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Two-dimensional convex-molecule fluid model for surface adsorption of proteins:
Effect of soft interaction on adsorption equilibria
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Adsorption of proteins on membrane surfaces plays an important role in cell biological processes. In this
work, we develop a two-dimensional fluid model for proteins. The protein molecules have been modeled as
two-dimensional convex and soft particles. The Lennard-Jones potential for circular particles and Kihara (12,6)
potential for elliptical particles with hard core have been used to model pairwise intermolecular interactions.
The equation of state of the fluid model has been derived using Weeks-Chandler-Andersen decomposition and
it involves three parameters, an attraction, a repulsion, and a size parameter, which depend on the shape and
core size of the molecules. For validation of the model, a two-dimensional molecular dynamics simulation has
been performed. Finally, the model has been applied to study the adsorption of proteins on a flat membrane. In
comparison with the existing model of hard and convex particles for protein adsorption, our model predicts a
higher packing fraction for the adsorption equilibria. Although the present work is based on Lennard-Jones-type
interaction, it can be extended for other specific soft interactions between convex molecules. Thus the model has
general applicability for any other two-dimensional adsorption systems of molecules with soft interaction.

DOI: 10.1103/PhysRevE.90.062713 PACS number(s): 87.10.−e, 87.14.ep, 87.15.kt, 87.16.D−

I. INTRODUCTION

Most cell biological processes depend on adsorption or
binding of proteins to membrane surfaces. Malfunctioning
of this adsorption may lead to disorder in subsequent down-
stream processes. Thus it is of great interest to researchers
to understand the mechanism for adsorption of proteins
or proteinlike biomolecules. It includes mainly specific or
nonspecific interactions between proteins and surfaces. For
example, antibodies and polypeptide hormones with particular
epitopes or receptors found on the surface of the cell membrane
are responsible for localization of the protein molecules [1].
Also, in other cases, nonspecific electrostatic or hydrophobic
interactions lead to the nonlocalized adsorption of proteins
onto lipid bilayer membranes [2]. Between these two cases,
the latter class of interactions is less studied, but important
for several cell biological functions such as association of
soluble proteins with membranes, formation of multienzyme
complexes, and curvature sorting of protein molecules.

There are two types of theoretical model proposed in the
literature for the nonspecific adsorption of biomolecules to
surfaces. The first class of models are similar to lattice models
of gas adsorption [3,4]. The surface of the membrane is divided
into a large number of virtual sites and one adsorbed ligand
can occupy one or more sites. The second class of models [5,6]
use a continuum model of hard-particle fluids [7] to calculate
the chemical potential of the adsorbed ligand. In a similar
approach, Chatelier and Minton [8] have calculated adsorption
isotherms of proteins of various shapes on a planar surface
using scaled particle theory (SPT) [9,10]. The adsorbed phase
of the protein was modeled as a two-dimensional hard-particle
fluid.

Recently, the adsorbed phase of proteins has been modeled
as a two-dimensional van der Waals or Bragg-Williams gas
to study the curvature sorting of proteins on a cylindrical
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lipid membrane [11,12]. The hard repulsive behavior of
the molecules for both these models and the other hard-
particle fluid models does not capture reality well. Further,
the curvature-generating or -sensing peripheral membrane
proteins typically do not have a circular geometry. For
example, the projections of the membrane-binding BAR
domain of amphiphysin and NBAR domains of endophilin
onto membranes have elongated shapes [13,14].

In this work, we develop a two-dimensional fluid model
for soft convex molecules and, subsequently, apply it to
study the adsorption of proteins on a flat membrane. As a
starting point we consider a Lennard-Jones-type interaction
between the protein molecules. The Lennard-Jones interaction
can be replaced by more refined and accurate protein-protein
interactions, if available. The size and shape of the binding
domain of the protein molecules have been approximated by
two-dimensional convex molecules. We derive the equation of
state using the well-known Weeks-Chandler-Andersen (WCA)
decomposition theory [15–17] in which the potential was
decomposed into a repulsive and an attractive part at the
minimum energy depth. This is a perturbation theory, where
the repulsive part is taken to be the reference system and the
attractive part of the potential is considered to be a small
perturbation. Thus the unperturbed or reference system is
composed of soft repulsive particles.

We first consider a system of circular particles with
Lennard-Jones (LJ) interaction and use the radial distribution
function obtained from the scaled particle theory [9,10] to
model the soft repulsive region of the WCA decomposition.
Subsequently, we derive the equation of state for convex
elliptical molecules. Since the LJ potential cannot be directly
used for elliptical molecules due to the dependence of
the interaction parameters on the orientation, we employ
the Kihara (12,6) potential. Instead of the center-to-center
distance, the potential is defined in terms of the shortest
core-to-core distance between the molecules and it has the
same algebraic form as the LJ potential. Here, we have used
the radial distribution function for a hard-convex-body system
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given by Boublik [18]. The equation of state thus obtained
is simple and involves three parameters: one for attraction,
one for repulsion, and a size parameter that depends on a
shape parameter and a core parameter. The shape parameter
measures the deviation from a circular shape and the core
parameter signifies the hard region of the convex molecule. The
equation of state derived for elliptical molecules encompasses
the circular molecule system as a special case.

The WCA decomposition was earlier used by Steele [19]
for a two-dimensional Lennard-Jones fluid made of circular
disks to study monolayer adsorption on a flat solid surface.
The adsorption isotherm is calculated from the configuration
integral modeled by a reference system composed of the WCA
fluid and the corresponding effective hard-disk diameter was
computed based on a Taylor series expansion of the cavity
function. In our work, the low-density behavior has been
captured by the terms up to the second virial coefficient
in the equation of state. The second virial coefficient is
exact for the LJ potential. Second, the high-density behavior
of the fluid is treated by use of the reference potential of
the WCA decomposition. We do not compute the effective
hard-disk diameter explicitly; instead, the effective excluded
area was obtained by relating the second virial coefficient to
the parameters of the van der Waals gas model. In addition to
this, we have extended our work for two-dimensional system
of convex particles.

We also carry out a two-dimensional molecular dynamics
simulations using the LAMMPS code and compare the results
from our theory with the simulation results. We consider
an isothermal-isobaric (NPT) ensemble, and the interaction
between particles is modeled via the LJ potential for circular
particles and the Gay-Berne potential [20–24] for elliptical
particles. The Gay-Berne potential models the anisotropic LJ
interaction between the convex molecules. The agreement
between theoretical and simulation results is very good
for the circular-particle system. For the elliptical particles
we choose the aspect ratio to be 3:1 as the parameters in
the potential were readily available for this ratio. Furthermore,
the Gay-Berne potential is not the same as the Kihara (12,6)
potential and a quantitative comparison between the theory
and simulation has not been attempted.

Finally, we study the biophysical system of protein adsorp-
tion on a flat lipid bilayer membrane surface. The interaction
free energy of proteins bound to the membrane surface has
been derived from our theoretical model. The results from our
model were compared with the hard-convex-particle model of
Chatelier and Minton [8]. In our case, the binding isotherm
deviates from their work towards the Langmuir isotherm. This
implies that the proteins are overlapping with each other due
to their soft interaction on the membrane surface. This is also
a more realistic behavior.

II. EQUATION OF STATE

In this section, we derive the equation of state for a
two-dimensional convex-molecule fluid model based on a
statistical-mechanical approach. First, a two-dimensional (2D)
model of circular particles with Lennard-Jones interaction was
developed. Subsequently, we extend the model for elliptical

particles. Since the LJ potential cannot be directly applied to
convex particles that are noncircular, we use the Kihara (12,6)
potential for elliptical particles.

A. Circular-disk particles with LJ interaction

We consider a system of N circular-disk particles in an area
A and at a constant temperature T . The pressure equation is
written in terms of the radial distribution function g (r) under
the assumption of pairwise additivity of the intermolecular
potential [15],

p

ρkT
= 1 − ρ

4kT

∫ ∞

0
g(r)

(
r
du(r)

dr

)
2πrdr, (1)

where p is the pressure, k is the Boltzmann constant, ρ (=
N/A) is the number density, r is the center-to-center distance
between two particles, and u(r) defines the intermolecular
potential. For our case u(r) is the LJ potential.

u(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (2)

where σ is the effective diameter of the particles, for which the
potential is zero, and ε is the minimum depth of the potential.

The integral of Eq. (1) can be split up into the second virial
coefficient B2 and an integral I in terms of the cavity function
y (r) = eβu(r)g (r) [25],

p

ρkT
= 1 + ρB2 + ρI, (3)

where

B2 = −1

4

∫ ∞

0
βe−βu(r)

(
r
du(r)

dr

)
2πrdr

= π

∫ ∞

0
(1 − e−βu(r))rdr (4)

and

I = 1

4

∫ ∞

0
rf (r)[y(r) − 1]2πrdr, (5)

in which f (r) = −β du(r)
dr

e−βu(r) and β = 1/kT .
The second virial coefficient is calculated from Eq. (4) and

it is also possible to find it experimentally. Since we compute
it exactly for the Lennard-Jones potential, the terms up to the
second virial coefficient in Eq. (3) are sufficient to describe the
low-density behavior of the fluid. Due to the lack of a suitable
analytical expression for g(r) for the LJ potential, it is not pos-
sible to get an analytical expression for the integral I . However,
the integral I is dominated by the repulsion of the molecules
[25] and it is evaluated from the repulsive part of the LJ poten-
tial of the WCA decomposition [16,17]. So we can expect that
the integral I should be negligible for low density. A suitable
algorithm for the radial distribution function of the hard-disk
fluid is proposed in the high-density regime as follows.

In the WCA decomposition, the repulsive or unperturbed
part of the LJ potential is defined as

u0 (r) =
{
u(r) + ε for r < rm,

0 for r � rm,
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FIG. 1. Geometry of two convex bodies with the shortest
envelope-to-envelope distance s [18].

where rm = 21/6σ corresponds to the minimum of the poten-
tial. Then the repulsive contributions to the functions f (r) and
y(r) become

f0(r) =
{ −β du0

dr
e−βu0 for r < rm,

0 for r � rm,
(6)

and

y0(r) = eβu0g(r). (7)

All these expressions approximate the integral I as

I ≈ 1

4

∫ rm

0
rf0(r)[y0(r) − 1]2πrdr. (8)

For spherical particles, the function y(r) is smoothly decreas-
ing, and f0(r) is sharply peaked in the repulsive region of the
potential (see Fig. 1 of Ref. [25]). Simulation results show a
similar behavior [26]. For circles they are expected to behave
in the same way as the potential is the same. Thus y0(r) in
Eq. (8) can be replaced by the radial distribution function of
a hard-disk fluid at contact. Finally, the equation of state (3)
becomes

p

ρkT
= 1 + ρB2 + Jρ[(G(η) − 1], (9)

where B2(T ) is the second virial coefficient,

J (T ) = 1

4

∫ rm

0
rf0(r)2πrdr = π

∫ rm

0
(1 − e−βu0 )rdr,

(10)

is a scaling factor that measures the contribution of the hard-
disk fluid, and G(η) is the radial distribution function of a
hard-disk fluid in terms of the packing fraction η of the system
of particles. The packing fraction is defined as η = bρ/2 with
b being half of the excluded area of the particle.

Now, a suitable choice of a radial distribution function
G(η) will complete the specification, and we choose from
SPT analysis [9,10]

G(η) = 1 − η

2

(1 − η)2
. (11)

Drawing an analogy with a van der Waals gas [25], and using
the repulsive part of the potential in the WCA decomposition,

half of the excluded area b of a particle is expressed as

b(T ) = B2 + T
dB2

dT
= π

∫ rm

0
[1 − (1 + βu0)e−βu0 ]rdr. (12)

Note that B2(T ) depends on the full intermolecular potential
(i.e., the LJ potential), whereas J (T ) and b(T ) depend only
on the repulsive part of the WCA decomposition. We now
introduce two parameters aa = J − B2 and ar = J and rewrite
the equation of state (9) as

p

ρkT
= 1 − aaρ + arρ

(4 − ρb)

(2 − ρb)2
. (13)

In the above, aa signifies the interaction parameter based
on attraction and ar is based on soft repulsion of the WCA
decomposition. Finally, the equation of state (13) contains
three parameters—two interaction parameters and one size
parameter. The details about these parameters are discussed in
Sec. II C after extending the above formulation for a system of
elliptical particles.

B. Elliptical-disk particles with the Kihara (12,6) potential

For a system of elliptical-disk particles, both the inter-
molecular potential u and the radial distribution function g

depend on the position and relative angular orientation of the
particles. For example, σ and ε used in the LJ potential depend
on the angular orientation [Eq. (2)] between the interacting
particles. This makes the derivation of an equation of state
difficult. To overcome this difficulty, the potential is expressed
in terms of the shortest core-to-core distance s instead of the
center-to-center distance r12 (see Fig. 1). A Kihara core-type
potential has been used for this purpose [18,27–29]. The
pressure equation (1) for the system of elliptical-disk particles
is written as

p

ρkT
= 1 − ρ

4kT

∫ 1

0

∫ ∞

0
g(r12,ω)

(
r12

∂u(s)

∂r12

)
dr12dω,

(14)

where u(s) is the Kihara core-type intermolecular potential
defined in terms of s, and ω = φ/2π denotes the normalized
relative orientation between the interacting particles. To
consider the Lennard-Jones type of interaction between the
elliptical particles, we use the Kihara (12,6) potential,

u(s) = 4εK

[(
σK

s

)12

−
(

σK

s

)6
]

, (15)

where σK is the shortest effective core-to-core distance, for
which the potential is zero, and εK is the minimum depth of
the potential. We consider assumed parallel hard convex cores
to the molecules.

Since, we do not consider the effect of the relative
angular orientation for the interaction parameters, the present
Kihara model represents the isotropic behavior of the fluid
based on the shortest core-to-core distance. The effect of
angular orientation for a three-dimensional Kihara fluid was
considered by Cuetos et al. [30] to study liquid-crystal phase
behavior.

062713-3



PARITOSH MAHATA AND SOVAN LAL DAS PHYSICAL REVIEW E 90, 062713 (2014)

We rewrite Eq. (14) in terms of s as

p

ρkT
= 1 − ρ

2kT

∫ ∞

0

∂u(s)

∂s
gav(s)A1+s+2(s)ds, (16)

where A1+s+2 is the area excluded by the molecules in
maintaining the shortest core-to-core distance s with the other
molecules [18], and the average distribution function gav(s) is
given by [28]

gav(s) = 1

2A1+s+2

∫ 2π

0

∫ 1

0
g(s,θ,ω)�r12 ·

(
∂�r12

∂θ
× b̂

)
dθdω.

The average cavity function, yav(s) = eβu(s)gav(s) in this
case is assumed to have the same qualitative behavior as the
average cavity function for circular particles. Then Eq. (16) can
be expressed in the same form as Eq. (9) for circular particles,
except that the expressions for the second virial coefficient B2

and the scaling factor J for the Kihara core system [27] will
differ from those for circular particles. When all the molecules
have the same shape and size the quantities B2 and J become

B2(T ) = (α + 1)Ac + π

∫ ∞

0
(1 − e−βu)(2Rc + s)ds, (17)

J (T ) = (α + 1)Ac + π

∫ sm

0
(1 − e−βu0 )(2Rc + s)ds, (18)

where sm = 21/6σK is the shortest core-to-core distance be-
tween the molecules, for which the Kihara (12,6) potential
is minimum. The geometric parameter Rc multiplied by 2π

denotes the circumference and Ac is the area of the core
[18]. G(η) is the radial distribution function for the system
of hard convex particles. We have used the expression for
G(η) obtained by Boublik [18] using SPT,

G(η) = 1 − 1
α+1η

(1 − η)2
, (19)

where η = ρb/(α + 1) is the packing fraction and α =
πR2

c /Ac is the shape parameter of the core. The expression

for G(η) is remarkably accurate in the repulsive region and
consistent with the circular particles for α = 1. Note that it is
also possible to use other expressions for G(η) [31].

Finally, the equation of state for the elliptical particles is
written in the form of Eq. (13), so that

p

ρkT
= 1 − aaρ + arρ

(α + 1)2 − ρb

[(α + 1) − ρb]2
, (20)

where aa and ar , similar to those in Eq. (13), denote the
attraction and repulsion parameters, respectively. The size of
the molecule is given by

b(T ) = (α + 1)Ac + π

∫ sm

0
[1 − (1 + βu0)e−βu0 ](2Rc + s)ds.

Since the shape parameter of the core is introduced in the
equation of state (20), we can write σK = σ and εK = ε, where
σ and ε are the parameters for the LJ potential. Then the present
thermodynamic model for elliptical particles can be obtained
from an equivalent system of circular particles having circular
cores. For α = 1 and a zero core size of the molecules, the
above equation reduces to the equation of state (13) for the
system of circular particles. Thus the equation of state derived
here for the elliptical-particle system encompasses the circular-
particle system with LJ interaction as well. Also, Eq. (20)
represents the Kihara model for circular particles with α = 1
and a valid core.

Upon introducing a reduced density ρ∗ = ρσ 2 and a
reduced pressure p∗ = pσ 2/ε we rewrite Eq. (20) in dimen-
sionless form

p∗

T ∗ = ρ∗ − a∗
aρ

∗2 + a∗
r ρ

∗2 (α + 1)2 − ρ∗b∗

[(α + 1) − ρ∗b∗]2
, (21)

where T ∗ = 1/βε is the reduced LJ temperature, and a∗
a , a∗

r ,
and b∗ are the dimensionless attraction, repulsion, and size
parameters, respectively. They are

a∗
a = aa

σ 2
= π

∫ 21/6

0

(
1 − e−[4(x−12−x−6)+1]/T ∗)

(z + x)dx − π

∫ ∞

0

(
1 − e−4(x−12−x−6)/T ∗)

(z + x)dx, (22)

a∗
r = ar

σ 2
= π

4

(
α + 1

α

)
z2 + π

∫ 21/6

0

(
1 − e−[4(x−12−x−6)+1]/T ∗)

(z + x)dx, (23)

and

b∗ = b

σ 2
= π

4

(
α + 1

α

)
z2 + π

∫ 21/6

0

(
1 −

(
1 + 4(x−12 − x−6) + 1

T ∗

)
e−[4(x−12−x−6)+1]/T ∗

)
(z + x)dx, (24)

where x = s/σ is the reduced core-to-core distance and z =
2Rc/σ is the core parameter.

The core parameter represents the ratio of the radius of the
circular hard core to the half thickness of the circular particles
above the core. Furthermore, the core parameter significantly
influences the repulsive behavior of the system of particles. We
can use this parameter to fit the present model for any desired
pressures and temperatures. Note that the above equation of

state is valid mathematically up to the reduced density ρ∗ =
(α + 1)/b∗.

C. Discussion of the parameters aa(T ), ar (T ), and b(T )

The parameters aa , ar , and b and their reduced forms given
by Eqs. (22) through (24) depend on temperature. Variations
of these parameters with temperature have been shown in
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FIG. 2. Variations of reduced model parameters (a) a∗
a and a∗

r and
(b) b∗ with respect to the reduced LJ temperature T ∗ for the system
of circular particles (α = 1). All quantities are dimensionless.

Figs. 2 and 3 for the systems of circular and elliptical particles,
respectively. For both cases, it is observed that the attraction
parameter a∗

a dominates over the repulsive parameter a∗
r below

the Boyle temperature T ∗
B [where B2(T ) = 0]. This implies

that at low temperatures the behavior of the pressure equation
(20) is characterized by the attraction parameter a∗

a and at high
temperatures it is characterized by the repulsion parameter a∗

r

for a given density. The half excluded area of the molecules b∗
decreases with temperature as shown in Figs. 2(b), 3(c), and
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FIG. 3. Variations of reduced model parameters a∗
a and a∗

r (a) for
z = 0.5, (b) for z = 1.0; and of the size parameter b∗ (c) for z = 0.5,
(d) for z = 1.0 with respect to the reduced LJ temperature T ∗ for the
system of elliptical particles with axial ratio 3:1. All quantities are
dimensionless.

TABLE I. Values of Boyle parameters for a system of elliptical
particles (axial ratio 3:1) and different values of z. The shape
parameter α = 1.51 for axial ratio 3:1.

z T ∗
B = kTB/ε a∗

B = aB/σ 2 p∗
B = pBσ 2/ε

0 1.560 1.681 0.928
0.1 1.403 2.119 0.663
0.2 1.282 2.604 0.493
0.3 1.186 3.135 0.378
0.4 1.107 3.731 0.297
0.5 1.042 4.367 0.238
0.6 0.985 5.076 0.195
0.7 0.937 5.814 0.161
0.8 0.895 6.623 0.135
0.9 0.858 7.519 0.115
1.0 0.826 8.403 0.098

3(d). This effect is manifested by a reduction in the packing
fraction of the system with increasing temperature.

For the system of elliptical particles, the above parameter
values increase with the core parameter z as shown in Fig. 3.
Also, the Boyle parameters such as the Boyle temperature TB ,
Boyle area aB , and Boyle pressure pB vary with z. These
parameters are obtained from the following relations [25]:

B2(TB) = 0, aB = TB

(
dB2

dT

)
TB

, pB = kTB

aB

, (25)

and are listed in Table I for different values of z.
In common practice, the intermolecular potential parame-

ters σ and ε are chosen by fitting the experimentally obtained
variation of the second virial coefficient B2 with temperature
around the Boyle temperature TB . Then the parameters aa , ar ,
and b (or a∗

a , a∗
r , and b∗) are no longer fitting parameters,

but universal parameters of the system and their values
depend on temperature. The quantity TB and consequently
the corresponding σ and ε are fixed for a given model.

D. Critical temperature and density

The reduced critical temperature T ∗
c and density ρ∗

c of the
present equation of state are obtained from the following two
relations:(

∂p∗

∂ρ∗

)
ρ∗

c ,T ∗
c

= 0 and

(
∂2p∗

∂ρ∗2

)
ρ∗

c ,T ∗
c

= 0.

For the system of circular particles (α = 1,z = 0) we obtain
ρ∗

c = 0.27 and T ∗
c = 0.668. The critical constants for the

system of elliptical particles depend on the core parameter
z and they are given in Table II. Note that, unlike the Boyle
parameters, the critical density and temperature depend on the
shape parameter α for zero core (z = 0).

III. OTHER THERMODYNAMIC FUNCTIONS

In the following, we compute other thermodynamic func-
tions such as the Helmholtz free energy, activity coefficient,
and internal energy using our present model. For comparison
we also carry out molecular simulations which are discussed
in Sec. IV.
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TABLE II. Values of critical constants for a system of elliptical
particles for axial ratio 3:1 with different values of z.

z ρ∗
c = ρcσ

2 T ∗
c = kTc/ε

0 0.305 0.700
0.1 0.251 0.648
0.2 0.211 0.608
0.3 0.180 0.575
0.4 0.156 0.548
0.5 0.137 0.525
0.6 0.121 0.505
0.7 0.107 0.488
0.8 0.096 0.473
0.9 0.087 0.459
1.0 0.079 0.447

A. Helmholtz free energy

The Helmholtz free energy (F ) is defined as

F = U − T S, (26)

where U is the internal energy and S is the entropy of the
system. The excess Helmholtz free energy (Fex) relative to
the ideal gas at the same temperature and density is obtained
by integrating the equation of state within the limits 0 and ρ,

Fex

NkT
= −aaρ + arαρ

(α + 1) − ρb
− ar

b
ln (1 − ρAm) . (27)

The reduced excess free energy Fex∗ = Fex/ε in terms of the
other reduced quantities is

Fex∗

NT ∗ = −a∗
aρ

∗ + αa∗
r ρ

∗

(α + 1) − b∗ρ∗ − a∗
r

b∗ ln

(
1 − ρ∗b∗

α + 1

)
.

(28)

For an ideal gas at the same temperature and density, we have
the Helmholtz free energy

F id

NkT
= ln (ρAm) − 1. (29)

Then the absolute free energy of the system of particles is
written in terms of the packing fraction η = ρAm,

F

NkT
= ln η − (α + 1)

aa

b
η + α

ar

b

(
η

1 − η

)

− ar

b
ln(1 − η) − 1. (30)

B. Activity coefficient of the fluid

The activity coefficient is the measure of nonideality of the
mixing of liquid and gas phases of the fluid. It depends on the
concentration of the molecules in the liquid phase of the fluid.
It is determined from the chemical potential of the system of
particles, so that

μ

kT
= 1

kT

(
∂F

∂N

)
A,T

= μ0 + ln (λη) , (31)

where μ0 is the standard state chemical potential and λ is the
activity coefficient of the fluid. Since we consider the chemical

potential in terms of the change of free energy from a reference
system we neglect μ0. Then in reduced form we have

ln λ = −2(α + 1)
a∗

a

b∗ η + α
a∗

r

b∗
η

(1 − η)2

+α
a∗

r

b∗
η

1 − η
− a∗

r

b∗ ln(1 − η). (32)

C. Internal energy

The reduced excess internal energy relative to the ideal
gas for the same temperature and density is obtained by
differentiating Eq. (28) with respect to temperature,

Uex∗

NT ∗ = Aaρ
∗ − [(α + 1) − b∗ρ∗]αArρ

∗ + αa∗
r Bρ∗2

[(α + 1) − b∗ρ∗]2

− a∗
r

b∗
Bρ∗

(α + 1) − b∗ρ∗ + b∗Ar − a∗
r B

b∗2

× ln

(
1 − b∗ρ∗

α + 1

)
, (33)

where Aa , Ar , and B are the products of the derivatives of a∗
a ,

a∗
r , and b∗ with respect to T , respectively.

IV. SIMULATION DETAILS

To validate the theoretical model developed in the previous
section, a 2D molecular dynamics simulation has been per-
formed using the LAMMPS code. The molecules are considered
as LJ particles for circles and Gay-Berne particles for ellipses
with aspect ratio 3:1. We considered the Lennard-Jones
potential for circular particles and the Kihara (12,6) potential
for elliptical particles in our theoretical model; they are
isotropic in nature. In the simulation we use the Gay-Berne
potential [20–24] as the Kihara (12,6) type of potential is not
available for elliptical particles in LAMMPS. The Gay-Berne
potential is based on the center -to-center distance and can
represent anisotropic interaction behavior. It also resembles
the LJ potential for the circular particles.

A. Simulation parameters

The simulation parameters are chosen as the default values
of the LAMMPS package for most of the cases. The dimensions
of the parameters are taken in distance units (σ ), energy units
(ε), and mass units (m). The molecules are modeled as finite-
size spherical particles with mass 1m and diameter 1σ . For 2D
simulations, LAMMPS has an option to zero out the z-dimension
velocity and force on each atom of the simulation box lying
in the x-y plane. The cutoff radius and neighbor-list radius of
the LJ potential are taken as 2.5σ and 2.8σ , respectively.

An isothermal-isobaric (NPT) ensemble of molecular dy-
namics simulations has been carried out for a 200 × 200 sq
lattice (total 40 000 particles) for 5 × 105 time steps. The
average values of the last 2 × 105 time steps with a gap of
1000 time steps have been considered as our thermodynamic
outputs. The standard deviation of those output data has been
checked and it is always below 1%. The time step of each run
has been taken as 0.005τ (τ = σ [m/ε]1/2) and the pressure
P = P ∗ε/σ 3, where P ∗ is the nondimensional pressure. The
thermostat and barostat damping have been set at 0.5τ .
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For the excess-free-energy calculation, an NPT ensemble
of 3 × 105 time steps was performed first to equilibrate the
system. Then another 3 × 105 time steps are run for the NVT
ensemble by changing the strength of the LJ potential by
multiplying with a prefactor ξ . The ξ values are taken as
0.1,0.2,0.3, . . . ,1.0. For each ξ , the NVT ensemble average of
the derivative of the potential energy with respect to ξ has been
obtained by averaging the simulation data of the last 2 × 105

time steps with a gap of 1000 time steps. The excess free
energy is then computed from the relation [32]

Fex =
∫ 1

0

〈
∂U

∂ξ

〉
ξ

dξ, (34)

where 〈 ∂U
∂ξ

〉ξ is the NVT ensemble average of the derivative of
the potential energy U with respect to ξ for a given ξ .

In the following, we compare our theoretical results with the
results obtained from molecular simulations for the circular-
particle system. We observe very good quantitative agreement
between theory and simulation for the circular-particle system.
For the elliptical-particle system, the theoretical variations of
the thermodynamic functions with density match qualitatively
the results obtained from simulations (not shown). Due to the
mismatch in the potentials used in the theory and available in
LAMMPS, we do not attempt a quantitative comparison.

B. Simulation results and discussion for circular-particle system

For α = 1 and z = 0, Eqs. (21), (33), and (28) represent
pressure, excess internal energy, and excess free energy,
respectively, as functions of the reduced density for a system
of circular particles. Their variations with reduced density for
different temperatures, along with the simulation results, are
presented in Figs. 4 and 5. All the simulation data are taken
above the critical temperature (T ∗

c = 0.668). The agreement
between theory and simulation is very good for the pressure
and excess internal energy. The agreement for excess internal
energy gets better with increasing temperature as shown in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

ρ*

p*

 

 

T*=5.0

ρ
c
*

T*=2.0 T*=0.75

T*=1.11

FIG. 4. Comparison between theoretical and simulation results
for circular particles for the variations of reduced pressure with
reduced density for different temperatures. The solid lines and
circles represent theoretical and simulation results, respectively. All
quantities are dimensionless.
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FIG. 5. Comparison between theoretical and simulation results
for circular particles for the variations of the reduced excess internal
energy (solid lines for theory and circles for simulation) and excess
free energy (dashed lines for theory and triangles for simulation)
with reduced density for different temperatures as mentioned. All
quantities are dimensionless.

Fig. 5: it matches at least up to the critical density for
T ∗ = 0.75 as shown in Fig. 5(a), at least up to twice the
critical density for T ∗ above 1.1 [Figs. 5(b) and 5(c)]. The
match between theory and simulation is reasonably good for
the variation of the excess free energy. The agreement is quite
good even above the critical density as shown in Fig. 5(a).
Agreement is poor around the Boyle temperature (T ∗

B = 1.56).
This is due to the fact that the term I in Eq. (3) is not
accurate nor can it be neglected around the Boyle temperature.
Still, our theory predicts the behavior of the fluid system at
least up to the critical density for all temperatures. At higher
temperatures, the present model is accurate for the excess
free energy in the regime of low to high density as shown in
Fig. 5(d). Considering the fact that the perturbation theories
have acceptable accuracy at high temperatures [19], the present
model has reasonable accuracy even at low temperatures.

Note that the approximation used for the cavity function
y(r) in the formulation is not expected to be very accurate
in the critical region [25]. Still, we obtain good agreement in
comparison with simulation data for thermodynamic functions
like the pressure, excess internal energy, and excess free energy
near the critical density even for T ∗ = 0.75 which is close to
the critical temperature T ∗

c = 0.668. The simulation results
for pressure, excess internal energy, and excess free energy
are also presented in Table III.

V. ADSORPTION OF PROTEINS ONTO A FLAT
MEMBRANE SURFACE: AN APPLICATION

In this section, we apply the theoretical model developed
in Secs. II and III to study adsorption of proteins on a
flat membrane surface in contact with a protein reservoir
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TABLE III. Simulation data for pressure, excess internal energy,
and excess free energy obtained from different temperatures for a
system of circular particles.

T ∗ = 0.75 T ∗ = 1.11

p∗ ρ∗ Uex∗ F ex∗ p∗ ρ∗ Uex∗ F ex∗

0.10 0.172 −0.604 −0.397 0.10 0.093 −0.268 −0.177
0.25 0.432 −1.263 −0.920 0.25 0.229 −0.622 −0.422
0.50 0.594 −1.666 −1.223 0.50 0.396 −1.032 −0.706
0.75 0.658 −1.849 −1.329 0.75 0.496 −1.283 −0.863
1.00 0.697 −1.965 −1.384 1.00 0.560 −1.451 −0.949
1.50 0.746 −2.113 −1.431 1.50 0.639 −1.666 −1.031
2.00 0.779 −2.210 −1.447 2.00 0.689 −1.799 −1.058
2.50 0.805 −2.282 −1.446 2.50 0.724 −1.891 −1.063
3.00 0.829 −2.352 −1.434 3.00 0.751 −1.956 −1.050
4.00 0.891 −2.608 −1.383 4.00 0.793 −2.042 −1.004
5.00 0.913 −2.635 −1.347 5.00 0.825 −2.092 −0.941

T ∗ = 2.0 T ∗ = 5.0
0.10 0.048 −0.109 −0.063 0.10 0.020 −0.027 0.004
0.25 0.116 −0.258 −0.147 0.25 0.048 −0.071 0.010
0.50 0.214 −0.472 −0.259 0.50 0.091 −0.135 0.024
0.75 0.293 −0.646 −0.341 0.75 0.130 −0.194 0.041
1.00 0.356 −0.788 −0.400 1.00 0.166 −0.246 0.064
1.50 0.452 −1.003 −0.464 1.50 0.229 −0.337 0.118
2.00 0.519 −1.156 −0.483 2.00 0.283 −0.412 0.180
2.50 0.570 −1.267 −0.478 2.50 0.329 −0.473 0.244
3.00 0.610 −1.353 −0.457 3.00 0.369 −0.526 0.322
4.00 0.670 −1.470 −0.389 4.00 0.437 −0.603 0.473
5.00 0.714 −1.540 −0.303 5.00 0.491 −0.652 0.637

(solution). The proteins in the solution were considered to
behave as an ideal gas. The proteins adsorbed onto the
membrane were treated as a 2D soft-convex-particle fluid.
Earlier, Chatelier and Minton [8] studied the system, using
SPT, and considering the adsorbed proteins as hard convex
particles.

For equilibrium the chemical potentials of proteins in
solution and on the membrane surface should be the same.
For any given protein concentration c in solution we have

μsoln = μsurf, (35)

where μsoln = μsoln,0 + kT ln c and μsurf are the chemical
potentials of the proteins in solution and on the surface,
respectively. The surface-protein chemical potential μsurf

is given by Eq. (31) with μ0 = μsurf,0/kT . Here, μsoln,0

and μsurf,0 denote the standard state chemical potentials for
the solution and surface, respectively. Finally, the binding
isotherm is given by

Kc = λη, (36)

where K = exp[−(μsurf,0 − μsoln,0)/kT ] and λ is the activity
coefficient obtained from Eq. (32).

In Fig. 6, we compare the binding isotherms for the circular-
particle system with LJ interaction (for α = 1 and z = 0),
obtained from our model [Eq. (36)] and Chatelier and Minton’s
SPT [8] for different temperatures. We obtain a higher packing
fraction than Chatelier and Minton. This is due to the soft
interaction between the protein molecules considered in our
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FIG. 6. Binding isotherms of protein (circular) adsorption on a
flat surface from the present model [α = 1 and z = 0 in Eq. (32)],
the Chatelier and Minton [8] model, and the Langmuir isotherm. The
dash-dotted lines are based on our model for different temperatures.
All quantities are dimensionless.

work. With increasing temperature the isotherms from our
model approach the isotherm of Chatelier and Minton. At
low temperatures the adsorption isotherm is steeper than the
Langmuir isotherm [3] at low density (or packing fraction).
This suggests that attraction between the molecules works at
a low density. With increasing packing fraction, the repulsive
effect between the molecules starts dominating. This broadens
the adsorption isotherm from the Langmuir isotherm. Finally,
the excluded-area effect of the molecules leads the isotherm
to match that of Chatelier and Minton for high temperatures.
At very high temperatures (not shown in the figure), there is
a small discrepancy between the isotherms from our model
and those of Chatelier and Minton. The different formulation
(WCA perturbation theory) used here leads to a different
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FIG. 7. Binding isotherms of protein (circular) adsorption from
the present model and the Chatelier and Minton [8] model for different
core sizes (z) and temperatures. All quantities are dimensionless.
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FIG. 8. Binding isotherms from the present model and the
Chatelier-Minton model [8] for a system of elliptical particles (axial
ratio 3:1) for different core sizes (z) and temperatures. All quantities
are dimensionless.

excluded area compared to that obtained by Chatelier and
Minton. Note also that multiple values of the packing fraction
have been observed below the critical temperature, suggesting
that the protein phases differ in density. Such behavior has also
been observed by Singh et al. [11] for sorting of proteins in a
cylindrical membrane tube.

We now compare the binding isotherms with the SPT results
(Chatelier and Minton), for circular particles with nonzero
core, for different values of the core parameter z and at
a few temperatures. The results are shown in Fig. 7. With
increasing z the isotherms broaden towards that of Chatelier
and Minton. This is a quite natural result from our model as the
excluded-area effect of the molecules increases with increasing
core size. However, even for large core sizes, there will always
be a soft-repulsive-interaction film of thickness σ between the
molecules. Similar behavior has also been observed for the
system of elliptical particles with a Kihara core potential as
shown in Fig. 8. We obtained higher packing fraction values
than Chatelier and Minton even at the best-fit value of z

(with the simulation data) due to soft interactions between
the molecules. Thus we can say that the present theoretical
model efficiently captures the convex as well as the soft nature

of proteinlike biomolecules. Note that a comparison with
experiments will be the best possible validation of the model.
However, comparison with Chatelier and Minton’s work does
bring out the essential features of the soft particle-particle
interaction. We aim to apply the model to protein adsorption
on a lipid bilayer membrane and extract model parameters
through fitting in future work.

VI. CONCLUSIONS

In this work, we have developed a two-dimensional
convex-molecule fluid model with soft interaction for proteins
adsorbed on membranes. The Lennard-Jones interaction for
circular particles and the Kihara core (12,6) potential for
elliptical particles were used to model soft interaction be-
tween the proteins. Comparison of our model with molecular
dynamics simulation results for thermodynamic functions like
the pressure, excess free energy, and excess internal energy
has shown good quantitative agreement for circular-particle
systems and qualitative agreement for elliptical-particle sys-
tems. The model developed here has been applied to study
protein binding on the surface of a flat biomembrane. Binding
isotherms from the present model have been compared with
the isotherms from hard- and convex-molecule fluid model.
As expected, we have obtained a higher packing fraction value
in the adsorption isotherm in comparison to that obtained
from the hard- and convex-molecule fluid model. This is more
realistic behavior of soft molecules such as adsorbed proteins.
The great advantage of the present model is that the size of
the core of the molecules controls both the attraction and
repulsion parameters. It helps to fit the model with any desired
pressure and temperature of the system. This enhances the
applicability of the model to various other two-dimensional
adsorption systems comprised of soft molecules.
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