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Effective diffusion of confined active Brownian swimmers
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We theoretically find the effect of confinement and thermal fluctuations on the diffusivity of a spherical active
swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective
diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our
analytical results with Brownian dynamics simulations and we obtain excellent agreement.
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I. INTRODUCTION

Diffusion processes of particles, molecules, or even living
microorganisms are common in nature. Human metabolism,
breathing, medical drug delivery, and the motion of viruses and
bacteria are some examples. The fundamental physics behind
these processes was elucidated for the first time in 1905, when
a theory for diffusion was proposed by Einstein [1]. Since then,
several works considering diffusion of free noninteracting
isotropic [2,3] and anisotropic [4,5] particles, as well as the
effect of external fields on the diffusion of isotropic [6–9] and
anisotropic [10] particles, have been studied.

More recently, the influence of thermal forces on non-
interacting active particles (driven by an assumed internal
mechanism) has received considerable attention inspired
from both fundamental and technological interests. On one
hand, the biophysical community is trying to elucidate basic
mechanisms involved in cell locomotion [11]; on the other
hand, the bioengineering community is developing artificial
microrobots [12,13] able to propel themselves. In this sense,
isotropic self-propelled bodies subject to thermal forces
[14–16] and anisotropic swimmers [15] have been analyzed
in the absence and presence of external fields [17–20].

Another relevant aspect on diffusive processes is the effect
of confinement on particle displacement. In nature and in
many technological applications, passive (ions, molecules,
cells) and active (viruses, bacteria) particles usually move
under geometrical constrains (boundaries), like through ionic
channels [21], membranes [22], artificial nanopores [23,24],
porous media [25], microfluidic devices [26], and carbon
nanotubes [27]. As one can see, confinement is mainly due
to physical walls (although hydrodynamic confinement is also
possible [28]) hence the necessity of including wall effects on
particle diffusion.

A theoretical framework including wall effects on the
diffusion of passive particles was achieved by Zwanzig [29].
Based on the idea that physical walls can be seen as entropic
potentials and that effective diffusion coefficients depend on
position, he derived for the first time a Smoluchowski equation
for a confined passive particle. By solving this equation,
an effective analytical diffusion coefficient that includes the
effect of physical boundaries can be obtained. Recent work
concerning the diffusion of confined, noninteracting, passive
particles includes Refs. [30–33]. Confined, active, interacting
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particles forming stable structures due to an interplay among
hydrodynamic forces and solid boundaries, due to cavities
of simple shape, were recently treated by Goldstein [34,35].
Additionally, active, noninteracting particles diffusing inside
cavities of more complex shape have only been computation-
ally studied [36]. Hence theoretical work on active particles
inside cavities of complex shape, to our knowledge, has not
yet been reported.

In this article, we theoretically study a self-propelled parti-
cle subject to thermal fluctuations and swimming inside a two-
dimensional narrow cavity of general shape. Hydrodynamic
effects near the walls are neglected, as well as particle-particle
interaction; the latter assumption is reasonable for a typical
concentration of microorganisms in a natural suspension [37].

We derive the corresponding confined Smoluchowski equa-
tion for the probability distribution function of the particle
moving inside a narrow asymmetric cavity, which we then
exploit to calculate the effective swimmer diffusivity. Our
theoretical results are applied to two specific cases, that is,
a swimming particle moving inside a zig-zag cavity and a
swimming particle inside a cavity made of circular sections.
Finally, our theoretical results are validated using Brownian
dynamics simulations.

II. MODEL

Consider a spherical particle of radius a, immersed in
a fluid at fixed temperature T , that self-propels (swims)
inside a two-dimensional asymmetric cavity of width w(x) =
A2(x)−A1(x), where A2(x) and A1(x) are, respectively, the
upper and lower boundary of the cavity shape (see Fig. 1).
The particle is subject to thermal fluctuations (modeled as
white noise) in translation and rotation. We also impose
a swimming velocity, Us(t) = Us(t)e(t), where we denote
by e(t) = [e1(t),e2(t)] the instantaneous unit vector in the
direction of swimming with the origin at the center of
the sphere and by Us(t) the instantaneous magnitude of the
swimming velocity along e(t).

Collisions between the particle and walls are modeled as
follows. For translation, we assume a mirror reflective wall,
while for rotation we assume a frictionless wall that does not
affect the particle orientation. For the particle description,
we follow a Smoluchowski approach; hence we deal with
the particle probability density function (p.d.f.) P (x,ϕ,t),
representing the probability of locating it at position x = (x,y)
and orientation ϕ at time t. Thus the corresponding two-
dimensional Smoluchowski equation for P and for the case
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FIG. 1. (Color online) Schematics of the two studied cavities.
(a) A zig-zag cavity of width w(x), narrow cross-section b, and
period L. (b) A semicircular cavity of width w(x), radius R, period
L, and narrow cross-section 2α. The cavities shown are the result of
the performed Brownian simulations. Here, each color represents the
followed random path of a given active particle.

of an unbounded active particle is [38,39]

∂P

∂t
+ Us(t)e(t) · ∇P = DB∇2P + D�

∂2P

∂ϕ2
, (1)

where DB is the translational diffusion coefficient (DB =
kBT /RU ), D� is the rotational diffusion coefficient (D� =
kBT /R�), and ∇ = (∂/∂x,∂/∂y). Here, RU = 6πηa and
R� = 8πηa3 are, respectively, the viscous resistances to trans-
lation and rotation of the sphere, while η is the fluid viscosity.

III. CONFINED ACTIVE SMOLUCHOWSKI EQUATION

We start by deriving the corresponding Smoluchowski
equation for the case of a confined particle swimming inside
an asymmetric cavity of width w(x). Following Kalinay and
Percus [32,33], we project Eq. (1) along the longitudinal
x direction and define the projected one-dimensional p.d.f.
G(x,ϕ,t) as

G(x,ϕ,t) =
∫ y=A2(x)

y=A1(x)
P (x,ϕ,t)dy. (2)

Then, each term of Eq. (1) is integrated with respect to y from
y = A1(x) to y = A2(x). After some algebra, one arrives at

∂G

∂t
+ Use1

[
∂G

∂x
+ dA1

dx
P

∣∣∣∣
y=A1

]

−Use1
dA2

dx
P

∣∣∣∣
y=A2

+ Use2P

∣∣∣∣y=A2

y=A1

= DB

∂2G

∂x2
+ DB

∂P

∂y

∣∣∣∣y=A2

y=A1

+ D�

∂2G

∂ϕ2

−DB

∂

∂x

(
dA2

dx
P

∣∣∣∣
y=A2

− dA1

dx
P

∣∣∣∣
y=A1

)

+DB

∂P |y=A1

∂x

dA1

dx
− DB

∂P |y=A2

∂x

dA2

dx
. (3)

In order to simplify Eq. (3), we call for the boundary conditions
we should impose at the walls. These boundary conditions
are zero net fluxes along the walls. Hence the translational,
Jt=−DB∇P+Us(t)e(t)P , and rotational, JR=−D�∂P/∂ϕϕ̂,
fluxes must satisfy

v̂u × Jt = 0 and v̂l × Jt = 0, (4)

where v̂u = [i + A′
2(x)j]/

√
1 + A′

2(x)2 is the upper unit tan-
gent vector to the curve y = A2(x), and v̂l = [i + A′

1(x)j]/√
1 + A′

1(x)2 is the lower unit tangent vector to the curve
y = A1(x). Here the prime denotes derivative with respect
to x. Note that once Eq. (4) is satisfied, the condition of
zero net flux at the walls for JR is automatically satisfied.
By subtracting v̂u × Jt − v̂l × Jt one gets

DB

∂P

∂y

∣∣∣∣y=A2

y=A1

+ DBA′
1
∂P

∂x

∣∣∣∣
y=A1

− DBA′
2
∂P

∂x

∣∣∣∣
y=A2

= Use2P |y=A2
y=A1

+ Use1[A′
1P |y=A1 − A′

2P |y=A2 ]. (5)

The next step is to consider a very thin channel, hence

G =
∫ y=A2(x)

y=A1(x)
Pdy � P (x,A2(x),ϕ,t)

∫ y=A2(x)

y=A1(x)
dy; (6)

thus we conclude that

P (x,A2(x),ϕ,t) � P (x,A1(x),ϕ,t)

= G(x,ϕ,t)

A2(x) − A1(x)
. (7)

Therefore for a thin channel P |y=A2
y=A1

= 0. Finally, substituting
Eq. (5) into Eq. (3), and using Eq. (7) together with the
definition of w(x) = A2(x)− A1(x), one arrives at

∂G

∂t
+ Use1

∂G

∂x

= DB

∂

∂x

[
w(x)

∂

∂x

(
G

w(x)

)]
+ D�

∂2G

∂ϕ2
, (8)

which is the required Smoluchowski equation for a confined
active particle swimming inside an asymmetric channel, which
performs both rotational and translational Brownian motion.

IV. SOLUTION OF THE CONFINED ACTIVE
SMOLUCHOWSKI EQUATION

In order to find the effective diffusion of our confined
swimmer, we would need to explicitly find G(x,ϕ,t). How-
ever, we notice that, by setting w(x) = 1 into Eq. (8), we
recover the one-dimensional diffusion problem of an active
particle performing translational and rotational Brownian
motion. Therefore, the effective diffusion coefficient, D, for
the one-dimensional problem with w(x) = 1, and when the
particle is swimming at constant speed Us(t) = U , is already
known [40,41], namely,

D = DB + U 2/2D�. (9)

On the other hand, if we consider the case when autopropulsion
is absent, that is, Us(t) = 0, and when w(x) �= 1, Eq. (8)
models a confined passive Brownian particle, which according
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to the theory of Rubi and Reguera [30,31] provides an effective
diffusion coefficient of the form

D = DB

[1 + (1/4)w′(x)2]1/3
. (10)

There is also another expression in the literature for D [32,33]
but with behavior very similar to that from Rubi and
Reguera [30,31].

By physically arguing that if we confine a particle with an
enhanced diffusion, DB + U 2/2D�, this effective diffusion
should be affected by the presence of walls in the same
manner as in the passive case [see Eq. (10)]. This argument
is supported by analyzing Eq. (8), where the probability G

(hence its resulting diffusion) should contain the effects of
activity and confinement. Therefore, we suggest that Eq. (8)
provides for the case of a confined, active Brownian particle
moving at constant speed, an effective diffusion coefficient of
the form

D = DB + U 2/2D�

[1 + (1/4)w′(x)2]1/3
. (11)

In order to verify Eq. (11), we apply it, in the next section,
to two different cavities. We theoretically find for these cases
the effective diffusion coefficient that depends on the cavity
shape and the particle activity. The theoretical results are also
compared with Brownian dynamics simulations.

V. SWIMMING INSIDE A ZIG-ZAG CAVITY

The simplest case is that of a self-propelled particle
swimming at constant speed, Us(t) = U = constant, along the
orientation vector e(t), inside a cavity of width w(x), narrow
cross-section b, and period L, as shown in Fig. 1. Within one
period dependence, w(x) is defined as

w(x) =
{
b + 2λx, 0 � x � L/2,

b − 2λ(x − L), L/2 � x � L,
(12)

where λ is the cavity slope. Introducing Eq. (12) into Eq. (11),
and following the results of Rubi and Reguera [30,31], one
gets

D(x) = DB + U 2/2D�

(1 + λ2)1/3
. (13)

Due to the periodicity of our system, D(x) should also be
periodic. Hence the periodic effective diffusion coefficient is
given by the Lifson-Jackson formula [42]

DE = 1

〈w(x)〉
〈

1

1/D(x)w(x)

〉
, (14)

where the brackets denote the average over a period, that
is, 〈f (x)〉 = (1/L)

∫ L

0 f (x)dx. Thus by substituting Eqs. (12)
and (13) into Eq. (14) one gets

DE =
[
DB + U 2/2D�

(1 + λ2)1/3

]
2λL

b[
2 + λL

b

]
ln

(
1 + λL

b

) , (15)

which is the effective diffusion formula for an active confined
particle.

In order to validate the latter theoretical result, we compare
it with Brownian dynamics simulations. To this end, we
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FIG. 2. (Color online) Effective diffusion coefficient DE

[Eq. (15)] for two zig-zag cavities with λ = 0.5 and λ = 1,
normalized by D0 = DB + U 2/2D� (free active diffusion), plotted
as a function of L/b (solid blue line). Brownian simulation results
are shown as red circles.

consider a spherical swimmer of radius a = 1 μm, immersed
in water at T = 300 K, swimming at speed Us(t) = U =
1 μm/s, and moving inside two different zig-zag cavities
with slopes λ = 0.5 and λ = 1, respectively, both with period
L = 20 μm. Note that the above parameters were chosen
arbitrarily. The results are shown in Fig. 2 where the effective
diffusion [Eq. (15)] normalized by D0 = DB + U 2/2D� (free
active diffusion) is plotted as a function of L/b (solid blue
line). Brownian simulation results are shown as red circles.
An excellent agreement among theory and simulations can
be observed for both slopes; however, for smaller L/b, the
theory fails since the simulations show that, as L/b → 0, the
effective diffusion tends to the free diffusion coefficient D0

(see for example the case λ = 1). The numerical diffusion
coefficient was obtained by averaging over 1000 realizations
during a period of 2000 s. Error bars indicating the standard
deviation are also shown in Fig. 2.

For illustrative purposes, we also computationally show the
behavior of our active particle at short times. As it was clearly
stated by ten Hagen et al. [15], at short times, the mean-square
displacement (msd) of a self-propelled particle is affected by
the initial orientation and the magnitude of its force propulsion.
In our case we chose a zero initial orientation angle. Figure 3
shows the msd versus time for our active particle. We observe
that at very short times the msd behaves linearly, while for
a bit longer times the msd nearly behaves as ∼t2. For even
longer times the msd tends again to a linear behavior with
respect to time as clearly shown in Fig. 3(b). Here we show
a typical comparison among the theoretical (blue dashed line)
and numerical (red circles) msd for a zig-zag cavity with λ =
0.5 and L/b = 10.

VI. SWIMMING INSIDE A SEMICIRCULAR CAVITY

The next case of interest is an active particle swimming at
constant speed, Us(t) = U , along e(t), inside a semicircular
cavity of width w(x), radius R, period L, and narrow cross-
section 2α (see Fig. 1). For this case, w(x) = 2

√
R2 − x2 for
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FIG. 3. (Color online) Brownian simulation results for the msd
at short times. Panel (a) shows a transition of the msd with respect to
time from a linear to a quadratic dependence and, finally, again to a
linear dependence. Panel (b) shows the typical linear dependence of
the msd with time for long times for a zig-zag cavity with L/b = 10.

0 � x � L/2. By substituting w(x) into Eq. (11), one gets

D(x) =
(

R2 − x2

R2

)1/3(
DB + U 2

2D�

)
. (16)

Note that for this case D explicitly depends on the x direction.
By substituting Eq. (16) into Eq. (14) and after performing
some integrals, one obtains the periodic effective diffusion
coefficient for the semicircular cavity, namely,

DE = 2c2[DB + U 2/2D�][
αc
R

+ arcsin(c)
] ∫ arcsin(c)

0
dχ

(cos χ)2/3

, (17)

where c =
√

1 − (α/R)2. This time the effective diffusion
cannot be expressed in a closed form. Note that by setting
U = 0 in Eq. (17), one recovers the formula for a Brownian
passive particle confined in a semicircular cavity [43]. Once
again, to validate our theoretical results, we compare them
with Brownian dynamics simulations. We thus consider a
spherical swimmer of radius a = 1 μm, immersed in water
at T = 300 K, swimming at speed Us(t) = U = 0.5 μm/s,
and moving inside a semicircular cavity of radius R = 10 μm.
Note that the above parameters were chosen arbitrarily. The
results are shown in Fig. 4 where we plot the effective diffusion
coefficient [Eq. (17)] normalized by D0 = DB + U 2/2D�, as
a function of α/R (solid blue lines). Brownian simulation
results are shown as red circles. Here, the diffusion coefficient
was obtained by averaging over 1000 realizations during
2000 s.

Error bars giving the standard deviation are also shown in
Fig. 4. Figure 4 shows an excellent quantitative agreement be-
tween the computational results and our analytical predictions.
A typical comparison among the theoretical (blue dashed line)
and numerical (red circles) msd for a semicircular cavity with
α/R = 0.4 is also shown in the inset of Fig. 4. The behavior
of the msd for this cavity at short times is exactly the same as
the one reported in Fig. 3.

VII. DISCUSSIONS

So far we have shown that our theoretical approach is in
close agreement with Brownian dynamics simulations. But
what happens when the magnitude of the swimming speed
increases or decreases? By simulating different scenarios,
each of them with different constant swimming speeds, we
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FIG. 4. (Color online) Effective diffusion coefficient DE for a
semicircular cavity [Eq. (17)] normalized by D0 = DB + U 2/2D�

(free active diffusion), plotted as a function of α/R (solid blue line).
Brownian simulation results are shown as red circles. Inset: A typical
comparison among the theoretical (blue dashed line) and numerical
(red circles) msd of a cavity with α/R = 0.4.

notice that, for particles inside the zig-zag cavity and with
swimming speeds higher than 1 μm/s, our theory predicts
a larger effective diffusion than the one obtained from our
simulations. However for swimming speeds around 1 μm/s,
simulation and theory are in agreement.

This situation is illustrated in Fig. 5(a) where the theoretical
(solid blue lines) effective diffusion and the numerical (red
circles) effective diffusion of a zig-zag cavity as a function
of its width are plotted. Three different swimming speeds
were chosen, namely, 0.1, 1, and 10 μm/s. Clearly our theory
fails at high swimming speeds. A similar failure of our theory
for the semicircular cavity occurs at high swimming speeds.
This time the region of validity of our theoretical approach is
reduced, since we observe that for swimming speeds higher
than 0.5 μm/s our theory predicts a larger effective diffusion
compared with the one obtained from our simulations. For
swimming speeds around and lower than 0.5 μm/s, theory
and simulations are in complete agreement. This behavior
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FIG. 5. (Color online) Theoretical and numerical effective diffu-
sion coefficient DE for a zig-zag and semicircular cavity for different
swimming speeds. Panel (a) shows the results for the zig-zag cavity.
Panel (b) shows the results for the semicircular cavity. In both figures,
the solid lines are the theory while the red circles are the Brownian
simulations results. Error bars (giving the standard deviation) in panel
(a) may be smaller than the circles indicating the numerical value.
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is illustrated in Fig. 5(b) where we plot the theoretical
(solid lines) and numerical (red circles) effective diffusion
coefficients as a function of the width of the semicircular
cavity, and for three swimming speeds, namely, 0.1, 0.5, and
1 μm/s. As it has been reported [44,45], we also observe
a tendency of active particles to move close to the walls
rather than occupying the whole cavity [see for example
Fig. 1(a)]. This effect is more noticeable in the simulations
as the particle’s speed increases which may be the reason for
the failure of our theory at higher swimming velocities. In other
words, as the particle moves faster, the information regarding
the shape of the walls is lost since particles do not occupy the
whole space in the cavity.

VIII. CONCLUDING REMARKS

In this article, we theoretically characterized, by using a
Smoluchowski approach, the effective diffusivity of an active
spherical particle subject to translational and rotational thermal
forces and swimming inside a two-dimensional, narrow cavity
of general shape. The deduced equations for the effective
diffusion coefficient quantitatively provide the influence of
confinement (walls) and activity on the diffusion of the particle.
The general equations were applied to two different periodic
cavities (zig-zag and semicircular cavities). For both cases

a theoretical formula for the effective diffusion coefficient
was deduced. To validate our theoretical results we also
performed Brownian dynamics simulations that showed ex-
cellent agreement between theory and numerical experiments
at moderate swimming velocities (∼1 μm/s). For higher
swimming velocities our theory predicts a larger effective
diffusion coefficient compared with the one obtained from our
simulations. This situation may be originated from a tendency
of particles to accumulate at the walls as their swimming
speed increases, and not to occupy the whole cavity; hence
the information regarding the shape of the cavity is lost thus
differing theory and simulation. Future work, and work already
in progress, will be to analyze the validity of this approach
for the case of a time-dependent swimming, a scenario with
more realistic applications for microorganisms, since those
cells tend to relax (rest) for a while and then to continue
swimming [46]. Finally, this article can be seen as a theoretical
extension of the work in Ref. [36].
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P02011.

062711-6

http://dx.doi.org/10.1103/PhysRevLett.95.204501
http://dx.doi.org/10.1103/PhysRevLett.95.204501
http://dx.doi.org/10.1103/PhysRevLett.95.204501
http://dx.doi.org/10.1103/PhysRevLett.95.204501
http://dx.doi.org/10.1103/PhysRevLett.107.058301
http://dx.doi.org/10.1103/PhysRevLett.107.058301
http://dx.doi.org/10.1103/PhysRevLett.107.058301
http://dx.doi.org/10.1103/PhysRevLett.107.058301
http://dx.doi.org/10.1209/0295-5075/98/50004
http://dx.doi.org/10.1209/0295-5075/98/50004
http://dx.doi.org/10.1209/0295-5075/98/50004
http://dx.doi.org/10.1209/0295-5075/98/50004
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1016/0022-5193(75)90094-6
http://dx.doi.org/10.1063/1.1732899
http://dx.doi.org/10.1063/1.1732899
http://dx.doi.org/10.1063/1.1732899
http://dx.doi.org/10.1063/1.1732899
http://dx.doi.org/10.1063/1.3664179
http://dx.doi.org/10.1063/1.3664179
http://dx.doi.org/10.1063/1.3664179
http://dx.doi.org/10.1063/1.3664179
http://dx.doi.org/10.1103/PhysRevLett.103.078101
http://dx.doi.org/10.1103/PhysRevLett.103.078101
http://dx.doi.org/10.1103/PhysRevLett.103.078101
http://dx.doi.org/10.1103/PhysRevLett.103.078101
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1088/1742-5468/2014/02/P02011
http://dx.doi.org/10.1088/1742-5468/2014/02/P02011
http://dx.doi.org/10.1088/1742-5468/2014/02/P02011



