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Identifying delayed directional couplings with symbolic transfer entropy

Henning Dickten1,2,3,* and Klaus Lehnertz1,2,3,†
1Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany

2Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany
3Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany

(Received 4 June 2014; published 8 December 2014)

We propose a straightforward extension of symbolic transfer entropy to enable the investigation of delayed
directional relationships between coupled dynamical systems from time series. Analyzing time series from chaotic
model systems, we demonstrate the applicability and limitations of our approach. Our findings obtained from
applying our method to infer delayed directed interactions in the human epileptic brain underline the importance
of our approach for improving the construction of functional network structures from data.
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I. INTRODUCTION

Characterizing couplings between interacting systems
plays an important role in numerous scientific fields, ranging
from physics to the neurosciences [1–9]. Over the past
several years, a large number of linear and nonlinear analysis
techniques has been proposed to reveal couplings from passive
observations of the systems behavior, e.g., from time series of
certain observables, and thus allow a data-driven quantification
of the strength and direction of an interaction [1,10–17].
Knowing interaction properties is important for the construc-
tion of functional network structures in diverse scientific
fields [4,18–26]. Among these techniques, the information-
theoretic concept of transfer entropy [27] provides a model-
free approach to characterizing directed interactions, because
it can be viewed as transfers of information. Transfer entropy
is related to the concept of Granger causality [28,29] and
to conditional mutual information [13] and has widely been
used to distinguish the driving and responding elements and
to detect asymmetry in the interaction of subsystems in
various scientific fields. Since its invention, techniques that
allow a data-driven estimation of transfer entropy are being
steadily improved [13,30–45]. Among these improvements are
methods that allow one to characterize information transfers at
various time scales by incorporating delays [46–54]. Knowing
coupling delays is of importance as it allows for improved
physical interpretations [55–57].

In Ref. [32], symbolic transfer entropy has been proposed
as a permutation analog of transfer entropy and constitutes an
efficient and conceptually simple way of robustly quantifying
the dominating direction of flow of information between
time series from observed data. Using this approach, transfer
entropy is estimated from the probabilities of ordinal patterns
that are derived from the amplitude values of the time series
via symbolization [58]. Symbolic transfer entropy has been
used to study interactions in various disciplines ranging from
quantum [59] and laser physics [60] via neurology [61],
cardiology [62], and anesthesiology [63–66] to the neuro-
sciences [37,67].
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Recently, an ordinal time-series analysis technique has been
introduced that detects the direction and the coupling delays of
information exchange in coupled systems [68]. Here we follow
this line of approach and propose a straightforward extension
of symbolic transfer entropy, which we refer to as delayed
symbolic transfer entropy.

This paper is organized as follows. In Sec. II we briefly
recall the definition of symbolic transfer entropy before
we present our extension to detect coupling delays and to
quantify the dominating direction of flow of information.
In Sec. III A we present our numerical simulation studies
that aim at demonstrating the applicability of our method
and at exploring its limitations. In Sec. III B we present our
findings obtained from inferring delayed directed interactions
in the human epileptic brain before we draw our conclusions
in Sec. IV.

II. SYMBOLIC TRANSFER ENTROPY AND
COUPLING DELAYS

Let xi and yi with i = 1, . . . ,N denote time series of
observables of systems X and Y . Relating previous samples
xi−1 and yi−1 in order to predict yi allows for a quantification
of the deviation from the generalized Markov property,

p(yi |yi−1,xi−1)
!= p(yi |yi−1), where p(· | ·) denotes the con-

ditional transition probability density. If system X has no
influence on system Y , there is no deviation from the Markov
property. Transfer entropy quantifies the incorrectness of this
assumption and is formulated as Kullback–Leibler entropy
between p(yi |yi−1,xi−1) and p(yi |yi−1). Transfer entropy is
nonsymmetric under the exchange of X and Y .

In order to estimate the transition probabilities, the authors
of Ref. [32] proposed to use a symbolization technique
with symbols that are derived from reordering the ampli-
tude values of time series [58]. Let l and m denote the
lag and embedding dimension, which have to be chosen
appropriately for symbolization [58,69], e.g., by making use
of embedding theorems [70–72]. Then m amplitude values
si = (xi,xi+l , . . . ,xi+l(m−1)) for a given, but arbitrary, time i are
arranged in ascending order xi+l(ki1−1) � xi+l(ki2−1) � . . . �
xi+l(kim−1) with rank kij and j ∈ {1, . . . ,m}. Equal amplitude
values are arranged by their time index, i.e., such that ki1 < ki2

if xi+l(ki1−1) = xi+l(ki2−1). This ensures that every si is uniquely

1539-3755/2014/90(6)/062706(10) 062706-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062706


HENNING DICKTEN AND KLAUS LEHNERTZ PHYSICAL REVIEW E 90, 062706 (2014)

time series
of system

time series
of system 

…

…

…

FIG. 1. (Color online) Schematics of flow of information between two unidirectionally delay-coupled systems (X drives Y ) together with
the procedure of symbolizing the time series and of estimating the delayed flow of information. The value of each element xi (yi) in the time
series is encoded in the vertical position of the respective box. Flow of information from the system’s own past to the current state i is indicated
by gray arrows (the transition from dark to light coloring indicates the loss of previous information, as the system evolves). The delayed flow
of information (here �X = 10) from states of system X to the current state of system Y is indicated by red arrows (transition from dark to
light coloring as before). Blue arrows exemplify the procedure to estimate the flow of information: Arrows point from symbols, composed of
exemplary previous states of either system X or Y , to the actual symbol ŷi , which is marked in blue. Here, the previous states x̂i−1 or x̂i−11

are τ2 time steps and ŷi−1 is τ1 time steps past the actual symbol ŷi . The derivation of these permutation symbols is exemplarily shown for an
embedding dimension m = 3 and lag l = 2, e.g., x̂i−11 = (2,1,3).

mapped onto one of the m! possible permutations, and a
permutation symbol is defined as

x̂i := (ki1,ki2, . . . ,kim). (1)

Relative frequencies of symbols provide an estimator for joint
and conditional probabilities of the sequences of permutation
indices. With given symbol sequences x̂i and ŷi , symbolic
transfer entropy is defined as [32]

T̂
X→Y

=
∑

p(ŷi ,ŷi−1,x̂i−1) log
p(ŷi | ŷi−1,x̂i−1)

p(ŷi | ŷi−1)
, (2)

where the sum runs over all symbols. T̂Y→X is defined in com-
plete analogy. T̂X→Y is positive and explicitly nonsymmetric
under exchange of X and Y since it measures the flow of
information from X to Y and not vice versa. The difference
T̂Y→X − T̂X→Y provides an estimate for the dominating flow
of information and thus for the dominating direction of
interaction.

When analyzing empirical data, one often needs to account
for delayed interactions (cf. Fig. 1), where the flow of
information from system X to system Y needs some finite
time �X (and/or �Y from Y to X) [73–78]. Addressing
this issue, we here extend Eq. (2) and allow for symbols in
transition probabilities that are τ1 (τ2) time steps past the actual

symbol:

T
X→Y

(τ1,τ2) :=
∑

p
(
ŷi ,ŷi−τ1 ,x̂i−τ2

)
log

p
(
ŷi | ŷi−τ1 ,x̂i−τ2

)

p
(
ŷi | ŷi−τ1

) ,

T
Y→X

(τ1,τ2) :=
∑

p
(
x̂i ,x̂i−τ1 ,ŷi−τ2

)
log

p
(
x̂i | x̂i−τ1 ,ŷi−τ2

)

p
(
x̂i | x̂i−τ1

) .

(3)

τ1 denotes the number of time steps into the systems’ own
past and τ2 the number of time steps into the past of the
influencing system, i.e., the system from which we expect
the flow of information. We therefore did not interchange the
parameters τ1 and τ2 in the definition of T Y→X(τ1,τ2). If there
is a delayed flow of information from X to Y (from Y to
X) and if τ2 = �X (τ2 = �Y ), we expect delayed symbolic
transfer entropy T X→Y (τ1,τ2) [T Y→X(τ1,τ2)] to attain highest
values for all τ1. The use of the parameter τ1 may seem
somewhat arbitrary, but we will see in the next section that
T Y→X(τ1,τ2) [T X→Y (τ1,τ2)] carries additional information for
specific pairs (τ1,τ2), which can assist in detecting delayed
directed interactions in empirical data. In the aforementioned
definitions of entropies, we use a logarithm to base 2, thus
entropies are given in bit.

III. APPLICATIONS

A. Delay-coupled logistic maps

In the following, we investigate the conditions under which
delayed symbolic transfer entropy allows one to infer the
coupling delays �X and �Y and the direction of interaction.
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Mimicking a typical experimental situation with a priori
unknown coupling delays, we perform a parameter scan
with (τ1,τ2) ∈ {1, . . . ,τmax} in a range where we expect our
maximum coupling delays.

We consider two delay-coupled logistic maps [68] f (x) =
rx x(1 − x) with

xi = f (gY→X mod 1),

gY→X = cY→Xyi−1−�Y
+ (1 − cY→X)xi−1,

yi = f (gX→Y mod 1),

gX→Y = cX→Y xi−1−�X
+ (1 − cX→Y )yi−1,

(4)

where cX→Y denotes the strength of coupling between systems
X and Y , and cY→X the respective strength between Y and
X. For a slight mismatch of control parameter (rx = 3.9999,

ry = 3.9998) as well as for given coupling strengths (cX→Y ,
cY→X) and coupling delays (�X, �Y ), we generate 20 realiza-
tions of the system by randomly choosing the initial conditions
(x0, y0) from the unit interval. These time series consist of
N data points each after 104 transients. If not stated otherwise,
we will report mean values of the delayed symbolic transfer
entropies obtained from the 20 realizations of the coupled
systems.

1. General observations

In Fig. 2 we show, as an example, T X→Y (τ1,τ2), T Y→X(τ1,τ2),
and the directionality index

T (τ1,τ2) := T
X→Y

(τ1,τ2) − T
Y→X

(τ1,τ2) (5)

for unidirectionally delay-coupled maps (cY→X = 0,
cX→Y = 0.45, and �X = 10) obtained with embedding
parameters m = 3 and l = 1 and N = 100 data points.
When comparing findings for T X→Y (τ1,τ2) with those for
T Y→X(τ1,τ2) there are two prominent effects.

First, if τ2 = �X and for all τ1, T X→Y (τ1,τ2) attains highest
values [up to three orders of magnitude larger than for other
pairs (τ1,τ2), upper part of Fig. 2], as expected and given our
definition of delayed symbolic transfer entropy. In the follow-
ing, we will refer to this structure as resonance-like pattern.

Second, we observe T X→Y (τ1,τ2) to attain lowest values if
τ2 = τ1 + �X and τ1 > 1. The same holds for T Y→X(τ1,τ2)
if τ2 = τ1 − �X and τ1 > �X. Interestingly, this strongly
diminished (or even absent) flow of information for these
secondary diagonals in the plots shown in Fig. 2 (upper
part: upper diagonal; middle part lower diagonal) also provide
information about delay and direction of interaction. For
exactly these pairs (τ1,τ2), the delayed flow of information
has just taken place and thus these past states of system X

and Y provide almost the same amount of information for the
current state of system Y (cf. Fig. 1). This leads to only a few
combinations of symbols contributing to the transition proba-
bilities. Consequently, the ratio of conditional probabilities in
Eq. (3) approaches 1 and thus T X→Y (τ1,τ2) approaches 0 [the
same holds for T Y→X(τ1,τ2)]. For all other pairs (τ1,τ2) not
considered yet (referred to as background in the following),
the delayed flow of information T X→Y (τ1,τ2) [T Y→X(τ1,τ2)]
only approaches 0 for an increasing number of data points and
for appropriately chosen embedding parameters (see above).
For a wide range of coupling strengths differentiability of the
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FIG. 2. (Color online) Color-coded estimates of delayed sym-
bolic transfer entropies T X→Y (τ1,τ2) (top) and T Y→X(τ1,τ2) (middle)
and of the directionality index T (τ1,τ2) (bottom) for unidirection-
ally delay-coupled logistic maps (cY→X = 0,cX→Y = 0.45, �X = 10;
embedding parameters m = 3, l = 1; N = 100 data points). Positive
values of T (τ1,τ2) (particularly the resonance-like pattern and the
lower secondary diagonal) indicate the driving behavior of system
X. Negative values of T (τ1,τ2) (particularly the upper secondary
diagonal) indicate the responding behavior of system X. Amplitude
values are scaled linearly in [−0.25,0.25] and logarithmically
otherwise.

secondary diagonals from the background (i.e., the difference
to the background) is thus best for small numbers of data points
accompanied by nonoptimally chosen embedding parameters
as is often the case when analyzing empirical data. As an
example, for embedding parameters m = 3 and l = 1, which
are optimal for the system considered here, differentiability is
almost 0 for N = 105 but increases almost exponentially with
decreasing the number of data points to N = 102.

The directionality index T (τ1,τ2), as defined here, provides
information about delay and direction of interaction. If we
exchange system Y for X, this leads to a change of sign
of values of the directionality index T (τ1,τ2), since the
resonance-like pattern and the upper secondary diagonal can
now be observed with T Y→X(τ1,τ2) and the lower secondary
diagonal with T X→Y (τ1,τ2).

062706-3



HENNING DICKTEN AND KLAUS LEHNERTZ PHYSICAL REVIEW E 90, 062706 (2014)

1

10

20

τ 1
N = 102 N = 103 N = 104 N = 105

1 10 20
τ2

1

10

20

τ 1

1 10 20
τ2

1 10 20
τ2

1 10 20
τ2

−0.6

0.0

0.6

T

−2

−1

0

1

2

T

FIG. 3. (Color online) Color-coded estimates of the directionality index T (τ1,τ2) for unidirectionally delay-coupled logistic maps with
delay �X = 10 and coupling strength cX→Y = 0.45. Embedding parameters: (top) m = 3,l = 1, (bottom) m = 4,l = 1. Left to right: Increasing
number of data points N . Positive values of T (τ1,τ2) (particularly the resonance-like pattern and the lower secondary diagonal) indicate the
driving behavior of system X. Negative values of T (τ1,τ2) (particularly the upper secondary diagonal) indicate the responding behavior of
system X.

Note that for τ1 = τ2 = 1, delayed symbolic transfer en-
tropies correspond to the nondelayed ones and fail to correctly
detect the delayed coupling, as expected (cf. Fig. 1). Since
T (τ1,τ2) ≈ 0, this also applies for the direction of interaction,
independent on coupling strength, number of data points, and
embedding parameters (at least for the cases considered in
this section).

2. Influence of the number of data points N and
the embedding parameters m and l

For unidirectionally coupled maps (cY→X = 0) with cou-
pling delays (�X,�Y ) ∈ {1, . . . ,25} and coupling strengths
cX→Y ∈ [0,0.7], we generate time series consisting of
N ∈ {102, . . . ,106} data points and estimate T (τ1,τ2) for
embedding dimensions m ∈ {2, . . . ,5} and lags l ∈ {1, . . . ,5}
(cf. Refs. [50,70,71,79]). In Fig. 3 we demonstrate exemplarily
how inference depends on the number of data points N and on
the embedding dimension m. When decreasing N , the ampli-
tude of the resonance-like pattern decreases and, dependent on
the chosen embedding dimension m, even vanishes. Instead,
for smaller N , the secondary diagonals can be observed. As a
rule of thumb (and at least for the systems investigated here),
N ≈ 10m−1 marks the border above which delay and direction
of interactions can be inferred from the resonance-like pattern.
Below this border but above a lower bound which depends
on system properties, the same information can be inferred
from the secondary diagonals. The width of the patterns
increases linearly with the embedding dimension m. This
broadening can be attributed to the applied symbolization
technique [35,68,80], since the overlap of symbols grows
linearly with the embedding dimension m (cf. Fig. 1).

The influence of the embedding lag l is demonstrated
exemplarily in Fig. 4 for the resonance-like pattern. For given

N and m and with l > 1, highest values of T (τ1,τ2) can
still be observed for τ2 = �X and for all τ1, but we ob-
serve additional resonance-like patterns if τ2 ≈ �X ± j l, for
j ∈ {0, . . . ,m − 1}, however, with lower values of T (τ1,τ2).
Within these patterns, T (τ1,τ2) attains lower values if
τ1 ∈ {l, . . . ,(m − 1)l}, which again is linked to the applied
symbolization technique. For these conditions, permutation
symbols share up to m − 1 amplitude values and are therefore
not independent. Analogous observations hold for the sec-
ondary diagonals, and we obtained similar findings for other
coupling delays.

3. Impact of strength and type of coupling

In the following, we fix the embedding parameters (m = 3
and l = 1) and investigate the impact of type and strength of
coupling on the inference of delayed directed interactions.
For unidirectional couplings with delay �X = 10 we show,
in Fig. 5, the dependence of delayed symbolic transfer
entropies on the coupling strength and for two numbers
of data points. We make use of a priori knowledge for
which pairs (τ1,τ2) we can expect the resonance-like pattern
[TR

X→Y
= T X→Y (11,10), upper row] and the secondary

diagonals [TU
X→Y

= T X→Y (11,21), middle row, and
T

L
X→Y

= T X→Y (11,1), lower row]; the assignments for
the opposite direction Y → X are analogous. In addition,
we show the mean of both directions for a pair (τ1,τ2),
for which there is no pattern, i.e., from the background:
T̄

B = [T X→Y (25,25) + T Y→X(25,25)]/2.
For a larger number of data points (here N = 103) the

flow of information can be inferred even for small coupling
strengths (cX→Y ≈ 0.1) and differentiability of T

R
X→Y

from the
background increases with increasing coupling strength up
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FIG. 4. (Color online) Color-coded estimates of the directionality index T (τ1,τ2) for unidirectionally delay-coupled logistic maps with
delay �X = 10 and coupling strength cX→Y = 0.45 estimated with N = 10m+1 data points. Embedding dimension: (top) m = 3 (bottom)
m = 4. Left to right: Increasing embedding lag l. Positive values of T (τ1,τ2) (particularly the resonance-like pattern and the lower secondary
diagonal) indicate the driving behavior of system X. Negative values of T (τ1,τ2) (particularly the upper secondary diagonal) indicate the
responding behavior of system X.
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FIG. 5. (Color online) Means and standard deviations of delayed symbolic transfer entropies for the directions X → Y (purple (dark gray)
solid line and shaded area) and Y → X (orange (light gray) solid line and shaded area) depending on the coupling strength cX→Y for 20
realizations of delay-coupled logistic maps with delay �X = 10 and N = 100 (left) and N = 1000 data points (right). Embedding parameters:
m = 3 and l = 1. Upper row: Estimates T

R from the resonance-like pattern with τ1 = 11 and τ2 = �X = 10; middle row: Estimates T
U

from the upper secondary diagonal (cf. Fig. 2) with τ1 = 11 and τ2 = 21; lower row: Estimates T
L from the lower secondary diagonal with

τ1 = 11 and τ2 = 1. In all plots, averaged estimates from the background T̄
B

(cf. Fig. 2) with τ1 = τ2 = 25 are shown as gray dotted lines and
gray-shaded areas.
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to a maximum at cX→Y ≈ 0.5, for which the systems are
lag synchronized (Fig. 5, upper row). For larger coupling
strengths differentiability remains at its maximum value. For
the opposite direction, there is no flow of information and
we obtain T

R
Y→X

≈ T̄
B

for all coupling strengths, as expected.
For smaller number of data points (here N = 102), standard
deviations of estimates are generally enlarged, as expected.
In addition, mean values of estimates are increased, and the
increase is stronger for T̄

B
(and T

R
Y→X

) than for T
R
X→Y

. Inference
of flow of information is thus diminished and restricted to
coupling strengths cX→Y � 0.4.

Making use of information gained from the upper secondary
diagonal (Fig. 5, middle row), the deviation of T

U
X→Y

from T̄
B

for cX→Y � 0.45 and N = 103 also indicates the inference of
flow of information. For N = 102, inference can already be
achieved for cX→Y ≈ 0.4. Again, T

U
Y→X

≈ T̄
B

for all coupling
strengths and number of data points. Note, however, that both
means and standard deviations of estimates are increased by
one order of magnitude when decreasing N from 103 to 102.
An even better inference of flow of information can be achieved
from information gained from the lower secondary diagonal
(Fig. 5, bottom row). Although similar observations can here
be made for means and standard deviations of estimators, TL

Y→X

[and not T
L
X→Y

, given our definitions; see Eq. (5)] deviates

clearly from T̄
B

for coupling strengths cX→Y � 0.25 for both
numbers of data points considered here.

Summarizing these findings, in the case of smaller number
of data points, directed interactions can be inferred for a
larger range of coupling strengths with information from the
lower secondary diagonal (TL

Y→X
) than from the resonance-like

pattern (TR
X→Y

).
For bidirectionally delay-coupled maps, similar observa-

tions can be made (data not shown here), as long as the
coupling delays �X and �Y as well as the coupling strengths
cX→Y and cY→X are not identical. Even for the case �X = �Y

the dominating delayed flow of information can be inferred if
the coupling strengths are sufficiently different (cf. Fig. 5). As
before, inference is influenced by alterations of the patterns
(the resonance-like pattern and the secondary diagonals)
related to the choice of embedding parameters necessary for
the applied symbolization technique.

4. Influence of noise

Next we estimate the performance of our method, par-
ticularly with respect to the analysis of empirical data, by
investigating the influence of noise on the inference of delayed
directional couplings. For unidirectional couplings with delay
�X = 10, we add noise to the time series xi of the driver and
to the time series yi of the responder and estimate T (τ1,τ2)
for signal-to-noise ratios SNR ∈ [1,128] (SNR = σs

σn
, where

σs and σn denote the standard deviations of the noise-free and
the noise-contaminated time series). We use different types
of noise as well as different noise-contamination schemes.
With Gaussian δ-correlated noise, we simulate measurement
errors, and with the concept of surrogates [81], we generate
in-band noise from the original time series, thus mimicking
observational noise. The surrogate time series have a power
spectrum and a distribution of amplitude values that are

identical to those of the original time series. With each of
these types of noise we contaminate both time series, xi and yi ,
using either the same SNR (symmetric noise contamination)
or different SNR for the driver and responder (asymmetric
noise contamination). The latter contamination scheme is more
likely in field applications and is known to affect various
time-series analysis techniques aiming at an inference of the
direction of interactions [82–86].

In Fig. 6, we show exemplary findings for a symmetric
contamination with in-band noise. For various SNR we plot
the dependence of delayed symbolic transfer entropies on the
coupling strength and for different number of data points. As
in the previous subsection, we restrict ourselves to the pairs
(τ1,τ2) for which we can expect the correct direction of flow of
information from the resonance-like pattern (TR

X→Y
) and from

the secondary diagonals (TU
X→Y

and T
L
Y→X

).
As expected, differentiability of all estimators of flow

of information from the background T̄
B

decreases with
an decreasing signal-to-noise ratio. Likewise, the range of
coupling strengths for which directed interactions can be
inferred shrinks with decreasing the signal-to-noise ratio and
is shifted towards higher coupling strengths. For a smaller
number of data points, the inference of flow of information
and with this the direction of interaction gained from the
secondary diagonals (TU

X→Y
and T

L
Y→X

) is more robust to noise
contaminations than for a larger number of data points. As
expected, the opposite is true for the inference gained from the
resonance-like pattern (TR

X→Y
). We obtained similar findings

for the other types of noise and contamination schemes.

5. Summary

Taking advantage of the conceptual simplicity, efficiency,
and robustness of symbolic transfer entropy, we demon-
strated that our extension allows us to infer delayed directed
interactions. Our method provides information about delay
and direction of couplings even for smaller number of data
points and, moreover, for the case of a nonoptimal choice
of embedding parameters used for the symbolization. This
renders delayed symbolic transfer entropy attractive for the
analysis of empirical data.

B. Inferring delayed directed interactions in the
human epileptic brain

In this section, we apply our method to check whether
consistent delayed directed interactions between brain regions
can be inferred from long-lasting, multichannel electroen-
cephalographic (EEG) recordings. The EEG was recorded
from an epilepsy patient using electrodes implanted under the
skull, hence with high signal-to-noise ratio, prior to surgical
treatment of a focal epilepsy. The patient had signed informed
consent that her or his clinical data might be used and published
for research purposes. The study protocol had previously
been approved by the ethics committee of the University of
Bonn. We here consider EEG recordings from strip electrodes
(8 or 16 contacts) placed onto the cortex and from a pair
of needle-shaped depth electrodes with 10 contacts each,
implanted into deeper structures of the brain (see upper left
part of Fig. 7). Data were sampled at 200 Hz (sampling interval
�t = 5 ms) using a 16-bit analog-to-digital converter and
filtered within the frequency band 1–45 Hz.

062706-6



IDENTIFYING DELAYED DIRECTIONAL COUPLINGS . . . PHYSICAL REVIEW E 90, 062706 (2014)

0.0

1.0

2.0

T
R X

→
Y
,T̄

B

N = 102

0.0

1.0

2.0
N = 103

0.0

0.5

1.0

1.5

T
U X

→
Y
,T̄

B

0.08

0.12

0.0 0.1 0.2 0.3 0.4 0.5 0.6

cX→Y

0.0

0.5

1.0

1.5

T
L Y

→
X
,T̄

B

0.0 0.1 0.2 0.3 0.4 0.5 0.6

cX→Y

0.08

0.12

FIG. 6. (Color online) Means of delayed symbolic transfer entropies for the directions X → Y (purple solid lines, upper and middle row)
and Y → X (orange solid lines, lower part) depending on the coupling strength cX→Y . Twenty realizations of noisy delay-coupled logistic maps
with delay �X = 10 and N = 100 (left) and N = 1000 data points (right). Averaged estimates from the background T̄

B
are shown in gray

dotted lines. The transitions from dark to light coloring encodes a decreasing signal-to-noise ratio (128,32,8,2). Embedding parameters and
choice of pairs (τ1,τ2) for delayed symbolic transfer entropies T as in Fig. 5.

For our analyses, we consider a continuous recording
of 36 h duration during the seizure-free interval, which
covered different physiologic and pathophysiologic states of
the patient. Here we restrict ourselves to EEG data from six
recording sites (see upper part of Fig. 7): two from within
the epileptic focus (TR01 and TR05), one remote site on the
same brain hemisphere (TLR04), and three from homologous
positions on the other brain hemisphere (TL01, TL05, and
TLL04). A widely used approach to analyze the dynamics
of nonstationary systems is to perform the analysis in sliding
windows with a duration, for which the dynamics can be re-
garded as approximately stationary. For the EEG, the duration
of such a window typically amounts to 20 s duration [87].
Using this approach, we perform—for each combination
of pairs of recording sites—a time-resolved estimation of
delayed symbolic transfer entropies from nonoverlapping EEG
segments of 20.48 s duration (corresponding to 4096 data
points). Following Ref. [32], we set embedding parameters to
m = 5 and l = 3.

Since time delays in the human brain can vary con-
siderably, depending on brain regions and functions, and
may reach up to 200 ms [88], we estimate T (τ1,τ2) with
(τ1,τ2) ∈ {�t, . . . ,50�t} = {5 ms, . . . ,250 ms}. Moreover,
by time-averaging separately over all windows for data
recorded during day and during night times, we check whether
major delays as well as preferred directed interactions can be
identified and whether delay and direction depend on the state
of consciousness (awake versus asleep). In Fig. 7, we show the

mean directionality indices T (τ1,τ2) separately for data from
day and night times for three exemplary pairs of recording
sites. In general, we do not observe the resonance-like patterns,
which is to be expected given the number of data points and
embedding parameters. For some cases, however, we observe
secondary diagonals, from which we can extract information
about delay and direction of an interaction. In particular, we
observe a consistent driving with an average delay of 60 ms
(55–65 ms) from posterior (position TL05) to anterior sites
(position TL01) within the nonepileptic (left) mesial temporal
brain structures both during day and night times (upper right
part of figure). For homologous recording sites within the
epileptic (right) mesial temporal brain structures a similar
directed driving with an average delay of 50 ms (35–65 ms)
can be observed for data recorded during night times (lower
left part of figure). This delay is comparable to findings
gained from analyses of propagation of specific patterns during
seizures [89–91]. Identifying a delay for data recorded during
day times, however, is more demanding, possibly due to
multiple delays (which may be associated with the epileptic
process). Interestingly, for τ1 = τ2 = 1, for which T (τ1,τ2)
corresponds to the nondelayed directionality index, we observe
the direction of driving to be reversed, i.e., from anterior
to posterior sites. Our findings for long-ranged interactions
between regions in the left and right temporal lateral neocortex
(lower right part of figure) also point to multiple delays, and it
remains to be shown whether they differ from those obtained
for the short-ranged interactions within the epileptic focus. For
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FIG. 7. (Color online) Upper left: Schematics of electrode strips placed over the left and right temporal lateral neocortex and of bilateral
intrahippocampal depth electrodes. Recording sites that were used for analyses are marked red. Upper right to lower right: Color-coded
estimates of the mean directionality index T (τ1,τ2) for interactions between various brain regions estimated from intracranial EEG recorded
during day times and night times. Interactions between anterior and posterior sites within the nonepileptic mesial temporal brain structures
(TL01-TL05, upper right), between homologous sites within the epileptic brain hemisphere (TR01-TR05, lower left), and between regions in
the left and right temporal lateral neocortex (TLL04-TLR04, lower right). The horizontal stripes that can be observed for τ1 taking on integer
multiples of the embedding lag l can be related to the applied symbolization (cf. Fig. 4).

data recorded during day times, the brain region in the right
temporal lateral neocortex constantly drives the homologous
brain region in the left hemisphere. This unidirectional driving
vanishes for data recorded during night times, and we can
only speculate whether this is due to, e.g., a bidirectional
interhemispheric driving or a diminished interhemispheric
interaction during sleep (cf. Refs. [92,93]).

IV. CONCLUSIONS

We have proposed a straightforward extension of symbolic
transfer entropy [32] that enables the inference of delayed
directional relationships between coupled dynamical systems
from time series. With numerical examples, which are rep-
resentative of interacting chaotic systems contaminated with
noise, we have exemplified the applicability of our approach
and have shown that delay and direction of an interaction
can be inferred with delayed symbolic transfer entropy even
for smaller number of data points and, moreover, with
nonoptimally chosen parameters for the applied symbolization
technique [58]. Applying our method to infer delayed directed
interactions in the human epileptic brain, we could show that
major interaction delays can be identified, particularly from
short-ranged interactions, and that these delays are influenced

by the pathophysiology and by physiologic states of the brain.
Moreover, we could also show that not taking into account
possible delays in interactions can lead to a possibly erroneous
inference of the direction of interactions. Our approach can
thus help to avoid misinterpretations and to further improve the
construction of functional network structures from data [26].

At present, our approach requires estimating the direction-
ality index T (τ1,τ2) with parameters (τ1,τ2) in a range where
we expect maximum coupling delays. Although a more direct
detection of coupling delays would be preferable, we note
that the identification of delayed directed interactions from
time series (4096 data points, embedding dimension m = 5)
for all (τ1,τ2) ∈ {1, . . . ,50} can be performed in about 60 s
on a 2.5-GHz CPU core due to the underlying conceptual
simplicity, efficiency, and robustness of symbolic transfer
entropy.
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