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The identification of early warning signals for regime shifts in ecosystems is of crucial importance given
their impact in terms of economic and social effects. We present here the results of a theoretical study on the
desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based
on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of
percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing
on the role played by the strength of external stresses, measured by the mortality rate m, we followed the
progressive degradation of the ecosystem for increasing m, identifying different stages: first, the fragmentation
transition occurring at relatively low values of m, then the desertification transition at higher mortality rates, and
finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete
degradation of the soil, attained at the maximum value of m. For each transition we calculated the spanning
probabilities as functions of m and the percolation thresholds according to different spanning criteria. The
identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of
real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters
of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness
of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the
desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other
new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions,
which are attained respectively inside the fragmentation interval, for the vegetated biggest cluster, and inside the
desertification interval, for the nonvegetated cluster.
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I. INTRODUCTION

Drylands, i.e., regions where water shortage limits the
vegetation growth, cover a significant portion of earth land area
(about 41%) [1,2]. They are defined in terms of the so-called
aridity index (AI) [1,2] and can be classified as dry subumid,
semiarid, arid, or hyperarid lands [1,2]. Moreover, they include
several biomes such as deserts, grasslands, Mediterranean
shrublands, and forests, with different destination (rangelands,
croplands, urban, etc.) [1,2]. They are frequently characterized
by a vegetation pattern that consists of a mosaic of bare soil
and vegetation patches [1–5]. Dryland habitats are fragile and
can undergo regime shifts when exposed to strong external
stresses, such as an exceeding anthropogenic load or an
increased frequency of extreme climatic events [1–8].

An important case of regime shift is the desertification
transition [1–4,9–12], which implies a huge and often ir-
reversible loss of ecological and economic resources [1,2].
Many studies in the literature pointed out the role of vegetation
patchiness as an essential tool to assess the desertification risk
and identify early warning signals of desertification [3,4,9–33].
This is particularly relevant for applications, because spatial
indicators directly related to vegetation patterns can be
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accurately measured through collected data and analyzed by
several efficient systems now available [19–25].

Examples of systems suitable for monitoring changes in
vegetation in ecosystems at risk are the CLASlite system,
introduced for processing output from satellite sensors and
specifically designed to provide mapping of vegetation (see
Ref. [20] for its use in monitoring tropical forests degradation)
or the LiDAR (light detection and ranging) technique, which
provides three-dimensional data for vegetation structure and
spatial patterns (see in particular Refs. [21] and [24] for
spatial analysis of Peruvian Amazon and Ref. [22] for the
study of rate and spatial patterns of treefall in a savanna-type
landscape). Other systems, such as the VSWIR (visible-to-
shortwave infrared spectrometry) can provide data on chemical
compositions and water content (for example, see Ref. [23] for
an application to a Mediterranean-type ecosystem).

Concerning desertification models, for the purpose of
this paper we mention in particular the stochastic cellular
automatom (SCA) model introduced in Ref. [10]. This model
takes into account different ecological mechanisms, and it
can be used to describe several ecological landscapes. Its
predictions concerning the change in the vegetation patch-size
distribution near the desertification transition were validated
by field data collected in three Mediterranean arid ecosystems
subject to grazing [9]. In particular, both simulated and
observed vegetation patterns exhibit a patch-size distribution
�(s) which deviates from a power law and shows an
exponential cutoff at increasing values of the mortality rate m,
a parameter measuring the strength of the external stress. The
emergence of the cutoff was proposed by the authors as an early
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indicator of desertification [9]. This behavior of the spatial
distribution was successively explained by Manor and Shnerb
in terms of a two-states birth-death model [34,35].

We used the SCA model in Ref. [10] to simulate a semiarid
ecosystem with sufficiently realistic patchiness dynamics, and
we analyzed the geometrical properties of the vegetation
clusters in terms of percolation theory. Moreover we associated
the desertification process with the percolation of a phase
made of empty and degraded regions opposed to the “green”
phase, corresponding to regions covered by vegetation. In the
following we show that a percolative analysis of the geometry
of the clusters [37–42] is a powerful tool for the study of
desertification and allows the definition of several new early
warning signals. In other terms we show that a geometric
characterization of the patchiness generated by the “true”
system’s dynamics can be very effective for understanding
some basic features of the desertification process, leading to
the identification of new transition indicators, including very
early ones.

The organization of the paper is the following: Sec. II
describes the theoretical and numerical methods adopted,
including a short discussion of the model [10] used for the
numerical simulations. Section III presents and discusses in
detail our results, and Sec. IV recaps the conclusions.

II. METHOD

We described a semiarid ecosystem by numerical simu-
lations based on the SCA model introduced in Ref. [10].
This choice was motivated by the ability of this model to
provide sufficiently realistic patchiness dynamics, accounting
for several biological and geophysical mechanisms acting on
drylands and by its rich phenomenology, covering several
ecological scenarios [9,10,19,43]. Here we only outline some
basic features of the model, while we refer to the original
papers for a full description [9,10].

A given ecosystem was modeled as a three states SCA
[36]. Each cell of the N × N square lattice can be found
probabilistically in one of the following three states: a
vegetation covered state denoted by {+} (living cell), a state in
which the cell is empty but colonizable by vegetation denoted
by {0} (dead cell), and an empty and degraded state denoted
by {−} (degraded cell). A degraded cell cannot be colonized
before being recovered, thus the transition {−} → {+} is
forbidden, similarly for the reverse transition. The allowed
transitions occur stochastically with rates

W+0 = m, (1)

W0+ = [δρ+ + (1 − δ)q+|0](b − cρ+), (2)

W0− = d, (3)

W−0 = r + f q+|−. (4)

Equations (1), (2), (3), and (4) define, respectively, the
mortality, colonization, degradation, and recovery processes.

The mortality rate m measures the strength of the external
stress, and it has been taken here as the control (driving)
parameter of the transition. The global vegetation mass fraction
or living cells density ρ+ (i.e., total number of living cells

normalized to the total number of lattice cells) plays the
role of order parameter of the transition. The other quantities
appearing in Eqs. (1)–(4) have the following meaning: qi|j
is the fraction of first neighbors in the state {i} around
a cell in the state {j}; δ represents the fraction of seeds
globally dispersed by wind, animals, etc.; b is the colonization
parameter, associated with several intrinsic properties of a
vegetated cell, such as seed production rate, seed survival,
germination, and survival probabilities (intrinsic properties
because b does not include global competition effects among
plants). The strength of the last effects is instead determined
by c. The parameter d gives the rate of soil degradation and it
accounts for the intrinsic soil characteristics, climatics and/or
anthropogenic factors. f is the local facilitation parameter
which describes local cooperative interactions among plants
and positive feedback between soil and plants. Finally, r is the
spontaneous regenerative rate of a degraded cell in absence
of vegetation covering the first neighbor cells. The results
presented in this paper were obtained by taking b = 0.6, c =
0.3, d = 0.2, δ = 0.1, f = 0.9, and r = 0.0004. These values
of the parameters were chosen as reasonable values to simulate
“real-world” field data [9,19]. Except when differently stated,
we considered lattices of linear size N = 100.

In the numerical simulations each iteration step (a syn-
chronous update of the states of all the lattice cells) was
associated with an elementary time step in an appropriate
time scale. Therefore the transition rates, which are transition
probabilities in the unit of time, are expressed in arbitrary units.
In practical applications, the choice of the time unit depends on
which plants live in the given ecosystem and on the time scales
characterizing their living cycles; thus the time unit can vary
from a week to some months. In this way, we simulated the
time evolution of an ecosystem, and we generated time series
for several quantities, such as the densities of cells in each
of the three states, ρ+(t), ρ0(t), ρ−(t) = 1 − ρ+(t) − ρ0(t), or
the size of the biggest cluster of living (dead, degraded) cells,
SMAX(t).

The recognition and counting of the clusters were based
on the Hoshen-Kopelman algorithm [44]. We used periodic
boundary conditions only for the calculation of the transition
rates, while the cluster connectivity was evaluated on the finite
N × N lattice. The simulations were performed starting with
an initial state corresponding to given concentrations, ρ+(t0),
ρ0(t0) of randomly distributed cells. The initial values for the
densities were ρ+(t0) = 0.5, ρ0(t0) = 0.2, but we checked that
these values do not affect the statistical properties of the
stationary regime reached at the relaxation of the initial
transient. The time series statistical analysis concerned only
the stationary portion of the signal, after the relaxation of the
initial transient [43]. The typical length of the time series was
1–5 × 104 records.

We stress the fact that the state of the whole system at a given
time step is determined (probabilistically) by Eqs. (1)–(4),
which control its dynamics evolution, according to a Marko-
vian chain. Thus, the structure of the vegetation clusters (size,
number, and position) reflects only the system’s dynamics.
Nevertheless in order to extract fruitful information from
such a complex system, identifying new early desertification
indicators, we introduced a percolation framework which
allows a more effective analysis of the geometrical properties
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of the different patches [37–42]. The percolation process
described here is different from the standard uncorrelated
one [37,38], occurring with uniform probability, being a
correlated percolation, consistently with Eqs. (1)–(4).

It must be also noted that the difference between dead
and degraded cells is a key feature of the model, necessary
for a suitable modeling of the ecological dynamics, given the
different biological and geophysical role of simply unoccupied
or degraded soil areas. However, new and interesting insights
into the desertification transition can be obtained by applying
a percolation analysis to a two-phase system, made of living
and nonliving cells. In any case, in doing so, we are not
changing the three-states dynamical system but we are only
applying a simplified but useful interpretation scheme of its
behavior. Therefore we denote the density of nonliving cells
by ρ0,− ≡ ρ0 + ρ−.

Moreover, since the cluster connectivity criterium is based
on first neighbors (two cells belong to the same cluster
either if they share at least a side, first neighbor cells, or
if they are connected by a continuous path of such cells)
there can be instances, for some conditions and particular
lattice configurations, where no phase percolates. When this
happens neither living nor nonliving cells give rise to an
incipient percolating cluster spanning through the lattice: these
configurations can be seen as the point of maximum instability
for the system, corresponding to the maximum mixing between
the two phases.

On the other hand there are several spanning crite-
ria [39,40]. Therefore we calculated the different probabilities
RN (ρ+) for a cluster of living cells to span a N × N lattice
according to each of them. Similarly, we also considered
the different spanning probabilities RN (ρ0,−) for a cluster
of nonliving cells. In the following we drop the subindex
N because all the probabilities R reported in this paper
were obtained for N = 100. In particular, we calculated the
probabilities Rb, Rh, Re, R1, hereafter defined: Rb is the
probability of existence of a cluster spanning the lattice along
both directions (horizontal h and vertical v) simultaneously;
Rh is the probability of spanning along a given direction
(horizontal), where Rh = Rv (probability of spanning along
a vertical direction) being the model isotropic, at least for
initial conditions corresponding to a random pattern, which is
the case studied here. Re is the probability of spanning along
either direction, while R1 is the probability of spanning along
one direction but not the other, where Re = 2Rh − Rb and
R1 = Rh − Rb [39,40]. The calculation of the two independent
probabilities Rb and Rh was performed by counting the
frequency of existence of a spanning cluster over Nc =
8 × 104 lattice configurations in the same conditions [the
same parameter values and same initial concentrations ρ+(t0),
ρ0(t0)]. Given the spanning probabilities as functions of the
densities ρ+ and ρ0,−, the finite-size percolation thresholds
for living and nonliving cells, respectively, for any percolation
criterium can be computed by [37,41]

pav(N) = 〈ρ〉 = 1 −
∫ 1

0
RN (ρ) dρ. (5)

Equation (5) provides the average value of the threshold
for a finite system of linear size N . All these thresholds

converge for N → ∞ to a unique percolation threshold
pc ≡ limN→∞ pav(N) [37,39,40]. Nevertheless, for finite-size
real-world systems the existence and the identification of
the different thresholds provide a way to follow closely
the degradation process of the ecosystem. Further details
concerning the calculation of specific quantities will be given
in Sec. III.

III. RESULTS

We present here the results of numerical simulations of
an ecosystem under external pressure due to anthropogenic
factors or climate shifts or any other environmental stress
acting on the vegetation mortality rate. In particular, we report
the results of a set of simulations performed by varying the
mortality rate and taking the values specified in Sec. II for
the other model parameters. These values were chosen as
reasonable values to simulate “real-world” field data [9,19].

Figure 1 displays typical time evolutions of the order
parameter, the living cell density ρ+(t), for increasing values of
the mortality rate m. The plot shows qualitatively some general
features characterizing the role of m. Namely, increasing
strength of the external stress implies (1) a steady state
with progressively smaller average density of vegetated cells
〈ρ+〉; (2) a strong raise of the amplitude of the fluctuations,
�ρ+(t) = ρ+(t) − 〈ρ+〉; (3) a fast growth of the relaxation
time associated with the decay of the initial transient and
the achievement of the steady state (which can be seen more
explicitly looking at the autocorrelation times for increasing
m) [45].

A. Full desertification transition

At increasing mortality rate, there exists a value mc above
which the steady state of the system corresponds to 〈ρ+〉 = 0,
i.e., at mc the system undergoes a transition associated with
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FIG. 1. (Color online) Typical time evolution of the living cell
density ρ+(t) for increasing mortality rate m. From top to bottom:
m = 0.1000 (black), m = 0.1600 (blue), m = 0.1670 (red). The
linear lattice size is N = 100; the other parameters are fixed (see
text). The time unit is one iteration step.
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TABLE I. Critical mortality rate mc associated with the full
desertification transition for increasing lattice size N .

mc N

0.1672 ± 0.0001 50
0.1683 ± 0.0001 100
0.1685 ± 0.0001 150
0.1686 ± 0.0001 limN→∞

a full extinction of the vegetation [10] and a nearly complete
degradation of the soil (the extent of the final soil degradation
is determined by the parameters d and r). We call this transition
at mc full desertification transition. The value of mc depends on
the system size and on the values of the other parameters [46]:
for the set of parameters adopted here the mc values are
reported in Table I as a function of N .

A visualization of the clustering properties in this system
is given in Fig. 2 which shows a typical vegetation pattern
for an arid ecosystem close to desertification. For a value of
the mortality rate m = 0.1680, close to mc, a big spanning
cluster of degraded cells (dark gray or red online) covers a
very large surface of the system, while vegetated cells (light
gray or green online) aggregate in small clusters and dead cells
(black) are mainly confined at the interface between vegetated
and degraded regions.

We notice that the SCA model can describe several eco-
logical scenarios: depending on the regions of the parameter
space it can provide abrupt (first order) transitions, continuous
or nearly continuous (second order) transitions, and bistable
behaviors [9,10,19,43]. To identify the character of the full
desertification transition at mc corresponding to our set of
parameters, we analyzed the behaviors of 〈ρ+〉 and σρ+ ,
root-mean-square deviation of the ρ+ fluctuations, as functions
of the mortality rate. The insets of Figs. 3 and 4, respectively,
plot 〈ρ+〉 and σρ+ versus m on linear scales. We can see

FIG. 2. (Color online) Typical vegetation pattern for a lattice of
linear size N = 100 at m = 0.1680 (see the text for the values of the
other parameters). The light gray (green) cells correspond to areas
with vegetation, the black cells to unoccupied areas, and the dark gray
(red) ones to degraded areas.
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FIG. 3. (Color online) Log-log plot of the average density of
living cells 〈ρ+〉 as a function of |m − mc|. Red circles correspond
to numerical data, the black solid line to the the best fit, namely, a
power law with slope β = 0.39 ± 0.01. The inset displays 〈ρ+〉 vs m

in a linear scale (m is in arbitrary units).

that for increasing m the average density approaches zero,
pointing out a continuous or nearly continuous transition (it is
rather difficult to establish by numerical simulations whether
a transition is really continuous or discontinuous). On the
contrary σρ+ sharply increases approaching mc. This behavior
is expected in any case; indeed, the increase of the variance σ 2

ρ+
is a well-recognized indicator of transition [19,31]. However,
the drawback is that this increase occurs at a rather advanced
stage of degradation of the ecosystem.

Figure 3 also reports 〈ρ+〉 on a log-log plot versus |m −mc|:
an excellent best-fit of the numerical data (red circles) is
obtained with a power law of slope 0.39 ± 0.01. The log-log
plot of σρ+ as a function of |1 − mc

m
| is instead shown in Fig. 4.
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FIG. 4. (Color online) Log-log plot of the root-mean-square de-
viation of the living cells density, σρ+ vs |1 − mc/m|. Red squares
correspond to numerical data, the black solid line to the the best
fit, i.e., to a power law with slope −γ ′

σ = −0.25 ± 0.01. The inset
displays σρ+ vs m in a linear scale (m is in arbitrary units).
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Now the numerical data (red squares) are well fitted by a power
law of slope −0.25 ± 0.01. Thus,

〈ρ+〉 = Cρ |m − mc|β, (6)

σρ+ = Cσ

∣∣∣1 − mc

m

∣∣∣−γ ′
σ

, (7)

where β = 0.39 ± 0.01 and γ ′
σ = 0.25 ± 0.01. The power-

law behavior of 〈ρ+〉 and σρ+ , associated with the critical
transition at mc, is controlled by the two critical exponents
β and γ ′

σ , which determine the universality properties of the
model [38,47]. It must be noted that a desertification process
can be seen in general as a sort of damage spreading (DS)
process [47–49]. It is well known that many DS transitions
belong to the directed percolation (DP) universality class under
certain rather general conditions [47–49]. In the present case,
the values of β and γ ′

σ significantly differ from the values
reported in the literature for the corresponding exponents of
the DP class in two-dimensional systems: β = 0.583 ÷ 0.584
and γ ′

σ = 0.15–0.18 [47–51]. Moreover the critical exponents
are found dependent on the model parameters [46]. As a
general conclusion concerning this point, we can say that
the SCA model provides nonuniversal exponents. The reasons
of this nonuniversality and the connection with DP will be
investigated elsewhere [46].

The critical character of the full desertification transition
is also confirmed by considering the fluctuation distribution
of the size of the biggest cluster of vegetated cells. We
calculated the probability density function (PDF) of the dis-
tribution of the fluctuations �SMAX(t) ≡ SMAX(t) − 〈SMAX〉,
for different sizes of the system and several values of the
mortality rate. This PDF is here denoted as φSMAX. In Fig. 5
the product σSMAX φSMAX is plotted as a function of the
normalized fluctuation �SMAX(t)/σSMAX, where σSMAX is
the root-mean-square deviation of �SMAX (this normalized
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FIG. 5. (Color online) Normalized PDF of the time fluctuations
of the biggest cluster size, SMAX, for m = mc(N ) and different
system sizes: N = 50 (black diamonds), N = 100 (red circles), and
N = 150 (blue triangles). The dashed curve corresponds to the BHP
distribution with positive skewness.

representation is particularly convenient for comparing PDFs;
see Refs. [52–55]). In particular, the probability densities in
Fig. 5 were obtained for systems of sizes N = 50,100,150 at
the corresponding critical mortality values mc(N ). The dashed
curve is the universal Bramwell, Holdsworth, and Pinton
(BHP) distribution [52,53], a distribution of the Gumbel family
characterizing the fluctuations of several complex systems of
different nature close to criticality [52–57]. As shown by Fig. 5,
φSMAX exhibits at mc a strong non-Gaussian behavior with
skewness independent of the system size N , and it is well
approximated by the BHP distribution [52–55], a behavior
confirming the critical character of the full desertification
transition at mc. From a practical point of view, the emergence
of a strong non-Gaussianity, with positive skewness represents
a further indicator of this transition [58].

However, the full desertification transition occurs at high
mortality rates, when the degradation process of the ecosystem
is at a rather advanced stage. Thus, to identify early indicators
we need to consider the behavior of the system for lower
values of m.

B. Fragmentation and desertification transitions

We consider now two other relevant ranges of mortality
rate values: the first one pertains to the percolation transition
of the vegetated cells, i.e., to the onset of the fragmentation
of the vegetation phase. The second one is related to the
percolation transition of nonliving cells, i.e., to the onset of
a state in which the set of unoccupied and degraded cells
percolates. We will call this transition desertification transition.
Then for increasing m, the ecosystem goes through three
kinds of transitions: fragmentation, desertification, and full
desertification (full vegetation extinction and nearly complete
soil degradation).

We stress the fact that for finite-size systems, like real-world
ones, both the fragmentation and desertification transitions can
be identified with intervals of mortality values instead of with
a single value of m: the consideration of different spanning
criteria characterizing the transition stages [39,40] offers a
more accurate description of the ecosystem state and a tool
for monitoring step by step the degradation of the system. It is
then useful to consider two sets of thresholds (instead of two
single thresholds): one set is associated with the percolation of
living cells, the other with the percolation of nonliving ones.

Following the previous considerations, in order to analyze
the vegetation fragmentation transition we computed the
spanning probabilities for a cluster of living cells according
to the different criteria in lattices of linear size N = 100.
These probabilities, Rb+, Rh+, Re+, R1+, are plotted in Fig. 6
as functions of the average living cell density 〈ρ+〉. The
two independent probabilities Rb+ and Rh+ were directly
computed by counting the number of occurrences of an
incipient spanning cluster, as described in Sec. II. The three
curves Rb+, Rh+, Re+ show similar trends, and, going from
Rb+ to Rh+ and Re+, they are progressively shifted to
the left. This is consistent with the condition associated
with Rb+ (simultaneous existence of a spanning cluster in
both horizontal and vertical directions), more strict than the
requirement of a spanning cluster in a given direction only
(Rh+), or of a spanning cluster in either of the two directions
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FIG. 6. (Color online) Spanning probabilities for a cluster of
living cells as a function of their average density 〈ρ+〉 corresponding
to different percolation criteria: Rh (black diamonds), Rb (red circles),
Re (blue triangles), R1 (green squares) (see text).

(Re+). The percolation thresholds corresponding to these three
probabilities, p+

Cb, p+
Ch, and p+

Ce were computed via Eq. (5).
On the other hand, the probability R1+ (existence of a spanning
cluster in a direction but not in the other) is nonmonotonic: In
this case the percolation threshold is given by the value of 〈ρ+〉
where R1+ attains its maximum, p+

C1 = 〈ρ+〉max R1+ [40]. The
four thresholds and the corresponding values of m are reported
in Table II.

The behavior of the probabilities Rb0−, Rh0−, Re0−, R10−,
associated with the existence of spanning clusters of nonliving
cells, as function of 〈ρ0,−〉 mirror their counterparts for the
living cells. The percolation thresholds for nonliving cells
p0−

C1 = 〈ρ0,−〉max R10− and p0−
Cb , p0−

Ch, p0−
Ce are given in Table III.

Since both 〈ρ+〉 and 〈ρ0,−〉 depend on the mortality rate,
all the probabilities Rb+, Rh+, Re+, R1+ (full symbols)
and Rb0−, Rh0−, Re0−, R10− (empty symbols) can also be
plotted as functions of m (Fig. 7). The steep drop in the
probability values Rb+, Rh+, Re+ and the sharp increase
of Rb0−, Rh0−, Re0− respectively, correspond to the two
intervals of values associated with the percolation thresholds
of living and nonliving cells. In particular, we can define the
following special values of mortality rate, corresponding to the
different percolation thresholds: m+

b < m+
1 < m+

h < m+
e and

m0−
e < m0−

h < m0−
1 < m0−

b .

TABLE II. Percolation thresholds of the living cells for the
different spanning criteria [39,40] and corresponding values of the
mortality rate. The estimated error is ±0.0005 in both cases.

Living cells: percolation direction m p+
C

Rb (both directions) 0.1090 0.5879
R1 (only one direction) 0.1150 0.5662
Rh (horizontal direction) 0.1155 0.5646
Re (either directions) 0.1175 0.5554

TABLE III. Percolation thresholds of the nonliving cells for
the different spanning criteria and corresponding values of m. The
estimated error is ±0.0005 in both cases.

Nonliving cells: Percolation direction m p0−
C

Rb (both directions) 0.1450 0.5886
R1 (only one direction) 0.1430 0.5785
Rh (horizontal direction) 0.1410 0.5664
Re (either directions) 0.1405 0.5626

The curves in Fig. 7 highlight the existence of a special
value of the mortality rate m∗ = 0.132 ± 0.001 where no phase
percolates: this value corresponds to the point of maximum
instability of the system and to the highest fragmentation for
both phases. As the plot in Fig. 8 clearly shows, m∗ corresponds
to the intersection point of the curves 〈ρ+〉 and 〈ρ0,−〉; i.e.,
it fullfils the condition: 〈ρ+〉 = 〈ρ0,−〉 = 0.5. We notice that
while the particular value of m∗ depends on the choice of the
other model parameters, m∗ is always characterized by the
above condition associated with the maximum instability of
the system. The two intervals for m and the corresponding two
intervals for the density values 〈ρ+〉 and 〈ρ0,−〉 defined by the
percolation thresholds are also evident in Fig. 8 [respectively,
vertical dashed lines and horizontal dashed lines, gray (green
online) and black]. Thus, Fig. 8 illustrates a general feature
of a percolative transition externally driven and occurring
in finite-size systems: different spanning criteria and related
different percolation thresholds define ranges of the driving
parameter values in which the system progressively breaks
its connectivity. The identification and empirical observation
of these thresholds offer a useful tool for assessing and
monitoring step by step the increasing degradation of the
system.
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FIG. 7. (Color online) Spanning probabilities for a cluster of
living cells (full symbols) and nonliving cells (empty symbols) as
a function of the mortality rate m for different percolation criteria:
Rh (black diamonds), Rb (red circles), Re (blue triangles), R1 (green
squares).
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FIG. 8. (Color online) Average densities of living cells (green
circles) and nonliving cells (black squares) vs m. The vertical and the
horizontal lines identify the intervals of mortality and average density
corresponding to the fragmentation and desertification transitions.

Tagging both degraded and dead cells as generically
“nonliving” is useful for the percolation analysis, which can
be developed in terms of two competing phases. However, as
stated in Sec. II, their differentiation is one of the main features
of the SCA model under consideration. In fact, the two sets of
cells obey to different dynamical rules and account for different
biological and geophysical roles played inside the ecosystem
by regions of soil simply unoccupied or utterly degraded [1,2].
It is therefore important to keep track of the individual behavior
of the two sets of cells. Figure 9 displays the average densities
of the dead cells, 〈ρ0〉, and of the degraded ones, 〈ρ−〉, as a
function of m, together with the plots of 〈ρ+〉 and 〈ρ0,−〉. We
can see that the density of dead cells progressively increases
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FIG. 9. (Color online) Average densities vs m: living cells (green
circles), nonliving cells (black squares), dead cells (open blue circles),
degraded cells (red triangles).

when the system approaches the fragmentation transition
(percolation of living cells) and reaches its maximum at
m ≈ m0−

e = 0.1405, i.e., at the beginning of the desertification
transition, when 〈ρ0,−〉 = p0−

Ce (first threshold of the nonliving
phase percolation). For higher mortality rate, the fraction
of dead cells decreases abruptly while that of degraded
cells steps up (these cells become the dominant phase). The
relatively high density of dead cells for 0.10 < m < 0.16, in
the range covering both the fragmentation and desertification
transitions, is explained by the fact that dead cells are mainly
located at the interface between vegetated and degraded cells.
Therefore, the concentration of dead cells increases with the
progressive mixing between the two phases which maximizes
the roughness of the interface and thus the number of cells
belonging to it. The increase in 〈ρ0〉 provides a very early
indicator of desertification.

Relevant information on the state of the system close to
the fragmentation and the desertification transitions can be
obtained by considering the time series of the size of the biggest
cluster SMAX(t) for living, nonliving, and degraded cells. Let
SMAX be the number of cells of a given kind in the biggest
cluster divided by the total number of cells N2 in the lattice.
Figure 10 displays the average size 〈SMAX〉 as a function of
the mortality rate. Precisely, the three sets of data correspond
to living (light gray circles, green online), nonliving (black
squares), and degraded cells (dark gray triangles, red online).
From left to right, the two pairs of vertical lines point out,
respectively, the two intervals of the mortality rate associated
with the fragmentation and the desertification transitions.

On the left of the fragmentation interval, the circles show
the average size of the biggest vegetation cluster: it spans the
system both horizontally and vertically, because the average
living cell density is above the highest percolation threshold
〈ρ+〉 > p+

Cb. In the fragmentation region, limited by the first
couple of dotted lines, the circles display the average size of
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FIG. 10. (Color online) Average size of the biggest cluster
〈SMAX〉 vs the mortality rate: living cells (green circles), nonliving
cells (black squares), and degraded cells (red triangles). The curves
are a guide for the eye. The vertical lines point out the two ranges
corresponding to the fragmentation and desertification transitions.

062705-7



CORRADO, CHERUBINI, AND PENNETTA PHYSICAL REVIEW E 90, 062705 (2014)

the biggest vegetation cluster spanning or not, according to
the chosen spanning rule. Further right, the circles show the
average size of the biggest but non spanning vegetation cluster,
because the average density is below the smallest percolation
threshold 〈ρ+〉 < p+

Ce. We notice that there is a steep decrease
of 〈SMAX〉 in the fragmentation region, where a relatively small
8% variation of m causes the fraction of living cells in the
biggest cluster to fall from about 40% to 20%. The average size
of the biggest cluster of nonliving cell mirrors this behavior:
in this case, the biggest cluster size increases abruptly in the
desertification region between the second pair of lines, where
the average fraction of nonliving cells in the biggest cluster
jumps up from about 20% to 38%, for a relatively small
variation (only 4%) of m (from m = 0.140 to m = 0.146).
As previously explained, the percentage of dead cells in this
region is significant. Finally, looking at the degraded cells, the
average size of the biggest cluster abruptly increases only for
higher m, on the right of the desertification region.

Other relevant information, including new early indicators,
can be obtained from the distributions of the fluctuations
�SMAX(t) for living, nonliving, and degraded cells studied
as a function of the mortality rate. We start by considering
their second moments. In Fig. 11 we plot the root-mean-square
deviations of �SMAX(t) as a function of m for the three kinds of
cells. In all cases, σSMAX has a sharp peak in the corresponding
transition region, i.e., fragmentation transition for living cells
(green circles), desertification transition for nonliving ones
(black squares), and full desertification for degraded cells
(red triangles). Precisely, the three curves reach their maxima,
respectively, at m = 0.115 ± 0.001, m = 0.145 ± 0.001, and
m = 0.164 ± 0.001. Thus, σSMAX for the biggest cluster of
living cells is at a maximum for m ≈ m+

1 ≈ m+
h ≈ m+

e and
then decreases steeply when 〈ρ+〉 drops below the smallest
percolation threshold p+

Ce.
The peak of σSMAX in the fragmentation region can be

understood in the light of the results in Ref. [42], concerning
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FIG. 11. (Color online) Root-mean-square deviation of
�SMAX(t) vs the mortality rate. The green circles, black squares, and
red triangles show the data, respectively, for living, nonliving, and
degraded cells. The curves are drawn as guide for eyes.

the properties of the largest cluster for site percolation in the
subcritical region (p < pC). We remark that the results in
Ref. [42] were obtained for an uncorrelated percolation, which
is a case much simpler than the correlated process (in both
space and time) that we are discussing here. However, given
the complexity of our system, the uncorrelated percolation
approach provides a basic frame for understanding, at least
qualitatively, the overall properties of the biggest clusters in the
correlated case. In particular, we refer to the following estimate
in Ref. [42] of the standard deviation of the fluctuations
�SMAX(t) in the subcritical density region, for N → ∞:

σSMAX

s∗
ξ

∼ π√
6

+ εN . (8)

In Eq. (4) s∗
ξ is the effective crossover size [42]; s∗

ξ ∼ sξ ,
where sξ is the usual crossover size [37,38] controlling the
exponential decay of the cluster size distribution for p < pC :

ns ∼ s−θ e−s/sξ , (9)

while εN is a periodic function of log N with period 1/s∗
ξ [42].

Then the discussion of the uncorrelated percolation case points
out the relation between the root-mean-square deviation of
the fluctuations of the biggest cluster size, σSMAX, considered
here, and two other quantities, widely studied in percolation
theory, such as the crossover size sξ and the average cluster
size χ [37,38]. They both diverge at pc for N → ∞: sξ ∝
|p − pC |−1/σ and χ ∝ |p − pC |−γ ; for finite-size systems,
they present a peak of finite height and width [37,38].

In our finite-size system, the peak of σSMAX observed close
to the percolation thresholds suggests that it can be used as
a very early indicator of transition in applications to real
world cases. In fact, looking at the fragmentation and the
desertification transition regions in Fig. 11 (corresponding
to percolation of living and nonliving cells, respectively) we
observe that the maxima of σSMAX are attained at the thresholds
values of m, but a significant increase of σSMAX occurs earlier,
well before the system crosses these thresholds, i.e., at 〈ρ+〉 >

p+
Cb for the fragmentation transition and 〈ρ0,−〉 < p

0,−
Ce for the

desertification transition. Moreover, even if for a finite-size
system the height and width of the peak depend on N (and thus
the precise values of σSMAX close to the percolation thresholds
depend on N ), σSMAX will always increase before the transition
threshold for every finite N . Consequently the growth of σSMAX

represents a very early indicator of transition, definitely earlier
of the emergence of the exponential cutoff in the cluster size
distribution, Eq. (5), as proposed in Ref. [9]. In particular,
the increase of σSMAX for the size fluctuations of the biggest
living cluster provides an early and sensitive indicator for
the fragmentation transition [58], while the growth of σSMAX

for the biggest nonliving cluster is an early (and sensitive)
indicator of desertification. Both these indicators can be used
in real-world applications, which are usually characterized
by relatively short empirical time series. In fact, the relative
error on σSMAX calculated for a time series of length L is

1
2
√

L

√
2 + k, where k is the (finite) kurtosis of the distribution

φSMAX [59]. A simulation of the effect of the time series length
on σSMAX is shown in Fig. 12.

The importance of the biggest cluster as a promising source
for indicators of transition is confirmed when considering
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FIG. 12. (Color online) Root-mean-square deviation σSMAX for
living cells vs the mortality rate, calculated for times series of different
length L. The values σSMAX(t) are obtained by averaging over NL

realizations of the time series (for L = 100 NL = 256, for L = 200
NL = 128, for L = 400 NL = 64, for L = 800 NL = 32, for L =
1600 NL = 16, for L = 6400 NL = 4, for L = 12800 NL = 2, for
L = 25 600 and L = 100 000 NL = 1). The curve is drawn as guide
for the eye.

two other properties of its size fluctuations given by the
statistics of the return times of extreme values and the PDF
of the fluctuation distribution. Figure 13 shows a window
in the time series SMAX(t) of the biggest cluster of living
cells for m = 0.08, a mortality level well below the lowest
threshold m+

b . The figure displays a strong non-Gaussianity
marked by a pronounced asymmetry between downward and
upward fluctuations, which can be measured by the return
times of extreme values. More precisely, we considered the
return times of extreme values of the normalized time series
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FIG. 13. (Color online) Size of the biggest cluster of living cells
vs time for m = 0.08. The time unit is one iteration step. The white
(yellow) line is the average value. Only a small time window of the
full SMAX time series is displayed.
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FIG. 14. (Color online) Normalized PDF of the time fluctuations
of the biggest cluster size SMAX for living cells, m = 0.08 and different
system sizes: N = 50 (red squares), N = 100 (green circles), and
N = 150 (blue triangles). The dashed curve corresponds to the BHP
distribution with negative skewness.

with zero average and unitary variance given by S ′
MAX(t) ≡

�SMAX(t)/σSMAX. Following Refs. [60–63], we computed the
return times of high threshold values qS ′ (in units of σSMAX),
i.e., the time intervals between two consecutive occurrences
of the events S ′

MAX(t) > qS ′ . We found that for a time series
with 105 records this condition is fulfilled Nq = 573 times
for the negative threshold qS ′ = −3.0 (average return time
Rq = 174.5) but only Nq = 37 times for the positive threshold
qS ′ = 3.0 (average return time Rq = 2702.7).

This strong asymmetry between the average return times
of negative and positive extreme values of S ′

MAX at m = 0.08
accounts for a significant negative skewness of the fluctuation
distribution of SMAX(t), evident in Fig. 14 where a normalized
representation of the PDF at m = 0.08 is plotted for different
system sizes. The dashed curve represents the universal BHP
distribution with negative skewness [52–55] reported here for
comparison. We notice that the PDF in Fig. 14 is consistent
with the result in Ref. [42] for the cumulative distribution
function of the largest cluster size obtained for uncorrelated
percolation. Moreover, considering φSMAX for the biggest
living cluster as a function of m, we found that for small
mortality rates (up to m ≈ 0.06) the distribution is Gaussian
(hence with zero skewness). At higher m, the PDF acquires a
negative skewness, progressively increasing in absolute value.
This trend persists until m ≈ 0.10 where the skewness reaches
its minimum value. A further increase of m brings the systems
close the threshold m+

b associated with the disappearance of
a living cluster spanning in both (horizontal and vertical)
directions simultaneously. For m > 0.10 the skewness starts to
increase, and it becomes near zero in the fragmentation region
m+

b < m < me
b. For m > me

b, no spanning cluster of living
cells exists and φSMAX develops a positive and progressively
increasing skewness which reaches its maximum at mc, the
extinction threshold (Fig. 5).

Therefore, concerning the identification of new early
transition indicators, the skewness of the distribution of
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�SMAX(t) for the biggest cluster of vegetation has good
potential since its analysis suggests two indicators of the
fragmentation transition: (1) the emergence of a negative
skewness of the distribution at relatively low mortality rate
below the fragmentation threshold (a very early indicator
of the fragmentation transition); and (2) the change of sign
in the skewness, from negative to positive, occurring at the
fragmentation threshold.

On the other hand, the opposite behavior characterizes the
distribution of the fluctuations of the nonliving biggest cluster
at increasing m: the skewness is zero for small m (where the
distribution is Gaussian) and then becomes positive and finally
negative. Thus, we can propose two new indicators also for
the desertification transition: (1) the very early appearance of
a positive skewness and (2) the change of sign in the skewness,
from positive to negative.

IV. CONCLUSIONS

We have presented in this paper a theoretical study of the
desertification transitions in semiarid or arid ecosystems. We
simulated the degradation of the ecosystem by making use of a
stochastic cellular automaton model [10], and we analyzed the
results for the dynamics of the vegetation clusters in terms of
percolation theory, assumed as an effective tool for analyzing
the geometrical properties of the clusters [37–39].

By considering the full range of values of the mortality
rate, the parameter setting the strength of external stresses,
assumed as driving parameter of the transition, we can follow
the increasing degradation of the ecosystem going from the
vegetation fragmentation transition, occurring at moderate val-
ues of m and characterized by the disappearance of a vegetation
cluster spanning the whole system, up to the desertification
transition, associated with the emergence of a spanning cluster
of empty and degraded soil regions, and finally, to the full
desertification transition, corresponding to the full extinction
of the vegetation cover and the nearly complete degradation of
the soil. We found that the application of the percolation
framework for the analysis of the desertification risk of an
ecosystem offers a powerful tool for the identification of
several new and early transition indicators.

The desertification process considered in this paper is
associated with a critical transition, as we pointed out by
analyzing the full desertification transition. For this last we
found a continuous power-law decrease of the average living
cell density 〈ρ+〉 which approaches the extinction threshold
and a power-law increase of the root-mean-square deviation of
the ρ+ fluctuations, σρ+ . Both power laws are associated with
nonuniversal critical exponents β and γ ′

σ [46]. Since the model
leads to different kinds of transitions in different regions of the

parameter space [9], the continuous character of the transition
discussed here depends on the choice of the parameters. The
values adopted in this work were taken as a reasonable starting
point to simulate “real-world” field data [9,19]. The application
of the percolation analysis to the case of abrupt (first-order)
transitions is left to further investigations. From a practical
point of view, we notice that both the steep increase of σρ+ and
the pronounced positive skewness of φSMAX at high m provide
indicators for the full desertification transition.

For what concerns the fragmentation and desertification
transitions, the existence of several percolation thresholds
associated with different spanning criteria [39–41] and cor-
responding to well-defined numerical intervals for the driving
parameter provides a way to closely follow the progressive
degradation of the system, marked, step by step, by the
different thresholds.

An important result of our analysis is that it highlights the
effectiveness of studying the size fluctuations of the biggest
clusters of both living and nonliving cells. This study points
out the role played by the increase of σSMAX as early transition
indicator: the maxima are in fact attained in the transition
regions (fragmentation transition for the biggest vegetation
cluster and desertification transition for the biggest nonliving
cluster). Finally, other new and early indicators of transition
are obtained by the analysis of the PDF of the fluctuations
�SMAX(t) for both the biggest clusters. In particular, the
change of sign in the skewness (from negative to positive)
for the distribution of �SMAX(t) of the biggest vegetation
cluster is associated with the fragmentation threshold, while
the reverse change of sign (from positive to negative) occurs
at the desertification threshold for the distribution of the size
fluctuations of the biggest nonvegetated cluster.

Overall our results offer new insights on the desertification
transitions occurring at increasing mortality rates in semiarid
or arid ecosystems, going through stages characterized by
an increasing loss of connectivity in the vegetation and
degradation of the soil. The identification of new transition
indicators related to these stages, including very early ones,
can greatly help to monitor the degradation processes in
fragile ecosystems.
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[43] S. Kéfi, Reading the Signs: Spatial Vegetation Patterns,

Arid Ecosystems and Desertification (Gildeprint Drukkerijen,
Enschede, the Netherlands, 2008).

[44] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
[45] R. Corrado, A. M. Cherubini, and C. Pennetta (unpublished).
[46] R. Corrado, A. M. Cherubini, and C. Pennetta, Comm. Nonlinear

Sci. Numer. Simul. (to be published).
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