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Hybrid modeling of tumor-induced angiogenesis
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When modeling of tumor-driven angiogenesis, a major source of analytical and computational complexity
is the strong coupling between the kinetic parameters of the relevant stochastic branching-and-growth of the
capillary network, and the family of interacting underlying fields. To reduce this complexity, we take advantage
of the system intrinsic multiscale structure: we describe the stochastic dynamics of the cells at the vessel tip
at their natural mesoscale, whereas we describe the deterministic dynamics of the underlying fields at a larger
macroscale. Here, we set up a conceptual stochastic model including branching, elongation, and anastomosis
of vessels and derive a mean field approximation for their densities. This leads to a deterministic integropartial
differential system that describes the formation of the stochastic vessel network. We discuss the proper capillary
injecting boundary conditions and include the results of relevant numerical simulations.
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I. INTRODUCTION

The growth of blood vessels (a process known as angiogen-
esis) is essential for organ growth and repair. An imbalance in
this process contributes to numerous malignant, inflammatory,
ischaemic, infectious, and immune disorders; according to
Carmeliet [1], “angiogenesis research will probably change
the face of medicine in the next decades, with more than 500
million people worldwide predicted to benefit from pro- or
anti- angiogenesis treatments.” In particular, while angiogene-
sis does not initiate malignancy, it promotes tumor progression
and metastasis [2–4]. Vice versa, a large effort has been
recently dedicated to analyzing the effects of antiangiogenic
therapies to reduce, and possibly eliminate, tumor growth. In
this context a quantitative approach is crucial, since therapy
can be interpreted mathematically as an optimal control
problem, where the effort of the antiangiogenic treatment
has to be confronted with its costs, and its effectiveness.
Experimental dose-effect analysis is nowadays routine in many
biomedical laboratories (see, e.g., [5–7] and Fig. 1), but still
they lack methods of optimal control, which are typical of
engineering and economic systems. An interesting numerical
investigation has been carried out in [8] regarding a model
of tumor-induced angiogenesis [9] subject to inhibitors. On
the other hand, methods of optimal control require a solid
underlying mathematical model which has to be validated by
real experiments (see, e.g., [10]).

An important contribution has come from the experiments
and related quantitative analysis reported in [11,12], where
the authors emphasize the importance of a “probabilistic
framework, capable of simulating the development of in-
dividual microvessels and resulting networks.” Actually an
angiogenic system is extremely complex due to its intrinsic
multiscale structure. When modeling such systems, we need
to consider the strong coupling between the kinetic parameters
of the relevant microscale branching and growth stochastic
processes of the capillary network and the family of interacting
macroscale underlying fields. Capturing the keys of the whole
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process is still an open problem while there are many models
in the literature that address some partial features of the
angiogenic process [13–22].

Hybrid models reduce complexity exploiting the natural
multiple scale nature of the angiogenic system. Often hybrid
models treat vessel cells on the extracellular matrix as discrete
objects, and different cell processes like migration, prolifera-
tion, etc., occur with certain probabilities. The latter depend
on concentrations of certain chemical factors; these concentra-
tions satisfy reaction-diffusion equations (RDEs) [8,9,13,21].
In other approaches, the cell microscale is not treated explic-
itly. In a mesoscale, large compared to cell size but small
compared to the macroscale of the concentrations, vessels
are wires that move and grow randomly toward the tumor
by chemotaxis [19,23]. An important simplifying factor is that
the stalk cells in a growing vessel build the capillary following
the wake of the cells at the vessel tip [4]. Thus the idealized
wire that follows a vessel tip may be assumed to comprise
all previous positions of the vessel tip. In this way only
the simple stochasticity of the geometric processes of birth
(branching) and growth is kept. We can then focus our attention
on the random evolution of tip vessels and their coupling
with the underlying concentration fields that interact with
them [19,23].

The RDEs for the underlying fields contain terms that
depend on the spatial distribution of vascular cells. Our idea
is use a mean field approximation for cell distribution so
that, in the limit of large number of cells, the underlying
fields become deterministic. The full multiscale mesoscopic
model of angiogenesis consists of a stochastic description
of vessel tips coupled to RDEs containing mean field terms
that depend on the distribution of vessels. The latter are
random and therefore the equations for the underlying fields
are stochastic. A hybrid model consists of approximating
the random RDEs by deterministic ones in which the terms
depending on cell distributions are replaced by their averages.
Once the governing equations of the model are established, its
parameters can be estimated from data and their effect on the
solution of the model ascertained. This could help in assessing
antiangiogenic therapies that control vascularization. Figure 1
shows the angiogenic response to injuries in a rat cornea in
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FIG. 1. (Color online) Angiogenesis on a rat cornea. The pho-
tographs show the angiogenic response to a cornea injury after
different antiangiogenic treatments that inhibit vessel extension and
proliferation. Photographs courtesy of E. Dejana.

the presence of different drugs. If one can correlate the effect
of the drugs on the parameters of the hybrid model or identify
drug presence with some additional terms, optimal control
of the equations may help in devising the most appropriate
therapies.

The importance of using an intrinsically stochastic model
at the microscale to describe the generation of a realistic vessel
network has been the subject of a series of papers by one of the
present authors [24,25]. Complementary to the direct problem
of modeling an angiogenic network, the statistical problem of
estimating spatial densities of fibers in a random network has
been faced in Refs. [26,27]. The statistical problem has great
importance for validating the direct models on the basis of
images taken from experiments, such as those shown in Fig. 1.

Here we are emphasizing the problems related to the
mean field description of the underlying biochemical fields.
In the literature there are examples of rigorous deriva-
tions of mean field equations from stochastic particle
dynamics [28–31]. Here we derive the above mentioned mean
field approximation from a conceptual stochastic model for
the formation of the stochastic network of vessels. Using
heuristic arguments, we show that the spatial distribution of
the tip density satisfies a nonlinear integrodifferential evolution
equation coupled with the partial differential equations for the
relevant underlying fields.

We start from an extension of the mathematical model pro-
posed in [19], according to which (see, e.g., [5,11,12,14,17])
the endothelial cells proliferate and migrate in response to

different signaling cues. The motion of endothelial cells is led
by cells at the vessel tip, whereas other cells follow doggedly
the tips and form the vessel. Thus we can track the motion
of the vessel tips and the vessels are simply the trajectories
thereof. Vessel tips move along gradients of a diffusible
substance and a growth factor emitted by the tumor (tumor
angiogenetic factor, TAF). Thus their motion is controlled by
chemotaxis and, in addition, by haptotaxis, the directed cell
movement along an adhesive gradient (here fibronectin) of a
nondiffusible substance. Specific biochemical mechanisms are
widely described in literature (see, e.g., [11]).

Two additional mechanisms are responsible for the forma-
tion of the vessel network: tip branching (here assumed to
occur only at existing tips for the sake of simplicity) and
anastomosis that occurs whenever a tip runs into another
existing vessel, merges with it and stops moving. Both
mechanisms are intrinsically random. Tip branching is a birth
process driven by the underlying fields mentioned above. In
this paper, we have included a model of anastomosis as a
death process of a tip that encounters an existing vessel and
is therefore coupled with the density of the vessel network.
This is a significant improvement with respect to the previous
work [19].

We have derived formally the mean field equation for the
spatial density of tips, which is a function of tip location
and velocity. This equation is a parabolic integrodifferential
equation of Fokker-Planck type having a source term and
a noninvertible diffusion matrix: it is second order in the
derivatives with respect to the velocities and first order in the
derivatives with respect to the position coordinates. Together
with the mean field equations for the underlying fields, we
have thus found an independent integrodifferential system
whose solution will provide the required (now deterministic)
parameters which drive the stochastic system for the tips,
eventually leading to the stochastic vessel network, at the
microscale. These arguments confirm the need by itself of
an accurate analysis of the mean field approximation of the
underlying fields.

The main scope of this paper is to establish an adequate
initial-boundary value problem (IBVP) for the integrodiffer-
ential system. Due to the peculiar structure thereof, the choice
of boundary conditions is crucial. In this paper, we introduce
boundary conditions based on the physical situation we model
and also on related ideas used to describe the injection of
electric charge through contacts of semiconductor devices
[32–34]. We do not study here whether the IBVP is well posed;
see [35]. Instead, we have explored its qualitative behavior by
numerically solving the IBVP for TAF concentration and tip
density. These numerical solutions confirm what is expected
from the model.

The rest of the paper is as follows. Section II describes
how our stochastic model treats vessel branching, extension,
and anastomosis. We derive the equation of Fokker-Planck
type for the density of vessel tips and the TAF RDE in
Sec. III. The appropriate boundary and initial conditions are
proposed and discussed in Sec. IV. Numerical results for the
nondimensional version of the equations are reported in Sec. V
whereas Sec. VI contains our conclusions. The Appendix is
devoted to mathematical details that are used to derive the
Fokker-Planck type equation.
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II. MATHEMATICAL MODEL

Based on the above discussion, the main features of the
process of formation of a tumor-driven vessel network are the
following (see [14,19,36]):

(i) vessel branching;
(ii) vessel extension;
(iii) chemotaxis in response to a generic tumor angiogenetic

factor (TAF), released by tumor cells;
(iv) haptotatic migration in response to fibronectin gradient,

emerging from the extracellular matrix and through degrada-
tion and production by endothelial cells themselves;

(v) anastomosis, when a capillary tip meets an existing
vessel.

Let N0 denote the initial number of tips, N (t) the numbers
of tips at time t , Xi(t) the location of the ith tip at time t , and
vk(t) its velocity. We model sprout extension by tracking the
trajectory of individual capillary tips.

1. Tip branching

We assume that vessels branch out of moving tips and ignore
branching from mature vessels. A tip i is born at a random time
T i and disappears at a later random time �i , either by reaching
the tumor or by anastomosis (see later). We assume that the
probability that a tip branches from one of the existing ones
during an infinitesimal time interval (t,t + dt] is

N(t)∑
i=1

α(C(t,Xi(t))) dt, (1)

where α(C) is a non-negative function of the TAFs concentra-
tion C(t,x). For example, we may take

α(C) = α1
C

CR + C
, (2)

where CR is a reference density parameter [19]. The evolution
equation for C(t,x) will be given later. As a technical

simplification, we will further assume that whenever a tip
located in x branches, the initial value of the state of the new
tip is (XN(t)+1,vN(t)+1) = (x,v0), where v0 is a nonrandom
velocity.

2. Vessel extension

Vessel extension is described by the Langevin equations

dXk(t) = vk(t) dt,
(3)

dvk(t) = [−k vk(t) + F(C(t,Xk(t)))]dt + σ dWk(t)

(for t > T k, the random time at which the kth tip appears).
Besides the friction force, there is a force due to the underlying
TAF field C(t,x) [14,18]:

F(C) = d1

(1 + γ1C)q
∇xC. (4)

We are ignoring other processes such as production and
degradation of other fields such as fibronectin and ma-
trix degrading enzyme (MDE) that further complicate the
model.

3. Anastomosis

When a vessel tip meets an existing vessel it joins it at that
point and time and it stops moving. This death process is called
tip-vessel anastomosis.

III. THE EVOLUTION OF THE EMPIRICAL MEASURES
ASSOCIATED WITH THE TIP PROCESS

Let us now derive the governing equations of the model. We
shall first ignore branching and consider only vessel extension
given by (3). Later we will consider the effects of tip branching
and anastomosis.

(a) Vessel extension. Let g(x,v) be a smooth test function.
By Ito’s formula (see p. 93 of [37] or p. 252 of [38]), we get
from (3)

dg(Xk(s),vk(s)) = vk(s) · ∇xg(Xk(s),vk(s))ds + [F(C(s,Xk(s))) − kvk(s)] · ∇vg(Xk(s),vk(s))ds

+ σ 2

2
�vg(Xk(s),vk(s))ds + ∇vg(Xk(s),vk(s)) · dWk(s). (5)

We now assume that N is a fixed positive parameter of the same order as the number of tips N (t) that may be counted during an
experiment. Using now

g(Xk(t),vk(t)) = g(Xk(0),vk(0)) +
∫ t

0
dg(Xk(s),vk(s)),

we deduce

1

N

N(t)∑
k=1

g(Xk(t),vk(t)) = 1

N

N(t)∑
k=1

g(Xk(0),vk(0)) +
∫ t

0

1

N

N(s)∑
k=1

vk(s) · ∇xg(Xk(s),vk(s)) ds

+
∫ t

0

1

N

N(s)∑
k=1

[F(C(Xk(s))) − kvk(s)] · ∇vg(Xk(s),vk(s)) ds

+σ 2

2

∫ t

0

1

N

N(s)∑
k=1

�vg(Xk(s),vk(s)) ds + M̃1,N (t), (6)
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where

M̃1,N (t) =
∫ t

0

1

N

N(s)∑
k=1

∇vg(Xk(s),vk(s)) · dWk(s) (7)

is a zero mean martingale with M̃1,N (t) → 0 as N → ∞; see
p. 185 of [38]. In the limit as N → ∞, we may write

1

N

N(t)∑
k=1

g(Xk(t),vk(t)) ∼
∫

g(x,v) p(t,x,v) dxdv, (8)

where p(t,x,v) is the tip density at time t . Then Eq. (6) can be
written as∫

g(x,v) p(t,x,v) dxdv

=
∫

g(x,v) p(0,x,v) dxdv

+
∫ t

0

∫
p(s,x,v)v · ∇xg(x,v)dxdv ds

+
∫ t

0

∫
p(s,x,v)[F(C(s,x)) − kv] · ∇vg(x,v)dxdvds

+
∫ t

0

∫
σ 2

2
p(s,x,v)�vg(x,v) dxdvds. (9)

Integrating by parts this equation and time differentiating the
result, we obtain the Fokker-Planck equation for p:

∂

∂t
p(t,x,v) = −v · ∇xp(t,x,v)

−∇v · [F(C(t,x)) − kv] p(t,x,v)

+ σ 2

2
�vp(t,x,v). (10)

(b) Vessel extension, tip branching, and anastomosis. Tip
branching and anastomosis contribute source and sink terms
to the limiting equation for the tip density, as indicated in
Appendix. The resulting equation is

∂

∂t
p(t,x,v) = α1C(t,x)

CR + C(t,x)
p(t,x,v)δ(v − v0) − γp(t,x,v)

×
∫ t

0
p̃(s,x) ds − v · ∇xp(t,x,v)

+ k∇v · (vp(t,x,v)) − d1∇v

·
[ ∇C(t,x)

[1 + γ1C(t,x)]q
p(t,x,v)

]
+σ 2

2
�vp(t,x,v),

(11)

where

p̃(t,x) =
∫

p(t,x,v′) dv′ (12)

is the marginal density of p(t,x,v).
Tip branching contributes the first term in the right hand

side (RHS) of (11). It is a birth term, rb(t) p, with rate rb(t)
proportional to the probability that a new branch be created at
the interval (t,t + dt) and to δ(v − v0). The δ function recalls

that new branches are created with velocity v0. Anastomosis
occurs when a vessel tip meets a component of the vessel
network that has been formed during previous times 0 < s < t .
It contributes the second term in the RHS of (11). It is a death
term rd (t) p, with rate proportional to the density of the vessel
network, which is the integral of the marginal density up to
time t . To further understand this, consider that the moving
tip meets the past trajectory of a different tip at time t in
(x,x + dx). Let the time interval at which the other tip was in
(x,x + dx) be (s,s + ds). Clearly the destruction rate should
be proportional to p̃(s,x) ds provided we want to consider all
possible tips with any velocities. Addition over all past times
produces the overall death term. More formal mathematical
arguments are given in the Appendix.

In appropriate limits, we may derive an integrodifferential
equation for p̃(t,x) from Eq. (11). See, e.g., [32–34] for
Chapman-Enskog derivations of similar balance equations
describing nano devices. The balance equation for p̃(t,x) will
be nonlocal in time, thereby differing from balance equations
for vessel densities postulated in the literature [13–15,18].

(c) Approximation of the underlying field. TAF diffuses
and decreases where endothelial cells are present. Assuming
that TAF consumption is only due to the new endothelial cells
at the tips, the consumption is proportional to the velocity vi

of the tip i [i = 1, . . . ,N(t)] in a region of infinitesimal radius
about it. Then we have

∂

∂t
C(t,x) = d2�xC(t,x)

− ηC(t,x)

∣∣∣∣∣
1

N

N(t)∑
i=1

vi(t)δN [x − Xi(t)]

∣∣∣∣∣ . (13)

Here δN (x) is a regularized smooth δ function (e.g., a Gaussian)
that becomes δ(x) in the limit as N → ∞. In this limit, the
mean field term in this equation becomes the length of the tip
flux and we obtain the following deterministic equation:

∂

∂t
C(t,x) = d2�xC(t,x) − ηC(t,x)|j(t,x)|, (14)

where j(t,x) is the current density (flux) vector at any point x
and any time t � 0,

j(t,x) =
∫

v′p(t,x,v′) dv′. (15)

The TAF production due to the tumor will be incorporated
through a fixed flux boundary condition for (14).

IV. BOUNDARY AND INITIAL CONDITIONS

The system of equations (11) and (14) requires suitable
initial and boundary conditions. We shall consider that angio-
genesis occurs in two space dimensions.

Let x = (x,y) and v = (v,w). As said in the Introduction,
the tumor releases chemicals that attract blood vessels from a
primary blood vessel towards it. A simple setup is to consider
a two dimensional strip 
 = [0,L] × R ⊂ R2 whose left
boundary 
0 = (0,y), y ∈ R, is a mature existing vessel (from
which new vessels may sprout), whereas the right boundary

L = (L,y), y ∈ R, represents the tumor which is a source of
the TAF C. Let c1(t,y) be the TAF flux emitted by the tumor
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at x = L. Appropriate boundary conditions for the underlying
field C that satisfies a parabolic equation are the Neumann
conditions:

∂

∂n
C(t,0,y) = 0,

∂

∂n
C(t,L,y) = c1(y)

d2
. (16)

The boundary conditions for Eq. (11) should convey the
idea that the vessel tips are issued at x = 0, move and branch
out more and more as x changes from x = 0 to x = L, and
reach the tumor at the latter boundary. Except for the source
term, Eq. (11) is a typical Fokker Planck parabolic equation
having a noninvertible diffusion matrix: it has second order
partial derivatives of p with respect to the velocity but only
first order partial derivatives with respect to position. Then we
should impose

p(t,x,v) → 0 as |v| → ∞, (17)

but we cannot have proper Dirichlet or Neumann boundary
conditions at 
0 and 
L as Eq. (11) is only first order in
the position coordinates. As it happens with the “one-half
boundary conditions” for Boltzmann type equations (which
are also first order in position), we should know p at the
boundaries 
0 and 
L for vessel tips entering 
 (v · n < 0) in
terms of p for vessel tips leaving 
 (v · n > 0). Here n(x) is
the unit vector normal to the boundary at a point x ∈ ∂
 and
pointing outside the region 
.

To ascertain the proper boundary conditions at 
0 and

L, we get a clue from problems of charge transport in
semiconductor devices in which charge is injected at some
boundaries and it is collected at others [32]. The key idea is that
boundary conditions for p having the above mentioned form
should be compatible with physically meaningful conditions
for appropriate moments of p at the boundaries. In our case, it
is reasonable to assume that we know the normal component
of the flux (15) at the boundary 
0 that emits tips and the

marginal tip density at the tumor boundary 
L:

−n · j(t ; 0,y) = j0(t,y), p̃(t,L,y) = p̃L(t,y), (18)

at any time t ∈ [0,∞). As n(x) is the unit vector normal to the
boundary at a point x ∈ ∂
 and pointing outside the region 
,
n · j > 0 (respectively n · j < 0) means that the flux is leaving
(entering) 
. The normal flux entering the left boundary is
given by the vessel production

− 1

N

∞∑
k=1

∫
n · v

L

|v0| α(C(t,x,y)) δ[x − (0,y)] δ(v − v0)

× δ[x − Xk(t)] δ[v − vk(t)] dx dv,

where L is the distance to the tumor. In the mean field
approximation, this expression becomes

j0(t,y) = v0 L√
v2

0 + w2
0

α(C(t,0,y)) p(t,0,y,v0,w0) (19)

for a vector velocity v0 = (v0,w0).
As far as the boundary conditions on the density p, we as-

sume that the density of vessel tips entering 
 is close to a local
equilibrium distribution at the boundaries in such a way that
the boundary conditions (18) are satisfied. Particular cases of
such boundary conditions exist in the literature on Boltzmann
type kinetic equations for semiconductors. Cercignani et al.
proposed charge neutrality and insulating boundary conditions
for the distribution function [39] (they credit a footnote in
Baranger and Wilkins [40] for the formulation of charge
neutrality conditions). Bonilla and Grahn proposed injecting
boundary conditions for a distribution function in [32]. The
form of the local equilibrium distribution may be postulated
directly based on physical assumptions (as we do in this
section) or obtained from an approximation of the distribution
p in some perturbative scheme [32–34,39]. To give simple
examples of boundary conditions, let us assume that p is
close to a Maxwellian distribution with temperature σ 2/k and
average velocity v0 at 
0 and 
L:

p+(t,0,y,v,w) = e−k|v−v0|2/σ 2

∫ ∞
0

∫ ∞
−∞ v′e−k|v′−v0|2/σ 2

dv′ dw′

[
j0(t,y) −

∫ 0

−∞

∫ ∞

−∞
v′p−(t,0,y,v′,w′)dv′dw′

]
,

(20)

p−(t,L,y,v,w) = e−k|v−v0|2/σ 2

∫ 0
−∞

∫ ∞
−∞ e−k|v′−v0|2/σ 2

dv dw

[
p̃(t,L,y) −

∫ ∞

0

∫ ∞

−∞
p+(t,L,y,v′,w′)dv′dw′

]
,

where p+ = p for v > 0 and p− = p for v < 0. The choice of boundary temperatures σ 2/k corresponds to a dominant balance
of the terms k∇v(vp) and 1

2σ 2�vp in (11). Since all new vessels are assumed to branch with velocity v0, it is reasonable to
assume that they also do so when they issue from the primary blood vessel at x = 0. Thus we assume that the average velocity
at x = 0 is also v0.

We may notice that (20) implies
∫ ∞

0

∫ ∞

−∞
vp+(t,0,y,v,w)dv dw =

∫ ∞

0

∫ ∞

−∞

v e−k|v−v0|2/σ 2

∫ ∞
0

∫ ∞
−∞ dv′ dw′ v′e−k|v′−v0|2/σ 2

×
[
j0(t,y) −

∫ 0

−∞

∫ ∞

−∞
v′p−(t,0,y,v′,w′)dv′dw′

]
dv dw

= j0(t,y) −
∫ 0

−∞

∫ ∞

−∞
v p−(t,0,y,v,w) dv dw, (21)

which is coherent with (15) and (18).
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Let us now assume that the two dimensional domain is
a circular crown of radii r0 < r < r1 centered at the origin.
We may assume that the outer boundary |x| = r1 describes a
mature existing vessel, from which new vessels may sprout,
while the inner boundary |x| = r0 describes the tumor, i.e., a
source of the TAF C. Boundary conditions for C are similar
to (16) with radial derivatives at r = r1 and r = r0 as normal
derivatives replacing those at x = 0 and x = L, respectively.
As in the case of the rectangular domain, we assume that

we know the radial component of the current density vector
entering the outer boundary,

jr (t,r1,θ ) = j1(t,θ )

= vr0α(C(t,r1,θ )) p(t,r1,θ,vr0,vθ0), (22)

for a vector velocity of radial and angular components vr0 and
vθ0, respectively. The marginal density at the inner boundary
(the tumor) p̃(t,r0,θ ) = p̃0(t,θ ). Then the boundary conditions
for p are

p+(t,r1,θ,vr ,vθ ) = e−k|v−v0|2/σ 2

∫ ∞
0

∫ π/2
−π/2 e−k|v−v0|2/σ 2

v2
r dvrdvθ

[
j1(t,θ ) −

∫ ∞

0

∫ 3π/2

π/2
v2

r p
−(t,r1,θ,vr ,vθ )dvrdvθ

]
,

(23)

p−(t,r0,θ,vr ,vθ ) = e−k|v−v0|2/σ 2

∫ ∞
0

∫ 3π/2
π/2 vre−k|v−v0|2/σ 2

dvrdvθ

[
p̃0(t,θ ) −

∫ ∞

0

∫ π/2

−π/2
p+(t,r0,θ,vr ,vθ )vrdvrdvθ

]
,

where vθ is the angle formed by v with the inner radial direction
pointing toward the origin, p+ = p for −π/2 < vθ < π/2 and
p− = p for π/2 < vθ < 3π/2. Note that φ − θ + vθ = π if
the polar angles of the velocity and position vectors are φ and
θ , respectively.

V. NUMERICAL RESULTS

The parameter values we use when solving the model
are given in Table I. The values of k, σ 2 = kṽ2

0, d1CR , and
ṽ0 = |v0| have been taken from Ref. [12], CR is given in
Ref. [11]. The tip birth rate α1(t,x) is the probability per area
per time that a new tip appears. Stokes and Lauffenburger
estimated the probability per length per time from experiments
on the inflammation-induced neovascularization of the rat
cornea [41]. They noted that 15 branches sprouted in 3 days
from a 0.88-mm vessel [41] and that half these branches could
be assumed to be caused by branching and the other half
by anastomosis. This gives a probability per length per time
of 1.2 × 10−4/μm/h [12]. Using Figs. 1(e) and 1(f) in [41],
we have counted 18 sprouts averaging 0.88 mm growth in 4
days and 11 sprouts averaging 0.54 mm growth in 4 days,
respectively. The width of the cornea sector is about 1.9 mm
which yields areas of 1.7 and 1 mm2, respectively. Using
Stokes and Lauffenburger’s arguments, we find a probability
per area per time of about 1.12 × 10−7/μm2/h in both cases.
This is 31.1/m2/s, the scale of α1(t,x), which equals the
coefficient α1 times the scale of p(t,x,v). Using the value
in Table II, we obtain α1 = 1.538 × 10−20 m2/s3.

We have nondimensionalized the governing equations of
our model, (11) and (14), according to the units in Table II.

TABLE I. Parameters used to solve the model equations.

1
k

ṽ0 σ 2 α1 d1CR CR η γ

h μm
h 10−21 m2

s3 10−20 m2

s3
μm2

h2 mol/m2 μm 10−17 m2

s2

8.5 40 4.035 1.538 2400 10−16 4 5.82

The resulting nondimensional equations are

∂p

∂t
= AC

1 + C
p δ(v − v0) − �p

∫ t

0
p̃(s,x) ds

− v · ∇xp − ∇v ·
[(

δ ∇xC

(1 + �1C)q
− βv

)
p

]

+ β

2
�vp, (24)

∂C

∂t
= κ �xC − χ C |j|. (25)

The dimensionless parameters appearing in these equations
are defined in Table III. 1/κ is the diffusive Péclet number, δ is
the chemotactic responsiveness, and β is both a dimensionless
friction coefficient and a noise diffusivity.

We now write the boundary conditions in nondimensional
form for the strip geometry 0 < x < 1, y ∈ R. The boundary
conditions for C are

∂C

∂x
(t,0,y) = 0,

∂C

∂x
(t,1,y) = f (y), lim

y→±∞ C = 0, (26)

where f (y) = Lc1(Ly)/(CRd2) is a nondimensional flux.
We have used c1(y) = a e−y2/b2

, with a = 5.5 × 10−27

mol/(m2 s), d2 = 10−13 m2/s, and b = 0.4 mm (b is about
half the assumed tumor size). The initial condition for the TAF
concentration is the Gaussian

C(0,x,y) = 1.1 CRe−[(x−L)2/c2+y2/b2], (27)

TABLE II. Units for nondimensionalizing the model equations.

x v t C p p̃ j
L ṽ0

L

ṽ0
CR

1
ṽ2

0L2
1

L2
ṽ0
L2

mm μm/h h mol/m2 1021 s2

m4 105 m−2 m−1 s−1

2 40 50 10−16 2.025 2.5 0.0028
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TABLE III. Dimensionless parameters.

δ β A � �1 κ χ
d1CR

ṽ2
0

kL

ṽ0

α1L

ṽ3
0

γ

ṽ2
0

γ1CR
d2

ṽ0L

η

L

1.5 5.88 22.42 0.3 1 0.0045 0.002

with c = 3 mm, whereas the initial vessel density is

p(0,x,y,v,w) = 2N0

π2lx ly ṽ
2
0

e−x2/l2
x−y2/l2

y−|v−v0|2/ṽ2
0 , (28)

ly = 10 lx = 0.8 mm, that corresponds to N0 = 20 initial
vessel tips. Nondimensionalization of the initial conditions
(27) and (28) by using Table II is obvious. In nondimensional
form, the boundary conditions (20) for p are

p+(t,0,y,v,w)

= e−|v−v0|2∫ ∞
0

∫ ∞
−∞ v′e−|v′−v0|2dv′ dw′

×
[
j0(t,y) −

∫ 0

−∞

∫ ∞

−∞
v′p−(t,0,y,v′,w′)dv′dw′

]
(29)

for x = 0 and v > 0,

p−(t,1,y,v,w)

= e−|v−v0|2∫ 0
−∞

∫ ∞
−∞ e−|v′−v0|2dv′ dw′

×
[
p̃(t,1,y) −

∫ ∞

0

∫ ∞

−∞
p+(t,1,y,v′,w′)dv′dw′

]
(30)

for x = 1 and v < 0. Equation (19) produces the nondimen-
sional flux j0:

j0(t,y) = Av0
C

1 + C
p(t,0,y,v0,w0) (31)

(
√

v2
0 + w2

0 = |v0|2 = 1 in nondimensional units).
We have solved (24)–(30) by an explicit finite-difference

scheme, using upwind differences for positive v and w and
downwind differences for negative v and w. The boundary
conditions (29) and (30) then give the needed boundary
value of p± at one time step in terms of the value of p∓,
which is known at the precedent time step. The integrals are
approximated by the composite Simpson rule and δ(v − v0) in
(24) is approximated by a Gaussian.

The numerical solution of (24)–(30) depicted in Fig. 2
shows that vessel tips are created at x = 0 and move towards
the tumor at x = 1 (L is 2 mm in dimensional units). The total
tip number, N (t), is the integer part of the mass,

∫
p̃(t,x) dx

and it increases with time. As shown in Fig. 3, the vessel
tips consume TAF as they move. Figure 4 indicates that the
marginal tip density

∫ ∞
−∞ p̃(t,x,y)dy advances as a growing

pulse wave. At each fixed x > 0, the tip density is very small
before new tips arrive from the left. Then TAF is consumed,
new tips are created, and this density increases. No new tips
are created after TAF disappears but the sink term in the right
side of (24) continues tip destruction: p decays and the pulse
has then passed the vertical line at x.

FIG. 2. (Color online) Density plot of the marginal tip density
p̃(t,x,y) for different times showing how tips are created and
march toward the tumor. Nondimensional parameter values are as
in Table III.

FIG. 3. (Color online) Density plot of the TAF concentration
C(t,x,y)/CR for different times showing how tips consume TAF
in their march towards the tumor. Nondimensional parameter values
are as in Table III.
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FIG. 4. (Color online) The integrated marginal tip density profile∫ ∞
−∞ p̃(t,x,y) dy for different times showing that the tip generation

and motion proceeds as a pulse that grows as it advances towards
the tumor. Persistence times 1/k are 8.5 h (solid line, β = 5.88) and
3 h (dashed line, β = 16.67). Larger β values result in arresting the
motion of the vessel tips toward the tumor.

The density plot of
∫ t

0 p̃(s,x,y) ds (vessel network density)
in Fig. 5, shows how the created tips form a growing vessel
network that moves towards the tumor. The behavior of the
angiogenic vessel network depends very much on the values
of the dimensionless parameters in Table III. These parameters
should ideally be fit from experiments and, in this respect, a
series of vessel images taken several times a day would be
most helpful. From measurements in [11,12], the persistence
time 1/k and the velocity ṽ0 (and therefore β) vary appreciably
depending on conditions met by endothelial cells. The friction
force −βv opposes the chemotactic force δ∇xC/(1 + �1C)q

that drives the vessel network towards the tumor. For large
values of β (small values of ∇xC), the vessel tips stop
and may even move back, so that they never arrive at the
tumor. Antiangiogenic therapies may target increasing β or
decreasing the chemotactic force [decreasing ∇xC may be
achieved by increasing c in (27)]. Proangiogenic therapies
may have the opposite targets. In Fig. 4, we have also depicted
the arresting effect that increasing β has on the vessel network.
In experiments, different drugs have the effect of arresting the
vessel network before it arrives at the target area and thinning it,
as shown in Fig. 1. We also observe that the treatments inhibit
vessel proliferation near the primary vessel. This effect might
be achieved by tuning the parameter A that controls vessel
tip production both in (24) and in the boundary condition
(29)–(31). Smaller A results in less production of vessels. The
parameters � and χ have opposite effects to those of A.

A possible program to use our model to test anti- or
proangiogenic substances could consist of the following. First
calibrate the model by a number of experiments. Second,
ascertain whether drugs can be used to tune parameters

FIG. 5. (Color online) Density plot of the vessel network left
by the tips,

∫ t

0 p̃(s,x,y) ds, for different times. Nondimensional
parameter values are as in Table III.

of the model and to attain anti- or proangiogenic effects.
Finally solve numerically the model equations, and obtain and
test predictions thereof by measuring TAF concentration and
marginal vessel density. The latter could be ascertained from
images of the network at successive times such as those in
Fig. 1. Of course, there are several simplistic features in the
model that may need to be reconsidered. Obvious ones are that
there is an additional haptotactic force driving vessels toward
the tumor [19]. Blood perfusion in newly formed vessels needs
to be considered and the effect of vessel retraction due to low
blood circulation included in the model. This latter issue could
be included along the lines of Ref. [18].

VI. CONCLUSIONS

We have derived equations for the density of vessel tips
and for the TAF density during tumor-driven angiogenesis on
the basis of a hybrid model. In this model, the tips undergo
a stochastic process of tip branching, vessel extension, and
anastomosis whereas TAF is described by a reaction-diffusion
equation with a sink term proportional to the average tip flow.
In a limit of sufficiently many tips, the tip density satisfies a
Fokker-Planck type equation coupled to a reaction-diffusion
equation for the TAF density. We have proposed boundary
conditions for these equations which describe the flux of vessel
tip injected from a primary blood vessel in response to TAF
emitted by the tumor and the tip density eventually arriving
at the tumor. Numerical solution of the model in a simple
geometry shows how tips are created at the primary blood
vessel, propagate and proliferate towards the tumor, and may
or not reach it after a certain time depending on the parameter
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values. This is consistent with the known biological facts and
with the original stochastic equations.

Additional work exploring the relation between our model
and the stochastic equations is left for the future. Although
the mean field continuum model should describe well average
behavior, we expect that the stochastic description (from which
the continuum model is derived) presents large variance in re-
gions where the number of tips is small. The stochastic density
of vessels has a large variance close to the initiating primary
blood vessel, whereas fluctuations become unimportant closer
to the tumor, in a region with many more vessels. Then the
stochastic density of vessels derived from the solution of the
fully stochastic model will approach the mean vessel density
studied in this paper and represented in Fig. 5. The evolution of
the vessel network depends on the values of the parameters in
the model and a thorough study is required to design strategies
based on modifying them. Ultimately, the effects of haptotaxis
(fibronectin, MDE) and blood perfusion in the vessels may
have to be added to the model in order to improve it.

ACKNOWLEDGMENTS

This work has been supported by Ministerio de Economı́a
y Competitividad Grant No. FIS2011-28838-C02-01. V.C. has
been supported by a Chair of Excellence at the Universidad
Carlos III de Madrid. It is a great pleasure to acknowledge
fruitful discussions with E. Dejana of the Institute FIRC of
Molecular Oncology of Milan (IFOM), and D. Morale of the
Department of Mathematics of the University of Milan. We
also thank E. Dejana for allowing us to use Fig. 1.

APPENDIX: DERIVATION OF THE EQUATION FOR THE
TIP DENSITY

We need to introduce some notation. The union of the
trajectories of the N (t) tips that exist up to time t ,

X(t) =
N(t)⋃
i=1

{Xi(s),T i � s � min{t,�i}}, (A1)

is the network of endothelial cells. Here T i and � are the
random birth (by branching) and death (by anastomosis) times
of the ith tip. Each particle tip is characterized by its space
Xk(t) and velocity vk(t) coordinates, so that the whole process
is characterized by the stochastic processes {(Xk(t),vk(t)), k =
1, . . . ,N (t), t ∈ R+}.

At any time t � 0, the number of tips, N (t), is of the same
order O(N ), where N is a large positive integer. There are two
fundamental random spatial measures describing the system
at time t . Let QN (t)(A) be the number of tips with positions
and velocities in the phase space region A at time t divided
by N . Formally, the empirical measure QN of the processes
(Xk(t),vk(t)), k = 1, . . . ,N(t) is defined as

QN (t) := 1

N

N(t)∑
k=1

ε(Xk(t),vk (t)). (A2)

Here ε(Xk(t),vk (t))(A) = ∫
A

δ(x − Xk(t)) δ(v − vk(t)) dxdv and
the δ function is the generalized derivative of the Dirac measure
ε(Xk (t),vk (t)). If we count tips that are in a spatial region at time t ,

no matter their velocities, their random empirical distribution
TN (t) is given by

TN (t) = 1

N

N(t)∑
k=1

εXk(t) = QN (t)(· × Rd ). (A3)

Under appropriate conditions, we have

QN (t)(d(x,v)) ∼ p(t,x,v) dxdv, (A4)

TN (t)(d(x,v)) ∼ p̃(t,x) dx. (A5)

1. Vessel extension

Using the empirical measure QN (t) of (A2), we can
write (6) as∫

g(x,v) QN (t)(d(x,v))

=
∫

g(x,v) QN (0)(d(x,v))

+
∫ t

0

∫
1

N

N(s)∑
k=1

vk(s) · ∇xg(Xk(s),vk(s)) ds

+
∫ t

0

1

N

N(s)∑
k=1

[F(C(Xk(s))) − kvk(s)]

·∇vg(Xk(s),vk(s)) ds

+ σ 2

2

∫ t

0

1

N

N(s)∑
k=1

�vg(Xk(s),vk(s)) ds + M̃1,N (t).

(A6)

2. Addition of tip branching

Let us denote by �(ds × dx × dv) the random variable
that counts those tips born from an existing tip during times
on (s,s + ds], with positions on (x,x + dx], and velocities on
(v,v + dv]. Tip branching, described by the scaled marked
point process �N = N−1�, contributes an additional term
to (A6):∫ t

0

∫
g(x,v)�N (ds × dx × dv)δ(v − v0)

=
∫ t

0

∫
g(x,v)α(C(s,x))δ(v − v0)QN (s)(d(x,v)) ds

+ M̃2,N (t) (A7)

(see, e.g.,[42], p. 235), where

M̃2,N (t) =
∫ t

0

∫
g(x,v)[�N (ds × dx × dv)δ(v − v0)

−α(C(s,x))δ(v − v0)QN (s)(d(x,v))ds], (A8)

is a zero mean martingale.

3. Addition of anastomosis

Let us denote by �(ds × dx × dv) the random variable that
counts those tips which are absorbed by the existing vessel
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network during time (s,s + ds], with position in (x,x + dx],
and velocity in (v,v + dv]. The contribution from the death
process described by the scaled marked point process �N :=
N−1� is (see, e.g., [42], p. 235 or [43], p. 252)

∫ t

0

∫
g(x,v)�N (ds × dx × dv)

=
∫ t

0

∫
g(x,v)

γ

N
δ[x − X(s)]QN (s)(d(x,v))ds

+M̃3,N (t), (A9)

where δ[x − X(t)] is given by

δ(x − X(t)) =
∫ t

0
ds

N(s)∑
i=1

δ(x − Xi(s)), (A10)

and

M̃3,N (t) =
∫ t

0

∫
g(x,v)

[
�N (ds × dx × dv)

− γ

N
δ(x − X(s))QN (s)(d(x,v))ds

]
, (A11)

is itself a zero mean martingale. The δ function (A10) indicates
whether a tip has passed through the point x during any time
up to t > 0. This can be formally justified as follows. The
Hausdorff measure associated with the stochastic network X(t)
of (A1) can be expressed in terms of the occupation time of a
spatial region (a planar Borel set) by tips that exist up to a time
t > 0 (see p. 225 of [44] or p. 252 of [43] for the particular
case of SDE’s driven by the classical Brownian motion):

H1(X(t) ∩ A) =
∫ t

0
ds

N(s)∑
i=1

IA(Xi(s))

=
∫ t

0
ds

N(s)∑
i=1

εXi (s)(A), (A12)

where IA(x) = 1 if x ∈ A, 0 otherwise. As the tip trajectories
are sufficiently regular due to the choice (3) of a Langevin
model for the vessels extensions, the generalized derivative of
the measure (A12) is (A10), as introduced in [45]. In practice,
the δ functions in Eqs. (A9)–(A11) are regularized (e.g., they
are Gaussian functions) and become δ functions only in the
limit as N → ∞.

Summing up (9), (A7), (A9), and (7) with (A8), (A11) we
get

∫
g(x,v) QN (t)(d(x,v)) =

∫
g(x,v) QN (0)(d(x,v)) +

∫ t

0

∫
v · ∇xg(x,v)QN (s)(d(x,v)) ds

+
∫ t

0

∫
[F(C(s,x)) − kv] · ∇vg(x,v)QN (s)(d(x,v)) ds +

∫ t

0

∫
σ 2

2
�vg(x,v)QN (s)(d(x,v))ds

+
∫ t

0

∫
α(C(s,x))δ(v − v0)QN (s)(d(x,v)) ds −

∫ t

0

∫
γ

N
δ[x − X(s)]g(x,v)QN (s)(d(x,v)) ds

+ M̃N (t), (A13)

where now

M̃N (t) = M̃1,N (t) + M̃2,N (t) + M̃3,N (t)

is still a zero mean martingale.
By suitable laws of large numbers, whenever N is suffi-

ciently large, QN may admit a density given by (A4) [28,29].
Consequently, δ[x − X(t)] in (A10) approaches its mean
value [46],

λ(t,x) =
∫ t

0
p̃(s,x) ds, (A14)

where p̃ is the marginal tip density (12). We now integrate
by parts (A13), differentiate the result with respect to time,
and ignore the martingales in the limit as N → ∞, thereby
obtaining (11).

A rigorous derivation of (11) from (A13) requires ad-
ditional mathematical analysis including a proof of exis-
tence, uniqueness, and sufficient regularity of the solution
of (11) subject to suitable boundary and initial conditions;
see also [28,31]. This is outside the scope of the present
paper.
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