. This is depicted by an increase in the area of the
hysteresis loop. The increase in Aloop does not continue
indefinitely with an increase in ω. There is a frequency
ω∗(G) [ω∗(G) ≈ 2.8 × 10−3 and 4.2 × 10−3, respectively, for
G = 1.0 and 3.0] at which Aloop is maximum and it starts
decreasing upon increasing ω above ω∗(G). For G = 1, Aloop

decreases monotonically as ω increases above ω∗(G), whereas
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TABLE I. Calculated and observed (OBS) frequencies for various lengths of the DNA for force amplitudes G = 1 and 3. The digits in
parentheses represent the uncertainty of the last decimal place.

G = 1 G = 3

N ω∗ = π

8N
ω∗ (OBS) ω∗ = 5π

24N
ω∗ (OBS) ωE = 11π

12N
ωE (OBS) ω2 = 3π

2N
ω2 (OBS)

32 1.2 × 10−2 1.4(1) × 10−2 2.0 × 10−2 1.8(6) × 10−2 9.0 × 10−2 9.2(6) × 10−2 1.5 × 10−1 1.3(1) × 10−1

64 6.1 × 10−3 6.2(5) × 10−3 1.0 × 10−2 8.4(4) × 10−3 4.5 × 10−2 4.6(2) × 10−2 7.4 × 10−2 6.5(3) × 10−2

128 3.0 × 10−3 2.8(1) × 10−3 5.1 × 10−3 4.2(1) × 10−3 2.25 × 10−2 2.27(3) × 10−2 3.6 × 10−2 3.2(2) × 10−2

256 1.5 × 10−3 1.4(1) × 10−3 2.5 × 10−3 1.9(1) × 10−3 1.12 × 10−2 1.12(1) × 10−2 1.8 × 10−2 1.63(2) × 10−2

512 7.7 × 10−4 6.9(3) × 10−4 1.28 × 10−3 9.5(3) × 10−4 5.6 × 10−3 5.65(4) × 10−3 9.2 × 10−3 8.1(1) × 10−3

it shows an oscillatory component for the force amplitude
G = 3. The observed values of ω∗(G) obtained from the
simulation are also tabulated in Table I. These values match
reasonably well with the frequencies calculated using Eq. (6).

To understand the different behavior of Aloop, we have
plotted the average extension, 〈x(g)〉, as a function of the
applied force g in Figs. 3(b) and 3(c) for G = 1 and Figs. 3(d)
and 3(e) for G = 3, for various frequencies marked in Fig. 3(a)
by capital letters (A–F ). For G = 1, which lies slightly above
the critical force, gc, needed to unzip the DNA [gc(1) =
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FIG. 3. (Color online) (a) Area of the hysteresis loop Aloop as a
function of ω in the high-frequency range for the force amplitude
G = 1 (filled squares) and G = 3 (filled circles). The length of the
DNA is N = 128. (b) The force g vs extension 〈x(g)〉 curves averaged
over 104 cycles for G = 1 at frequencies ωA = 7.14 × 10−2, ωB =
5.61 × 10−2, ωC = 4.62 × 10−2, ωD = 3.27 × 10−2, ωE = 2.24 ×
10−2, and ωF = 1.57 × 10−2, indicated, respectively, by points A–F

in (a). (d) Same as (b) for G = 3. Plots (c) and (e) shows the hysteresis
curves having the maximum loop area at frequencies ω∗(G = 1) =
2.8 × 10−3 and ω∗(G = 3) = 4.2 × 10−3, respectively.

0.6778 . . . from Eq. (2)], the majority of bonds of the DNA
are in the zipped state (i.e., 〈x〉/N << 1) when g = 0 [see
Fig. 3(b)]. When the force changes from g = 0 to g = G = 1
very rapidly [point A in Fig. 3(a), which corresponds to
ω = 7.14 × 10−2], the fluctuating force can open only a few
base pairs of the zipped DNA at the open end, and the
area of the hysteresis loop is small. As ω decreases from
ωA = 7.14 × 10−2 (point A) to ωF = 1.57 × 10−2 (point F ),
the DNA gets more time to relax, more and more base pairs
become open, and the area of the hysteresis loop increases.
Figure 3(c) shows the hysteresis curve having a maximum loop
area at frequency ω∗(G = 1) = 2.8 × 10−3. Similar types of
hysteresis loops are also observed for the amplitude G = 0.65,
which lies below the phase boundary. In this case, the majority
of the bonds of the DNA are in the zipped state. However, at any
finite temperatures, a few bonds at the end become open due
to thermal fluctuations. The free ends are then dragged by the
pulling force, resulting in a hysteresis loop with a small area.

The situation for the larger force amplitudes [see Fig. 3(a)
for G = 3] is, however, different. The force g = G lies far
away from the phase boundary, and at this force value, the DNA
is in the unzipped phase with a completely stretched conforma-
tion in the steady state. At a very high frequency ωA = 7.14 ×
10−2 (point A), the force changes rapidly between g = 0 and
g = G = 3, and DNA does not get enough time to respond
to this change. The separation between the end monomers
remains constant, resulting in a small loop area. Upon
decreasing the frequency ω, the DNA gets more time to relax.
As a result, the area of the loop starts increasing. However,
it increases only up to frequency ωB = 5.61 × 10−2 (point
B) and then decreases again until ωC = 4.62 × 10−2 (point
C) and so on. This behavior continues up to ω∗(G = 3) =
4.2 × 10−3, for which we get the highest peak. Upon decreas-
ing the frequency further, the loop area decreases and becomes
zero in the limit ω → 0.

The hysteresis loops [shown in Fig. 3(d) by filled diamonds,
squares, and circles] at frequencies ωA = 7.14 × 10−2, ωC =
4.62 × 10−2, and ωE = 2.24 × 10−2 (points A, C, and E,
respectively), where Aloop has a minimum, have a peculiar
shape. These loops have almost the same extension 〈x(g)〉 at
the minimum (g = 0) and the maximum (g = G = 3) force
values, and their shapes are symmetrical about the line joining
them. The loops at frequencies ωB and ωD (point B and
D), where Aloop has a maximum, are not symmetrical. The
hysteresis curve having the maximum loop area at frequency
ω∗(G = 3) = 4.2 × 10−3 is also shown in Fig. 3(e).
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The simple analysis used at the beginning of this section
to calculate the frequency ω∗(G) can be extended to estimate
the frequency ωE , where the first minimum arises for the force
amplitude G = 3 [see Fig. 3(a)]. It can be seen in Fig. 2(c) that
for G = 3, the 32nd monomer is in the bound state for lower
values of g(t). This means that a fraction N/4 of the length of
the DNA from the anchored end is in the zipped state. As the
value of g(t) increases, this bound segment of the DNA unzips.
The time required to unzip this fraction is tu ∼ N/4. The kink
that is generated as a result of unzipping has to travel to the
free end so that the DNA can take the stretched configuration.
It takes the time proportional to the length of the unbound
segment of the DNA, and ts ∼ 3N/4. Therefore, the total time
for this case is ttot = tz + tu + ts ≈ π/12ω + N . If this time is
equal to the time period of the external force, the DNA is out
of phase with the external frequency and we get a minimum,
giving the frequency

ω = ωE = 11π

12N
for G = 3, (7)

at which Aloop has the first minimum from the lower-frequency
side. The values of ωE are also tabulated in Table I. It matches
excellently with the observed frequency. The above analysis is
limited by the estimation of the fraction of zipped monomers
of the DNA. This length decreases rapidly upon increasing the
frequency, and its estimation becomes more and more difficult.
Taking again the fraction N/4 of the length of the DNA from
the anchored end to be in the zipped state [see Fig. 2(d)], we
estimate

ω = ωD ≈ 5π

3N
for G = 3 (8)

as the frequency of the second peak. This estimate has a
deviation of around 20% from the frequencies observed from
the simulation data, which may be due to the error in the
estimation of the length of the zipped segment of the DNA.

In Fig. 4, we have plotted the area of the hysteresis loop,
Aloop, as a function of ω for various force amplitudes G ranging
from 0.65 to 3.0. The value G = 0.65 lies just below the phase
boundary gc(T ) [given by Eq. (2)] for the static case (ω = 0),
and all other values lie above it. For smaller values of G,
the area keeps on decreasing for frequencies above ω∗(G)
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A
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ω

FIG. 4. (Color online) Area of the hysteresis loop, Aloop, as a
function of frequency ω of the periodic force for various force
amplitudes G for the DNA of length N = 128. The loop area for
G = 0.65 is scaled by a factor of 10 to make it visible in the scale.
The inset shows the second peak that appears at high frequencies.

and eventually becomes zero at very high frequencies. For
G = 0.65, which lies below the phase boundary, the loop area
is of the order 1. We have scaled it by a factor of 10 to make
it visible in the plot. Therefore, in the limit N → ∞, the loop
area per unit length Aloop/N → 0 for values of G that lie
below the phase boundary. For higher values of G, however,
we find that the area of the loop has an oscillatory component.
It shows a few more peaks of smaller heights before going
to zero at very high frequencies. One such peak is shown in
the inset of Fig. 4 between the frequency range 2.0 × 10−2

and 4.5 × 10−2. One can clearly see that, in this frequency
range, for G = 1.0 and 1.25, the loop area decreases, but for
G = 1.5 and higher it first increases, reaches a local maximum,
and then decreases. For a given amplitude G, we found that
the number of peaks depends on the length N of the DNA.
Similar oscillatory behavior is also observed in the other order
parameter Q [27].

In Figs. 5(a) and 5(c), we have plotted the area of the
hysteresis loop, Aloop, as a function of frequency ω for the DNA
of lengths N = 32, 64, 128, 256, and 512 at force amplitudes
G = 1 and 3, respectively, in a log-log scale. In the high-
frequency range, the loop area decreases linearly for G =
1 as ω increases, whereas it shows oscillatory behavior for
G = 3. The number of peaks increases as the length of the
DNA increases. We explored up to the frequency ω = 3.14 ×
10−1 and found that for the DNA of length N = 32, only
one secondary peak exists, whereas for N = 512 there are 15
peaks. Such oscillatory behavior was not seen in earlier studies
[21,23] because they were done on short DNA (the maximum
length used was only N = 32 base pairs), with frequencies
much lower than reported in this paper. In the lower-frequency
range, it is clearly visible that the slope of Aloop changes as
the length of the DNA increases. The above behavior shows
the presence of strong finite-size effects, and the exponents
obtained by finite-size scaling with lengths up to N = 32 [23]
need to be estimated again using longer chain lengths.

From Figs. 5(a) and 5(c), it is clear that ω∗(G), the frequency
at which the loop area is maximum, decreases as the length of
the DNA is increased. In the thermodynamic limit N → ∞,
from Eq. (6), we get ω∗(G) → 0. This suggests the scaling
form for the loop area Aloop,

Aloop = NδG(ωNz), (9)

where δ and z are critical exponents. The exponent z is
the dynamic exponent as time t ∼ Nz. We obtain a nice
data collapse for δ = 1.06 ± 0.05 and z = 1.05 ± 0.03 for
G = 1, and δ = 1.02 ± 0.02 and z = 1.01 ± 0.01 for G = 3.
The data collapse for G = 1 and 3 is shown in Figs. 5(b)
and 5(d), respectively. The scaled curve of Fig. 5(d) clearly
shows an oscillatory component in the loop area for higher
force amplitudes. In the following, we explain the reason for
getting z = 1. For an ideal Rouse chain of length N , the
longest relaxation time (Rouse time) τR ∼ N2. On the time
scale t > τR , the motion of the chain is diffusive, i.e., the
mean-square displacement is linear in time, giving z = 2. For
a constant pulling force above the phase boundary, the time t

required to unzip the DNA of length N from a nonequilibrium
zipped state to an unzipped state at equilibrium is found to
be ∼ N2 [4,9]. In recent years, different dynamical exponents
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FIG. 5. (Color online) Area of the hysteresis loop, Aloop, for the DNA of lengths N = 32,64,128,256,512, as a function of frequency ω for
force amplitudes (a) G = 1 and (c) G = 3 in log-log scale. Plots (b) and (d) represent the collapse of data shown in (a) and (c), respectively.
The values of the exponents are close to δ = 1 and z = 1. For G = 1, the scaling curve G(ω) = AGαωβ/(ω1+β + B2) with fitting parameters
A = 0.36 and B = 0.30 is also plotted in (b).

for zipping time have been found in various DNA zipping
simulations [28,29]. For example, an anomalous exponent
of z = 1.37 has been found in the simulations of zipping
dynamics of two flexible polymers anchored at one end by
Ferrantini and Carlon [28]. In another study, Dasanna et al. [29]
have simulated a semiflexible model of DNA that explicitly
includes the bending rigidities of dsDNA segments, and they
found the value z = 1.4 for the zipping time. For the present
problem, however, the frequency of the external force is such
that its time period is much smaller than τR . The chain never
relaxes completely, and its motion is subdiffusive, i.e., the
mean-square displacement increases as the square root of time
[30]. Our model also allows fluctuations in the length of the
DNA. For lower values of force g, the DNA is in the zipped
state, where it takes a zigzag configuration. However, for
higher values of g, the DNA is in the unzipped state with a fully
stretched configuration. The average length of the DNA in the
unzipped state is more than its length in the zipped state. Due to
these length fluctuations, we also have longitudinal modes of
the Rouse chain. For t < τR , the mean-square contour length
of the chain increases as the square root of time [30], and
therefore z = 1. Due to the geometry of the square lattice, the
change in length of the DNA by flipping a monomer (diagonal
along the z axis) is exactly equal to the change in the separation

of the end monomers (diagonal along the x axis). Hence the
end-separation correlation function 〈x(t)x(0)〉 is exactly equal
to the length correlation function and should scale as t/N .
This is indeed found in the simulation giving z = 1 [27].
The exponents δ = 1 and z = 1 are similar to the exponents
obtained in Ref. [23] using DNA of shorter lengths.

A Rouse chain of length N has natural frequencies at (2p −
1)π/2N , where p = 1,2, . . . are integers. When this frequency
matches with the frequency ω of the externally applied periodic
force, we get a resonance. From Fig. 5(d), one can see that for
G = 3, the location of maxima (minima) is situated when the
scaled frequency ωN is an odd (even) integral multiple of
π/2. Therefore, the length-dependent frequency ωp of these
maxima (minima) is given by

ωp =
{

(2p − 1)π/2N (maxima),
pπ/N (minima), (10)

where p = 1,2, . . . are integers. From the above expression,
the first peak, which corresponds to the maximum loop area,
has a frequency 2.5 times higher than that predicted by Eq. (6).
However, the frequencies of the higher peaks and valleys that
are estimated by Eq. (10) are quite close to those observed in
the simulation. This is because these modes, as opposed to the
first mode, get completely relaxed within the time period of the
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FIG. 6. (Color online) Area of the hysteresis loop Aloop vs Gω5/4

for the DNA of lengths N = 128, 256, and 512 at low frequencies
for various G values.

applied force. The values of the second mode ω2 for various
N are also tabulated in Table I. These match extremely well
with the observed frequencies.

In Fig. 6, we have plotted the area of the hysteresis loop,
Aloop, as a function of Gαωβ in the low-frequency range for
the DNA of lengths N = 128, 256, and 512 at various force
amplitudes G. A good data collapse is obtained for the values
α = 1.0 ± 0.05 and β = 1.25 ± 0.05. The values of α and β

differ considerably with previously obtained values α = β =
1/2 [21,23]. We believe that the lower values of exponents are
due to the shorter chain lengths used in their simulations.

The scaling function G(ω) can be obtained by observing
that at low frequencies (ω → 0), for large N , the Aloop scales
as Gαωβ , while at very high frequencies (ω → ∞), from
Eq. (9), we see Aloop ∼ 1/ω. For smaller G values, the steady
state is a zipped configuration, and the area of the loop
decreases monotonically for ω above ω∗(G) (e.g., G = 1). For
such cases, the scaling function G(ω) that satisfies the above
requirements has the form

G(ω) = AGαωβ

ω1+β + B2
, (11)

with A and B as fitting parameters. The scaling function for
G = 1, with parameters A = 0.36 and B = 0.30, obtained
by data fitting, is plotted in Fig. 5(b). For moderate force
amplitudes (say G = 1.25), we found that the above scaling
function is still valid with parameters A = 0.78 and B = 0.39.
For higher force amplitudes, the steady state is a completely
stretched unzipped state, and the loop area has an oscillatory

component above ω∗(G). For such cases, the above form is
not suitable as the scaling function.

IV. CONCLUSIONS

In this paper, we have studied the hysteresis in the unzipping
of a dsDNA by a periodic force with frequency ω and
amplitude G for chains up to lengths N = 512 by using Monte
Carlo simulations. The behavior of the loop area depends on
the force amplitudes. We find that for lower G values, the
steady state of the DNA is a zipped configuration. The area of
the loop shows only one peak at ω∗(G), and for frequencies
above ω∗(G), it decreases monotonically. However, for higher
force amplitudes, the steady state is an unzipped state and
the area of the loop shows multiple peaks. We gave a simple
analysis that could estimate ω∗(G), the frequency at which
the maximum loop area is observed, and the frequencies
of other peaks that appear for higher force amplitudes. We
also explored the behavior of the hysteresis loop area for a
wide range of frequencies for both lower and higher values
of force amplitudes G using finite-size scaling. We found
that the loop area scales as 1/ω in the high-frequency range,
whereas it scales as Gαωβ with exponents α = 1 and β = 5/4
in the low-frequency regime. These exponents are found to be
different from the values obtained by Kumar et al. [21,23].
We believe that the different values of exponents α and β are
due to the shorter chain lengths used in their studies. It would
be interesting to study longer chain lengths using Langevin
dynamics simulations to confirm the above results. The other
interesting direction would be to include the bending rigidity
of dsDNA that has been ignored in this paper and study its
influence on the dynamic exponents as a function of chain
lengths. In fact, for chains of the order of persistence length
of the DNA, the bending rigidity could play an important
role and the dynamic exponents may be different from those
reported in this paper. However, in the thermodynamic limit,
the bending rigidity would not be relevant, and we believe that
the exponents of the flexible chain will be recovered. This,
however, will require further investigations.
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