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Quasicritical brain dynamics on a nonequilibrium Widom line
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Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network
which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom
line where the correlation length and information transmission are optimized. We simulate the network and
introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present
a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system
exhibits a “quasiperiodic” phase corresponding to synchronous activity in simulations, which may be related to
the pathological synchronization associated with epilepsy.
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I. INTRODUCTION

Recent experimental evidence from a variety of living
neural networks suggests that the brain may be operating at or
near a critical point, poised between disordered (subcritical)
and ordered (supercritical) phases where cascades of activity
are damped or amplified, respectively [1–9]. At this interface,
neural networks are expected to produce avalanches of activity
whose size and duration probability distributions follow power
laws, as a distinctive feature of critical phenomena is scale
invariance [10–13]. Theory and simulations conjectured that
neural networks poised at a critical point would have optimal
information transmission [1], information storage [11,14],
computational power [15,16], dynamic range [16–23], and
learning capabilities [24], while providing flexible, yet stable
dynamics [11,25]. Several experiments claim results consistent
with these predictions [26–28], lending plausibility to the
criticality hypothesis of brain function [29].

Here we introduce and analyze the so-called cortical
branching model (CBM), a nonequilibrium stochastic cel-
lular automaton capturing many features of neural network
data [11,14,30], and develop an analytical mean-field approx-
imation in the form of an autonomous nonlinear discrete
dynamical map of first order and dimension given by the
integer-valued refractory period. We establish the nonequi-
librium phase diagram of the CBM and identify three separate
phases: the disordered, the ordered, and the quasiperiodic
phases. Using this mean-field approximation, we argue that
a continuous phase transition between the disordered and
ordered phases occurs (in the thermodynamic limit) only when
external driving, which we model as the spontaneous activation
of network elements, is absent.

In our CBM, when external driving is present (a key feature
of open dynamical systems), we find that this phase transition
disappears and hence argue that true criticality is not attainable
by living neural networks. The CBM thus naturally allows for
the development of an extension of the criticality hypothesis,
and a more proper quantitative formulation, which we have
termed the quasicriticality hypothesis. Our quasicriticality
hypothesis involves a nonequilibrium Widom line of maximum
(though finite) dynamical susceptibility along which correla-
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tion length and, as we shall demonstrate, mutual information
are maximized. We expect that quasicritical behavior can
be observed along this line: for instance, distributions of
activity avalanches are nearly power laws and avalanche
shape collapses can be approximately performed to yield
approximate scaling exponents [2,31]. Moreover, this Widom
line framework quantifies the notion of proximity of our neural
system to its unattainable nonequilibrium critical point, i.e., we
now know how to drive the system towards or away from its
optimal behavior, by manipulating the relevant parameters.

Additionally, increasing the refractory period at large
values of the branching parameter induces a quasiperiodic
phase in the mean-field, which corresponds to synchronous
activation in simulations. Results of our numerical simulations
are qualitatively consistent with the mean-field calculations
as long as the graph underlying the complex network
is irreducible. Because spontaneous activation rates in neural
networks are readily manipulated experimentally [32,33], our
predictions could soon be tested; it is worth noting that our
approach can be extended to other systems, such as the
SIRS compartmental disease epidemic model, which shares
many similarities with the CBM [34], although the latter is
more general. In our concluding remarks, we describe how
to experimentally control various parameters involved in the
CBM to assess the validity of the quasicriticality hypothesis.

II. CORTICAL BRANCHING MODEL

We next introduce details of the CBM. Consider a random
directed network, or graph, of N nodes, where each node
has its own local neighborhood of interactions; connections
are established and kept fixed throughout the dynamics, as in
quenched disorder. Random networks can either be strongly
connected—in which case there exists a path (never running
antiparallel through directed connections) from any node in the
network to any other node on the network (through possibly
many intermediaries)—or weakly connected—in which case
the network contains disjoint subgraphs and is said to not
be fully connected. Networks are generated randomly and
tested for connectedness by examining the corresponding
adjacency matrix associated with its graph. In this study, we
only consider strongly connected networks, i.e., those with
irreducible adjacency matrices [35]. See Fig. 1 for a sample
network.

1539-3755/2014/90(6)/062714(8) 062714-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062714
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FIG. 1. A random, directed network of N = 5 nodes (vertices).
Each node has kin = 2 incoming connections (edges), each of which
are weighted; the thickness of the edges illustrate the connection
strengths Pij . Node 3 is active (z3 = 1); nodes 1 and 4 are quiescent
(zi = 0 for i = 1,4); and nodes 2 and 5 are refractory.

Internodal connections are weighted, with elements of the
weighted adjacency matrix P = {Pij � 1} representing the
probability Pij = κpnij

that a connection from node i to node
j will transmit activity, with

pnij
= e−Bnij∑kin

n=1 e−Bn
, (1)

where κ is the branching parameter (which is equivalent to the
Perron-Frobenius eigenvalue of P ), kin is the in-degree of each
node, B is the connection strength bias, and nij ∈ {1, . . . ,kin}
ranks each connection inbound at node j by strength, e.g.,
nij = 1 corresponds to the strongest connection inbound at
node j . We restrict κ to the range [0,κmax], where the
upper bound is given by κmax = eB

∑kin
n=1 e−Bn and the lower

bound corresponds to a fully disconnected network. Close
to and above κ = κmax, the CBM produces constant activity,
i.e., ρ1(t) �= 0 for all times t (a single avalanche of infinite
duration). It had previously been determined that for a network
of N = 60 nodes, each with a fixed kin = 10, that the values
B = 1.2 and B = 1.6 allowed for a reasonable fit to the local
field potential (LFP) dynamics recorded from living neural
networks [14]; we present our primary simulation results with
B = 1.4 and kin = 3.

The state of each node i is described by a dynam-
ical state variable zi ∈ S, where S = {0,1,2, . . . ,τr}, i =
1, . . . ,N , and τr � 1 is the integer-valued refractory pe-
riod, i.e., the number of time steps following activation
during which a node cannot be made to activate. We
define the configuration space of the CBM as C = {Z =
(z1,z2, . . . ,zN )|zi ∈ S}i=1,N , where dim C = (τr + 1)N ; for
example, C = {(0,0); (0,1); (1,0); (1,1)} for a system of N = 2
and τr = 1. A node i is said to be active when zi = 1, inactive
(i.e., quiescent) when zi = 0, and refractory at any other value.
Nodes can only be active for a single time step at a time.

The system is driven by the spontaneous activation of a
node, which occurs with probability ps. The number of time
steps between spontaneous activations follows a discrete prob-

ability distribution of our choice: a Poisson distribution with
rate 1/(psN ), i.e., P (�ts) = (psN )−�ts e−1/psN/�ts!, allows
for a greater separation of driving and relaxation timescales,
such as that seen in instances of self-organized criticality
(SOC) [36,37], thus minimizing the occurrence of overlapping
avalanches; whereas by using a geometric distribution with
success probability psN , i.e., P (�ts) = (1 − psN )�ts−1psN ,
avalanches are more likely to overlap and contain spontaneous
events. Simulation results presented herein utilize Poisson-
distributed spontaneous events to generate avalanches.

A node can also be driven to activate by another node
connected to it with probabilities given by Eq. (1), but only if
the driving node was active and the driven node quiescent
in the preceding time step. Regardless of the method of
stochastic activation, a node’s dynamical variable zi changes
deterministically following activation, increasing by 1 every
time step until zi = τr is reached, after which the node becomes
quiescent (zi = 0) until it is stochastically activated once
again. Thus, each state variable zi represents a clock degree of
freedom. For example, consider a node i with τr = 3: following
the time step during which it was active, this node will become
refractory, its state deterministically changing from zi = 2 to
zi = 3, and finally to zi = 0.

We summarize the dynamics of the random neighbor
discrete CBM with the following algorithm.

(i) Initialization. Prepare nearest-neighbor connections by
randomly assigning connections between nodes while keeping
the in-degree kin fixed (parallel connections are allowed; loops
are not) and prepare connection strengths Pij as given by
Eq. (1). Initialize the system in the only stable configuration,
i.e., zi = 0 for every node i. Prepare the first spontaneous
activation(s) at t = 1 and subsequent spontaneous activation
times by drawing interactivation intervals �ts from a Poisson
distribution.

(ii) Drive. For each spontaneous activation time equal to
the current time step t , randomly select a node j to activate,
zj (t) → 1; if however node j was not initially quiescent
[i.e., zj (t) = 0], then spontaneous activation does not occur at
node j .

(iii) Relaxation. Any nodes i for which zi(t − 1) �= 0:
zi(t) = zi(t − 1) + 1. If zi(t) > τr, then zi(t) → 0. Node j ,
having been active at time step t , will influence the activity of
a neighboring node k at time step t + 1 with probability Pjk ,
but only if zk(t + 1) = 0: zk(t + 1) → zk(t + 1) + 1.

(iv) Iteration. Start the next time step: Return to (ii).

III. AVALANCHE CHARACTERIZATION

Spatiotemporal clusters of activation (avalanches) exhib-
ited by the CBM mimic spatiotemporal patterns (neuronal
avalanches) observed in living neural networks [11,14]. We
explore their properties by first defining the density of active
nodes at time t , ρ1(t), as

ρ1(t) = 1

N

N∑
i=1

δzi (t),1, (2)

although we often consider its time average, ρ̄1 = 〈ρ1(t)〉t =
1/NT

∑NT
t=1 ρ1(t), where NT is the total number of time steps.

The zero-field dynamical susceptibility χ , associated with
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the density of active nodes, corresponds to the fluctuation of
ρ1(t), χ = N [〈ρ2

1 (t)〉t − (ρ̄1)2], and quantifies the dynamical
response of the system. The correlation length associated with
χ will play an important role in establishing the quasicriticality
hypothesis. In the mean-field approximation defined below, χ

will be determined from the expression limps→0 ∂ρ̄1/∂ps.
Periods of inactivity (ρ1 = 0) are punctuated by periods of

activity (ρ1 �= 0) which constitute avalanches. The properties
of these avalanches are encoded in the avalanche shape, which
we define as the density of active nodes over the duration
of an avalanche, resembling definitions given in previous
studies [38]. The avalanche shape vector Xq gives the shape
of the qth avalanche:

Xq(φ) =
N∑

i=1

δzi (t0
q +φ−1),1, (3)

where t0
q is its starting time, dq is its duration, and φ = [1,dq] ∈

Z+ indexes the number of time steps within the avalanche.
From this, we write the size of the qth avalanche as sq =∑dq

φ=1 Xq(φ).
Avalanche size and duration probability distributions are

conjectured [1] to follow power laws, P (s) ∝ s−τ and P (d) ∝
d−α . In simulated and living neural networks, values of these
exponents have been found to be τ ≈ 1.5 and α ≈ 2 for
LFP data and τ ≈ 1.6 and α ≈ 1.7 for neuronal spike data;
results that have been used to support the criticality hypothesis
[10–12].

IV. MEAN-FIELD APPROXIMATION

In order to gain a deeper understanding of our CBM and its
nonequilibrium phase diagram, we next develop an analytical
mean-field approximation. In the mean-field approximation,
a typical, representative node and its local neighborhood
of interaction (i.e., the kin sites which directly influence
its behavior) are used to approximate the behavior of the
network as a whole—the key presumption here being that
transition probabilities are translationally invariant in the
thermodynamic limit and beyond the upper critical dimension.
We would expect the mean-field approach to represent a
faithful approximation of the simulation results when the
simulated graph is irreducible; it is an extremely interesting
question to explore the cases where the graph is reducible,
but this is beyond the scope of the current paper. The cellular
automaton rules of the CBM (described above in Sec. II) are
approximated by a Markovian stochastic process and so the
probability that a particular node will be in a specific state is
given by the Chapman-Kolmogorov equation [39]:

P [zr (t + 1) = z] =
∑

z∈Skin+1

W (z → z)
kin∏
i=0

P [zi(t)], (4)

where z is an element in the state space S = {0, . . . ,τr}, r ∈
{0, . . . ,kin} identifies the nodes (with r = 0 corresponding to
the representative node), z = (z0, . . . ,zkin ) is the configuration
of the system (i.e., a vector whose elements are the states of the
representative node and its local neighborhood of interaction),
and W (z → z) is the probability that the r = 0 node will
transition into state z given the system configuration z. At

a particular iteration of the mean-field, t , the probability that
a node r is in state z is equivalent to the fraction of nodes
xz(t) in state z: P [zr (t) = z] = xz(t) = ∑kin

i=0 δzi (t),z/(kin + 1).
Additionally, because we are primarily interested in the density
of active nodes x1 and because a node must be quiescent at t

to become active at t + 1, we rewrite Eq. (4) as

x1(t + 1) = x0(t)
∑

z′∈Skin

W (z′ → 1)
kin∏

j=1

xzj
(t), (5)

where z′ is the configuration of the local neighborhood
excluding the representative node, i.e. z′ = (z1, . . . ,zkin ). We
write a general expression for the transition probabilities
W (z′ → 1) as one minus the probability that a node will remain
quiescent, or

W (z′ → 1) = 1 − (1 − ps)
kin∏

j=1

(
1 − κpjδzj ,1

)
, (6)

where the connection strengths pj are of the form given
by Eq. (1). Because z varies deterministically following
activation, xz(t + 1) = xz−1(t) for z ∈ {2, . . . ,τr}.

Along with Eq. (5), these equations form a nonlinear,
autonomous (τr + 1)-dimensional map of first order (i.e.,
Markovian). By including the restriction that, at any iteration
t ,

∑τr
z=0 xz(t) = 1, we reduce the dimension to τr. This

map then allows us to calculate the mean-field densities of
quiescent (z = 0), active (z = 1), and refractory nodes. An
equivalent mean-field approximation can be formulated as a
non-Markovian τrth-order map in one dimension. Finally, we
note that increasing the refractory period by a single time step
increases the number of equations by one; whereas increasing
kin increases the order of polynomial to be solved. Fixed points
x∗

1 of this map give approximate densities of active sites, i.e.,
mean-field approximations to Eq. (2). Stability of each fixed
point is determined as usual by calculating the eigenvalues of
the Jacobian matrix associated with the map; if each of the
eigenvalues of the Jacobian when evaluated at a certain fixed
point have modulus less than one, then that fixed point is stable.

A. Nonequilibrium phase diagram and the Widom line

We first consider the case kin = 1. The mean-field approx-
imation in this case is given by the quadratic map

x1(t + 1) =
(

1 −
τr∑

z=1

xz(t)

)
[c x1(t) + ps]

(7)
xz(t + 1) = xz−1(t), for z = {2, . . . ,τr},

where c = κp1(1 − ps). This yields two fixed points, which
when ps = 0 are x∗

1 = 0 and x∗
1 = (1 − 1/κp1)/τr. The van-

ishing fixed point becomes unstable when κ > 1 and so the
stable fixed point acts as a Landau order parameter, i.e., ρ̄1 = 0
for κ � 1 and ρ̄1 > 0 for κ > 1, with the critical point at κc =
1. We find the critical exponent β = 1: x∗

1 ∝ (κ − κc)β for
κ > 1. Calculating the susceptibility, χ = limps→0 ∂ρ̄1/∂ps,
we find that it diverges at κc with exponent γ ′ = 1 for κ < 1:
χ ∝ (κc − κ)−γ ′

. For κ > 1, it diverges with exponent γ = 1:
χ ∝ (κ − κc)−γ .
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It is remarkable to note that the kin = 1 CBM mean-field
approximation is the discrete-time equivalent of the directed
percolation (DP) mean-field equation when τr = 1:

∂tρ1(t) = −cρ1(t)2 + (c − 1 − ps)ρ1(t) + ps (8)

as given in Ref. [40], where ps plays the role of an external
field. These two seemingly different processes are therefore
related even when ps �= 0. We note that the CBM has a
continuous phase transition when ps = 0, characterized by the
order parameter ρ̄1, but that transition disappears when ps �= 0.
The case ps = 0 is consistent with the Janssen-Grassberger
conjecture [41,42], which states that a model with a continuous
phase transition should belong to the DP universality class
if the transition is characterized by a non-negative one-
component order parameter.

In the case kin = 2, the mean-field approximation yields the
following cubic map:

x1(t + 1) =
(

1 −
τr∑

z=1

xz(t)

) [ − ax2
1 (t) + bx1(t) + ps

]
(9)

xz(t + 1) = xz−1(t), for z = {2, . . . ,τr},
where a = κ2p1p2(1 − ps) and b = κ(1 − ps). In the absence
of spontaneous activity, ps = 0, we again have a vanishing
fixed point, x∗

1 = 0, but now a pair of real, nonzero fixed points
given by

x∗
1± = κp1p2 + τr ±

√
(κp1p2 + τr)2 − 4p1p2τr(κ − 1)

2κp1p2τr
.

Expanding x∗
1− around κ = κc, we again find x∗

1− ∝ (κ − κc)β

with β = 1. The zero-field dynamical susceptibility is then
found to be

χ (κ) = f

g(ps = 0,κ)
, (10)

where f =1+(p1p2−1)x∗−p1p2x
∗3 and g(ps,κ)=(1−κ) +

(1+κ)ps−2(κ+p1p2)(ps−1)x∗ + 3p1p2(ps − 1)x∗2, where
x∗ is taken to be x∗

1 = 0 below the critical point (κ < κc) and
x∗

1− above it (κ > κc). Critical exponents of χ (κ) below
and above the critical point are hence found to be γ ′ = 1
and γ = 1, respectively. Note that χ (κ) diverges at κc = 1
only when ps = 0.

Stability of the fixed points again changes at κc = 1. The
fixed point x∗

1 = 0 is stable when κ < κc for any value of τr;
this defines the disordered phase. Stability shifts to the fixed
point x∗

1− when κ > κc—defining the ordered phase—but only
for small values of τr. With B = 0.5 and κ = κmax, all fixed
points lose stability when τr � 9, where κmax ≈ 1.607. Indeed
this defines a new phase boundary, which separates the ordered
phase from an entirely different phase, where the CBM exhibits
quasiperiodic behavior (see Fig. 2, top left box).

When ps �= 0 (and for small values of τr), x∗
1− is stable

across κ = 1 and the dynamical susceptibility χ no longer
diverges, i.e., the phase transition disappears, giving way
to a crossover region (see Fig. 2). To give an idea of
the shape of χ , we have included light-blue bubbles with
diameter logarithmically scaled to its magnitude, and blue
horizontal lines indicating its width at half-maximum, which
encompasses the quasicritical region. We have used the value
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FIG. 2. (Color online) Nonequilibrium mean-field phase dia-
gram for kin = 2, at selected values of ps. The white region
corresponds to the subcritical disordered phase with a vanishing stable
fixed point; the light-gray region corresponds to the supercritical
ordered phase with a nonzero stable fixed point; the dark-gray region
corresponds to an oscillatory quasiperiodic phase, where all fixed
points are unstable. Solid black lines are lines of nonanalyticity and
thus represent phase boundaries.

B = 0.5 for presentation purposes, as it allows for a better view
of the extent of the quasiperiodic phase boundary when κ is
large; note that with kin = 2, κmax(B = 1.4) ≈ 1.247 while
κmax(B = 0.5) ≈ 1.607. Changes in B had no discernible
impact on the phase diagram. For a fixed value of τr, we can
identify the peak in the susceptibility (and correlation length),
defining a nonequilibrium Widom line in the τr–κ plane; for
the equivalent equilibrium Widom line see [43].

B. Quasiperiodic phase

For large τr, all fixed points of the kin = 2 mean-field
lose stability and the mean-field density of active nodes x1(t)
subsequently exhibits oscillatory behavior as presented in
Fig. 3; similar quasiperiodic phenomena had previously been
observed in SIRS-like models [44]. Within this quasiperiodic
phase, x1(t) does not converge to a fixed point and periodic
points are not present (hence quasiperiodic). The envelope
of x1(t) is, however, sinusoidal here (see Fig. 3). This
quasiperiodic phase was found to diminish with increasing
ps, eventually disappearing at ps ≈ 7 × 10−3. Oscillatory
behavior emerging at large refractory periods had previously
been observed in neural network models [17,45,46], but the
quasiperiodic behavior observed here and in Ref. [44] was not
found. It should be noted that Curtu and Ermentrout’s model
involved both excitatory and inhibitory elements whereas the
CBM only involves excitatory elements [46].

V. SIMULATION OF AVALANCHE PHYSICS

We now go beyond the mean-field approximation
and present results from CBM simulations, which
demonstrate the presence of a nonequilibrium Widom
line, a nonequilibrium phase diagram qualitatively sim-
ilar to the mean-field nonequilibrium phase diagram,
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FIG. 3. CBM mean-field density of active nodes over 400 iter-
ations showing quasiperiodic behavior; kin = 2, B = 0.5, κ = 1.60,
τr = 9, ps = 0.

and a quasiperiodic phase. Because the mean-field
approximation eliminates the fluctuations responsible for
avalanches, it is not useful in analyzing the statistics of the
avalanches associated with our model and so we also utilize re-
sults from our CBM simulations to study the avalanche physics
and prepare avalanche size distributions. We reemphasize the
use of irreducible graphs in simulating the CBM.

We performed simulations using system sizes N =
{32,64,96,128} with ps = {10−5,10−4,10−3} at each value
of κ = [0.8,1.3] with a step size δκ = 0.01 and with τr = 1.
Simulations were performed on ten different random networks
until 106 avalanches were generated at each value of κ;
avalanche durations were limited to 105 time steps. Note
that with B = 1.4 and kin = 3, κmax ≈ 1.307. We determined
the time-averaged density of active nodes ρ̄1 as well as the
dynamical susceptibility χ , each as functions of κ for the
various values of ps for simulations and mean-field for com-
parison. The dynamical susceptibility peaks at quasicritical
points κw defining a nonequilibrium Widom line in the ps-κ
plane (see Fig. 4). Avalanche size distributions at these κw
exhibit quasi-power-law behavior over a maximum number of
decades (see Fig. 5).

Much of the disagreement between the mean-field and sim-
ulation results is due to finite-size effects. If we were interested
in the thermodynamic limit, however, we would need much
larger system sizes, which would require correspondingly large
kin = ηN for 0 < η � 1 such that the simulated networks
maintained irreducibility; this quickly becomes numerically
intensive and computationally complex.

At values of τr and κ comparable to those at which the mean
field exhibits quasiperiodicity, an oscillatory synchronization
phenomenon is observed in simulations (see Fig. 6). At high κ

and low τr, activity is nearly constant and very few avalanches
are produced. As τr is increased, large populations of nodes
activate and become refractory long enough for avalanches to
be produced once again. Note that avalanches produced under
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FIG. 4. Dynamical susceptibility χ and ρ̄1 (inset) results from
simulation with N = 128 (data markers) and mean-field approx-
imation (lines). Results are normalized to their maximal values
and plotted against κ normalized to the quasicritical point κw at
ps = 10−5. For simulations, we find κw to be 1.10, 1.12, and 1.17
at ps = 10−3, 10−4, and 10−5, respectively.

these conditions are not scale free, since the typical avalanche
size approaches the system size.

VI. OPTIMAL INFORMATION TRANSMISSION
AND THE WIDOM LINE

Mutual information has previously been used to mea-
sure information transmission in neural networks [47] and
to demonstrate that information transmission is optimized
at, or in the vicinity of phase transitions [1,27,48,49]. To
investigate this in random networks of the CBM, we hence
compute the mutual information IT (S; R) from an ensemble
of stimulus patterns represented by the configuration of a

Avalanche Size, s

P
(s

)

N = 128, ps = 10−4

100 102 104 106
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100

κ = 1.08
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FIG. 5. Logarithmically binned avalanche size probability distri-
butions P (s) at various values of κ . The dashed line represents a
power law with exponent τ = 1.6.
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WILLIAMS-GARCÍA, MOORE, BEGGS, AND ORTIZ PHYSICAL REVIEW E 90, 062714 (2014)

τr = 10

ρ
1
(t

)

0

0.1

0.2

τr = 15

ρ
1
(t

)

0

0.1

0.2

τr = 20

Time steps, t

ρ
1
(t

)

0 200 400 600 800 1000
0

0.1

0.2

FIG. 6. CBM simulation density of active nodes over 1000 time
steps; N = 128, kin = 3, B = 0.5, κ = 1.60, and ps = 10−3.

subset of NS < N nodes, CS = {ZS = (zi1,zi2 , . . . ,ziNS
)|zik ∈

S}k=1,NS with dim CS = (τr + 1)NS , and an ensemble of
corresponding response patterns represented by the con-
figuration of a subset of NR < N nodes, CR = {ZR =
(zj1 ,zj2 , . . . ,zjNR

)|zjm
∈ S}m=1,NR with dim CR = (τr + 1)NR ,

where ik and jm belong to random, disjoint subsets (of
dimensions NS and NR, respectively) of the set of all N

nodes. We thus have [50]: IT (S; R) = H (R) − H (R|S), where
H (R) = −∑

CR
P (ZR) log2 P (ZR) is the entropy (or variabil-

ity) of the responses with P (ZR) = NZR/(τr + 1)NRNtrials, and
H (R|S) = −∑

CR,CS
P (ZR|ZS) log2 P (ZR|ZS) is the entropy

of the responses conditioned on the stimuli with P (ZR|ZS) =
NZR|ZS/Ntrials. In the equations above, NZR corresponds to the
number of times the configuration ZR appears in the response,
NZR|ZS corresponds to the number of times the configuration
ZR appears in response only to the stimulus ZS, and Ntrials
is the number of times the specific stimulus configuration CS
is applied. The subscript T in the mutual information is an
integer representing the number of time steps between the
stimulus and the response.

We set NS = NR = n and start a CBM simulation with
an initial network configuration corresponding to an element
of the stimulus configuration ensemble CS; the resulting
mutual information is computed using the configuration of
the response nodes after some delay, i.e., some number of time
steps T later. The average mutual information at a particular
value of the branching ratio I (κ) is determined after each
element of the stimulus node configuration ensemble CS has
been repeatedly applied Ntrials times and averaged over the set
of T = {Tmin,Tmin + δT , . . . ,Tmax} delay times, i.e.,

I (κ) = 1

Ndelays

Tmax∑
T =Tmin

IT (S; R), (11)

where δT = Tmin + (Tmax − Tmin)/(Ndelays − 1) and Ndelays
is the cardinality of the set T . Clearly, the task of computing
I (κ) quickly becomes numerically intensive as n is increased.
Using a system size of N = 64 and Ntrials = 100, we computed

κ
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FIG. 7. Dynamical susceptibility χ (κ) (triangles) and average
mutual information I (κ) (in bits). The mutual information is com-
puted for values n = {4,6,8}, shown as crosses, squares, and circles,
respectively (main figure). The discrepancy between the Widom
line and average mutual information peaks, |�κ|, is determined for
each value of n (crosses) along with the line of best fit (solid line:
|�κ| = an−b + c), which approaches 0.026 (dashed line) as n is
increased (inset).

the mutual information for different sizes of input/output node
sets n = {4,6,8} averaged over the delays T = {60, . . . ,120}
in steps of δT = 10 (so Tmin = 60, Tmax = 120, and Ndelays =
7) to demonstrate that the peak in I (κ) converges towards the
Widom line, i.e., the peak in the dynamical susceptibility at
κw ≈ 1.22, as n is increased (see Fig. 7). Peak locations for
I (κ) were determined by fitting to third-order polynomials and
identifying κ values which corresponded to the maxima. As
n approaches N/2 in the thermodynamic limit, we expect the
I (κ) and χ (κ) peaks to precisely overlap. We note that whereas
mutual information has previously been shown to peak at the
location of a phase transition in a variety of systems [48,49],
we argue based on our numerical evidence that generally the
mutual information peaks along the Widom line.

VII. CONCLUSIONS AND OUTLOOK

The central result of this article is the inception and
development of the quasicriticality hypothesis which, in
contrast to the criticality hypothesis, provides a quantitative
framework with specific criteria for closeness to criticality,
which may be physically unattainable. Based on the introduced
cortical branching model (CBM), our results demonstrate that
it is impossible for living neural systems to operate at a critical
point, because these are open, driven systems with spontaneous
activation. Moreover, we established a criterion for optimal
information processing based on the dynamical susceptibility
whose maximum defines the nonequilibrium Widom line, and
argued that the latter coincides with optimal mutual informa-
tion in the infinite size limit. We have additionally determined
the nonequilibrium phase diagram, developed a mean-field
approximation, and characterized the phase transitions of
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the CBM. One can distinguish the following nonequilibrium
phases: a subcritical disordered phase, a supercritical ordered
phase, and an oscillatory quasiperiodic phase. In our CBM, we
have identified four timescales, three of which we manipulate
here: (i) the driving timescale associated with the sponta-
neous activation probability ps, (ii) the relaxation timescale
associated with the branching parameter κ , (iii) the refrac-
tory timescale associated with the refractory period τr, and
(iv) the transmission timescale, i.e., the time a signal is in
transit from its origin to its destination node. Indeed, the
existence of multiple timescales is characteristic of self-
organized critical (SOC) phenomena, although in that case,
the driving and relaxation timescales are the only typically
relevant ones.

Key to our quasicriticality hypothesis is the concept of a
nonequilibrium Widom line, a line of maximal dynamical sus-
ceptibility, which naturally leads to a set of specific questions,
which can be addressed in living neural networks. For example:
What is the location and extent of the nonequilibrium Widom
line in the space of (ps,κ,τr)? By what factor is the maximum
susceptibility modified by changes in ps? Most importantly,
what mechanisms drive living neural networks towards our
nonequilibrium Widom line? All of these questions are
experimentally accessible because manipulations of ps, κ , and
τr are readily realized with the perfusion of pharmacological
agents, adjustments of ionic concentrations [27,51], or the
control of background stimulation [33,52,53]. We remark that
in changing τr, we are manipulating an intrinsic timescale of
the system. There are a number of ways living neural networks
could adjust such a timescale: as a result of widespread
neuronal activation or synchronization, or perhaps by changing
the balance of excitation and inhibition.

This quasicriticality framework may also serve to
explain existing experimental results. For instance, although
there have been numerous reports of power laws resulting
from spiking activity in vitro [2,4,32], they are rarely
found in vivo [8,54]. In the context of what is presented
here, in vitro preparations could have a much smaller ps than
in vivo preparations, which would suggest that they operate
closer to criticality. And although the influence of different
spontaneous activation probability distributions (e.g., Poisson,
geometric, naturalistic) on the phase diagram or on details

of the Widom line is not explored here, it could be probed
experimentally to answer questions relating to the effect of
external stimuli on the brain. Isolated neural networks used for
in vitro preparations typically show intervals of many seconds
between network bursts that initiate neuronal avalanches,
while the avalanches themselves last tens to hundreds of
milliseconds [55]. This separation of timescales, which is
often given as a requirement for SOC [36], is not clearly seen
with in vivo preparations, where each neural network receives
many synaptic inputs from other intact brain regions.

The significance of the unveiled quasiperiodic phase in
terms of the behavior of living neural networks has not yet been
fully explored. Previous studies have found neuronal refractory
periods to increase as a result of the axonal demyelination
associated with multiple sclerosis [56–58], a disease that is
correlated with an unexplained increased incidence of epileptic
seizures [59]. Perfusion of glutamate receptor agonists [such as
kainic acid (KA)] has been found to decrease neuronal refrac-
tory periods, while glutamate receptor antagonists [such as
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] were found
to increase them [60]. Paradoxically, both KA and CNQX
have been used to induce in vitro seizurelike activity [61,62].
So while the oscillations observed in simulations are possibly
related to the pathological synchronization typically associated
with epilepsy, we note that synchronization in epilepsy is
complex and not yet fully understood [63].

Finally from a general theoretical standpoint, we would like
to state that the influence and importance of network topology
has not escaped our notice. In this article, we have only used
irreducible random directed graphs with fixed in-degree, partly
to facilitate the development of the mean-field approximation
presented herein. It would be interesting to explore other net-
work topologies, including reducible and nonplanar directed
graphs, and additionally study numerically and, if possible,
develop mean-field-like approximations of what may lead to
an entirely different paradigm of nonequilibrium dynamics.
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