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Tearing of thin sheets: Cracks interacting through an elastic ridge
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(Received 16 October 2014; published 29 December 2014)

We study the interaction between two cracks propagating quasistatically during the tearing of a thin brittle
sheet. We show that the cracks attract each other following a path described by a power law resulting from
the competition between elastic and fracture energies. The power law exponent (8/11) is in close agreement
with experiments. We also show that a second (asymptotic) regime, with an exponent of 9/8, emerges for small
distances between the two crack tips due to the finite transverse curvature of the elastic ridge joining them.

DOI: 10.1103/PhysRevE.90.062406 PACS number(s): 46.50.+a, 46.70.De, 62.20.mt

I. INTRODUCTION

Cracks and fractures are very common phenomena oc-
curring in various contexts [1–4]. They are observed during
the desiccation of films made of colloidal suspensions, like
bentonite clay or cornstarch [5–11], in sol-gel films [12,13],
in broken objects like windows [14–16], or in sea ice [17,18]
and ice floes collisions [19,20].

A material fractures when sufficient stress is applied at the
level of its elementary constituents to break the bonds that hold
them together. This process occurs mainly at the atomic scale
near the crack tip, where the energy focuses, but also at much
larger scale for particle rafts [21]. Nevertheless, macroscopic
parameters, like work of fracture γ or fracture toughness K ,
can be defined (and measured) to describe the progression
of cracks when the material properties are uniform without
necessarily resorting to microscopic analysis [1,22,23]. The
classical fracture theories, initially formulated by Griffith and
Irwin [24,25], reliably describe the onset of crack motion, but
there is no general theory able to predict the path of a crack as
it propagates. Understanding and predicting the propagation
of a crack in a brittle material is a central challenge in fracture
mechanics [23].

There are three ways of applying a force to enable a crack
to propagate: in-plane tensile or shear loading (opening or
sliding mode) and out-of-plane shear loading (tearing mode).
Thin films offer an efficient setup to study the tearing mode
with some practical interests since it is a natural mode to torn
thin sheets [26,27]. Important insight about crack paths has
been gained in this context thanks to the limitation of the
crack motion to a two-dimensional manifold. For example,
the crucial role of geometry was identified in some oscillatory
fracture patterns obtained when a brittle elastic thin sheet is cut
by a moving blunt object [28–32]. It was also shown that a pair
of cracks propagating and interacting in thin sheets subjected
to in-plane tensile stress forms universal shapes [33–35].

In this work, we consider the tearing of a clamped thin
brittle sheet (see Refs. [32,36] for ductile sheets) where two
cracks interact during their propagation induced by the force
applied on a rectangular flap peeled with a given peeling angle;
see Fig. 1. This system has already been studied when the sheet
adheres to a flat substrate. In this case, the balance between
fracture, adhesion, and bending energies yields to converging
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linear crack paths [37]. This system has been used to study
mechanical properties of graphene [38] and to show that the
curvature of the substrate modifies the crack paths, leading
even to diverging trajectories [39]. Here we study the situation
where adhesion is negligible. It has been shown experimentally
that the crack paths are no longer linear and follow power
laws with characteristic exponents: 3/4 in the “peeling”
configuration with a peeling angle equals to π and 2/3 in
the “trousers” configuration [40,41]. Surprisingly, in contrast
with results obtained for adhesive sheets, the theory developed
in Ref. [41] predicts that the crack paths are independent
on the material properties and scale only with the sheet
thickness.

We revisit this system in the peeling configuration by using
the formalism developed in Ref. [37] and by analyzing the
elastic energy of the film essentially contained in the ridge
joining the two cracks. We find that both elastic and fracture
energies determine the crack paths.

II. SETUP AND MAIN EQUATIONS

Figure 1 shows pictures and schematics of the system under
consideration. A thin film is clamped on a flat plate with
narrow adhesive tapes along its borders. There is no significant
adhesion between the film and the plate. Two parallel notches,
separated by a distance W0, are cut on one of its edges such
that a rectangular flap is created. The flap is pulled with
a peeling angle equal to π at constant slow speed (in the
range 0.05–1.5 mm/s [41]) leading to a quasistatic crack
propagation. The two crack tips move both forwards along
the x axis and inwards (towards y = 0) until they eventually
annihilate. A pointy flap is then detached from the film; see
inset of Fig. 2.

The pulling force F applied to the flap deforms the fold
joining the flap to the film such that, at the onset of crack
motion, a small ridge focusing the elastic energy is formed; see
Fig. 1(b). The shape of this ridge is shown in Figs. 1(e)–1(g).
It possesses two curvatures: one in the longitudinal direction
joining the flap to the film and another one in the transverse
direction along the y axis with a maximal deviation from
a straight line denoted b (sag of the ridge); see Fig. 1(e).
This second curvature is due to the pulling force F , which
applies along the entire width of the ridge, whereas the
resistive fracture force applies only at its edges where the
crack tips are located. This leads also to the formation of two
pinched edges; see Fig. 1(f). Therefore, the ridge possesses the
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FIG. 1. (Color online) Pictures and schematics of the tearing of a thin sheet. A sheet of paper is used to better illustrate the system.
(a) Initial stage just before the crack propagation. The large arrow indicates the direction of the applied force. (b) Superimposition of three
pictures showing the evolution of the ridge shape as the applied force, F , increases up to the onset of crack propagation. Colored dashed lines
indicate the border of the flap for better visualization. (c, d) Schematics showing the variables needed to describe the system. The curved dashed
lines indicate the path followed by the two cracks upon pulling the flap in the direction shown by the large arrow. The balance of forces at the
crack tip is shown in the red rectangle. (e–g) Ridge morphology. (e) Upper view showing the transverse curvature of the ridge together with the
angle ϕ and the sag of the ridge b. (f) Longitudinal view along the x axis showing the height h of the ridge together with its two pinched edges.
(g) Shape of the ridge, which remains (slightly) visible once it is unfolded thanks to some plastic deformations in the paper sheet. W = 5 cm
in all pictures.

characteristics of a Lobkovsky-Witten ridge [42–46], which
appears generically between two points of high curvature in
thin sheets [47]. Notice that for the tearing of adhesive sheets,
the corresponding fold does not possess a transverse curvature
because the adhesive force applies along its whole width and
prevents any transverse bending. The elastic energy stored
in the ridge can be released in two ways: by decreasing the
longitudinal curvature of the ridge (advancing the crack in the
pulling direction) or by simply reducing the width of the ridge
(the cracks move inwards). The actual direction followed by
the cracks is a combination of both effects.

The standard formalism we used to describe the system
has been introduced in Ref. [37] and subsequently used, for
example, in Refs. [13,26,27]. It is briefly recalled here for
self-containedness. The total energy of the system is

U = UE + 2γ ts, (1)

where the first term is the elastic energy, which is essentially
focused in the ridge, and the second one is the fracture energy
for the two cracks. t is the film thickness, s is the crack length,
and γ is the work of fracture of the film. The position of
the crack tips is denoted � and the position of the border of
the flap where the pulling force F is applied is denoted x;
see Fig. 1(d). The excess of length 2� − x = λ is the length of
the ridge; see Figs. 1(c) and 1(g). As shown in the next section,
the elastic energy of the ridge depends only on its width, W ,
and its length, λ:

UE = UE(λ = 2� − x,W ). (2)

In order to derive the relevant equations in a simple way,
we first neglect the transverse curvature of the ridge (ϕ = 0).
The crack tip moves to a position that minimizes the total
energy [1,22,23]. For a displacement-controlled experiment,
the requirement that the energy is minimal, dU/ds = 0,

together with Eq. (1), yields the condition

−2∂WUE sin θ + ∂�UE cos θ + 2γ t = 0, (3)

where d�/ds = cos θ and dW/ds = −2 sin θ (by convention
a positive θ corresponds to a decrease of W as the crack
advances). This equation is simply the balance of forces
projected along the crack direction. In addition, the pulling
force applied to the flap at position x is given by the work
theorem as F = ∂xUE for a quasistatic fracture propagation.
Using Eq. (2), we obtain the identities

F = ∂xUE = −∂λUE = − 1
2∂�UE. (4)

Combining Eq. (3) with Eq. (4) leads to the following
expression for the force:

F = γ t − ∂WUE sin θ

cos θ
. (5)

The fracture path is obtained by requiring that the tear follows
the direction where the force is minimal for the advancement
of the crack tips, ∂θF = 0. A differentiation of Eq. (5) with
respect to θ gives the direction followed by the cracks

sin θ = ∂WUE/(γ t). (6)

Substituting Eq. (6) in Eq. (5) gives

F = γ t
√

1 − [∂WUE/(γ t)]2 = −∂λUE, (7)

where we also used Eq. (4).
Once the expression of the elastic energy UE(λ,W ) of the

fold is known, Eq. (7) gives the expression of the ridge length
λ as a function of its width W and the material constants
(γ , t , Young modulus E, and Poisson ratio ν). Substituting
this expression of λ into Eq. (6) gives then the expression of
θ as a function of W and the material constants. Since θ is
the local angle between the tangent to the crack path and the
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x axis, the path is determined from the differential equation
dW/d� = −2 tan θ (W ) with the initial condition W (0) = W0.
However, it is more convenient to place the point where the two
cracks meet at the origin of the coordinates and to consider
the increase of the distance W between the two cracks as a
function of the distance to the origin (which we still denote �

for simplicity). This is achieved with the differential equation

dW

d�
= 2 tan θ (W ) and W (0) = 0. (8)

To obtain the relevant equations for a finite transverse
curvature of the ridge, we notice that Eqs. (6) and (7) are
equivalent to [37]

F = γ t cos θ and ∂WUE = γ t sin θ, (9)

which correspond to the projections of the forces along the
x and y axis as shown in Figs. 1(c) and 1(d) (when ϕ = 0).
Therefore, a finite transverse curvature of the ridge modifies
Eqs. (9) as follows:

F + ∂WUE sin ϕ = γ t cos θ, (10a)

∂WUE cos ϕ = γ t sin θ. (10b)

Notice however that, as shown below, the influence of the angle
ϕ is essentially negligible except in a small region, W � Wc,
near the tip of the detached flap where the two cracks meet.
In the next section, we show that ϕ depends only on λ and W .
Therefore, Eqs. (10a) and (4) give the expression of the ridge
length λ as a function of W and θ (and the material constants).
This expression of λ is then used in Eq. (10b) to obtain the
expression of θ as a function of W . The crack paths are finally
determined by solving Eq. (8).

III. ELASTIC ENERGY

In order to compute explicitly the crack paths, we need to
obtain the elastic energy of the system. As seen in Fig. 1(b),
the elastic energy focuses in a small folded region joining the
flap to the film between the two crack tips as the applied
force increases up to the onset of crack displacement. As
mentioned above and seen in Figs. 1(e)–1(g), this folded
region, containing essentially all the elastic energy, possesses
the characteristics of a Lobkovsky-Witten ridge. We assume
that such a ridge describes the elastic energy of our system.
Notice that, if the stretching modulus, Et , is low or the fracture
energy γ , is large, the flap could stretch significantly when it
is pulled. Therefore, if Et/γ � 1, this additional stretching
energy should be taken into account (see Ref. [38] for such
an extension of the theory in the case of adhesive sheets). The
experiments we consider are characterized by Et/γ � 1, and
we thus assume that the elastic energy is mainly focused in the
ridge.

The geometry and the elastic energy of the Lobkovsky-
Witten are known [42–46] and are recovered in the Appendix
using a simple scaling approach:

UE = CRB (Wα7/t)1/3, (11a)

λ � h = Cλ(W 2t/α)1/3, (11b)

where CR = R[12(1 − ν2)]1/6 with R = 1.20 ± 0.04 [44],
B = Et3/[12(1 − ν2)] is the bending modulus, and h is the

height of the ridge in the z direction and is proportional to its
length λ [see Fig. 1(c)]. The constant Cλ is unknown and is
considered as a free parameter of order 1. The parameter α

is the dihedral angle of the ridge [see Fig. 4(a)]. This angle
is eliminated between Eqs. (11a) and (11b) to obtain the elastic
energy as a function of the width W and the length λ of the
ridge as assumed to derive Eqs. (10):

UE(λ,W ) = C7
λCR Bt2W 5λ−7. (12)

Therefore, we have

F = −∂λUE = 7C7
λCR Bt2W 5λ−8, (13a)

∂WUE = 5C7
λCR Bt2W 4λ−7. (13b)

The remaining quantity to determine before computing the
crack paths is the angle ϕ. From Fig. 1(e), it is expected that
b/W � 1 leading to sin ϕ � 4b/W and cos ϕ � 1. When W

decreases as the two cracks get closer, the ratio b/W could,
a priori, increase to reach values of order 1. However, we
show in the Appendix that b � λα/4, which combined with
Eq. (11b) gives

b/W � C3
λWt/(4λ2). (14)

Therefore, we have to evaluate this quantity a posteriori, once
λ is known, to verify that it is indeed small. We assume
b/W � 1 for the moment and we verify below the consistency
of this assumption. We thus have

sin ϕ � C3
λ Wtλ−2 and cos ϕ � 1. (15)

Using Eqs. (10a) and (13) together with the expression of
the angle ϕ Eq. (15), we obtain the equation giving the length
of the ridge

7C7
λCR Bt2W 5λ−8 + 5C10

λ CR Bt3W 5λ−9 = γ t cos θ. (16)

Depending on which of the two terms of the left-hand side
of Eq. (16) dominates, we get two different regimes. The first
term dominates when

λ � (
5C3

λ

/
7
)
t, (17)

which is expected to be the dominant regime. Physically,
λ cannot be smaller than the film thickness. Therefore, the
second term never dominates but its influence increases as λ

approaches t and can be estimated by neglecting the first term.
Since the second term encodes the influence of the transverse
curvature of the ridge, we see that it is essentially negligible.

IV. SCALING FOR W � Wc

Neglecting the second term of the left-hand side of Eq. (16),
we obtain

λ = [
7C7

λCR BtW 5
/

(γ cos θ )
]1/8

. (18)

Even if we have neglected the term containing sin ϕ, we
still have to consider the condition ensuring the validity
of Eq. (15), namely b/W � 1, because we have to verify
the validity of the condition Eq. (17) involving both terms
of Eq. (16). The condition b/W � 1 is verified explicitly
by using Eqs. (14) and (18) and leads to the equivalent
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condition W � W� ∼ γ /E ∼ 1 μm,1 where we used some
typical values for bidirectional polypropylene films employed
in the experiments [37,41]. The domain of validity of the
approximation consisting in neglecting the second term of
Eq. (16) is made explicit by using Eqs. (17) and (18):

W � Wc ∼ t

(
γ

Et

)1/5

. (19)

The length Wc is the distance between the two crack tips at
which the exponent of the power law characterizing the crack
paths changes from 8/11 to 9/8 as W decreases; see below.

The length W� fixes the domain of validity of Eq. (16),
which is derived by assuming b/W � 1. The length Wc fixes
the domain of validity of the approximation used in this
section where one term of Eq. (16) is neglected. Therefore,
the condition W � W� must always be satisfied to obtain
consistent results. Since the regime discussed in this section
is valid for W � Wc, the condition W � W� is certainly
verified if W� < Wc. This last inequality sets a limit on the
film thickness: t > t� ∼ γ /E ∼ 1 μm. This limit is satisfied
in the experiments we consider.

The direction followed by the crack path is obtained by
combining Eq. (10b) with Eqs. (13b), (15), and (18):

tan θ [cos θ ]
1
8 = 5

[
Cλ

7

] 7
8
[

CR

12(1 − ν2)

Et

γ

] 1
8
[

t

W

] 3
8

. (20)

This equation shows that for large W , as considered in this
section, θ is small and the left-hand side can be approximated
by tan θ . We can now solve Eq. (8) to obtain the crack path
equation

W (�)

t
= 1.56

[
C7

λCR

(1 − ν2)

] 1
11

[
Et

γ

] 1
11

[
�

t

] 8
11

. (21)

The exponent 8/11 � 0.73 is very close to the exponent
measured experimentally and fits quite well the data for large
W ; see Fig. 2. The prefactor Et/γ depends on the material
constants and reflects the competition between elastic and
fracture energies as expected. The fracture energy favors
straight crack paths with θ = 0 to minimize the crack length,
whereas the elastic energy favors θ = π/2 in order to reduce
the width of the ridge as “quickly” as possible. Equation (20)
shows these tendencies with θ → 0 as γ → ∞ and θ → π/2
when Et → ∞. The small value of the prefactor exponent
(1/11) explains why a simple rescaling by the film thickness
leads nevertheless to a good collapse of the data [41].

V. SCALING FOR W � Wc

As mentioned above, this regime is never fully reached
since the length of the ridge cannot be smaller than the film
thickness. The exponent derived here may thus be viewed as
an asymptotic limit. The crack path exponent near the tip of
the detached flap should approach this limit. This regime is
described by neglecting the first term of the left-hand side of

1We use the symbol ∼ when prefactors of order 1 are dropped and
the symbol � when higher-order terms are neglected.

FIG. 2. (Color online) Comparison between rescaled data, scal-
ings Eq. (26), and the numerical solution with Cλ � 1.45. Data from
Ref. [41] are rescaled using E = 2.2 GPa, K = 2.6 MPa m1/2 [41],
and γ = K2/E [23]. Data from Ref. [26] are rescaled using B =
1.5 10−4 Nm, γ t = 1.9 N [37], and ν = 0.3 [48]. The error on the
position of the flap tip is 10 μm. The shaded region corresponds to
W � Wp � 0.48. The inset shows a detached flap obtained once the
two cracks meet.

Eq. (16), which gives

λ = [
5C10

λ CR Bt2W 5
/

(γ cos θ )
]1/9

. (22)

The condition b/W � 1 is verified by using Eqs. (14)
and (22) and leads to the equivalent condition W � W ∗ ∼
t[γ /(Et)]2 ∼ 10−2μm for t ∼ 50 μm. Smaller values of
W are described by the regime b/W � 1. However, the
spatial resolution of the experiments is typically limited to
10 μm [26,41]; we do not discuss this marginal regime.
The domain of validity of the approximation consisting in
neglecting the first term of Eq. (16) is obtained by using
Eq. (17) with the reverse inequality sign and Eq. (22). We
obtain W � Wc, where Wc is exactly the same, prefactor
included, as the one obtained in Eq. (19), as it should be.
The necessary condition W ∗ < Wc sets the same limit on the
film thickness as in the previous regime: t > t�.

The direction followed by the crack path is obtained by
combining Eq. (10b) with Eqs. (13b), (15), and (22):

tan θ [cos θ ]
2
9 = C

− 7
9

λ

[
5CR

12(1 − ν2)

Et

γ

] 2
9
[
W

t

] 1
9

. (23)

This equation shows that for small W , as considered in
this section, θ is small and the left-hand side can again be
approximated by tan θ . The crack path equation is obtained by
solving Eq. (8) using Eq. (23):

W (�)

t
= 1.53

[
C

− 7
2

λ CR

(1 − ν2)

] 1
4
[
Et

γ

] 1
4
[
�

t

] 9
8

. (24)

The exponent increases from 8/11 to 9/8 as the distance
W between the two crack tips tends to zero in reasonable
agreement with data; see Fig. 2. Notice that this regime is
difficult to probe experimentally because it is close to the
experimental spatial resolution [26,41].
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VI. COMPARISON WITH DATA

Equations (21) and (24) giving the crack paths in the two
identified regimes are rescaled as follows:

W =
[
Et

γ

] 1
5 W

t
and �̄ =

[
Et

γ

] 2
5 �

t
, (25)

to obtain

W = C1 �̄
8

11 for W � Wc, (26a)

W = C2 �̄
9
8 for W � Wc, (26b)

where

C1 = 1.56

[
C7

λCR

(1 − ν2)

] 1
11

, C2 = 1.53

[
C

− 7
2

λ CR

(1 − ν2)

] 1
4

,

(27)
Wc = 0.65

[
(1 − ν2)C17

λ C−1
R

] 1
5 , CR = R[12(1 − ν2)]

1
6 ,

whereR = 1.20 ± 0.04 [44]. Figure 2 shows a nice collapse of
the data rescaled with Eqs. (25) together with a good agreement
with Eqs. (26). The value C1 = 2.1 is obtained from a fit of
the data for large �̄, which implies, from Eq. (27), Cλ � 1.45
for ν = 0.3 [48]. As expected, the free parameter is of order 1.
The parameter C2 � 1.3 is then computed from Eq. (27).

In order to obtain the evolution of W when it is of order 1, we
need to solve the problem numerically because both terms of
the left-hand side of Eq. (16) have the same order of magnitude.
For this purpose, we rescale W using Eq. (25) and define
λ̄ = λ/t . Equation (16) becomes

7AW
5
λ̄−8 + 5AC3

λ W
5
λ̄−9 = 1, (28)

where A = C7
λCR/[12(1 − ν2)] and where we set cos θ = 1,

since θ is always small as seen above. Equation (10b) together
with Eqs. (8), (13b), and (15) gives the following differential
equation:

dW/d�̄ = 10AW
4
λ̄−7, (29)

where � has been rescaled using Eq. (25) and sin θ has
been replaced by tan θ . The differential equation, Eq. (29),
is thus supplemented by an algebraic constraint, Eq. (28). This
semiexplicit differential-algebraic equation is easily solved
numerically using, for example, Mathematica. The resulting
crack path is reported in Fig. 2 and describes the data well.

The quantities W�, W ∗, and t� set limits for the mathe-
matical consistency of the model; they are all satisfied for the
experiments we consider. The quantity Wc is a limit separating
the two identified regimes; one of them being only asymptotic.
Physically, the length of the ridge is expected to be limited
by the film thickness, namely λ̄ � 1. Equation (28) imposes
then W � Wp = [A(7 + 5C3

λ)]−1/5, which provides a physical
limit of this model; see Fig. 2.

VII. SMALLER PEELING ANGLES

Finally, we discuss briefly the situation where the peeling
angle is smaller than π . We expect that a Lobkovsky-Witten
ridge emerges only for a peeling angle close to π such that the
fold joining the cracks possesses a transverse curvature and
pinched edges. For smaller peeling angles φ, the two crack

tips should no longer be points of high curvature in the sheet
(compared to the average curvature in the ridge). Therefore,
the ridge joining them should be similar to the one occurring
for adhesive sheets [37,39] and should contain only bending
energy. The energy of such a ridge has been computed in
Ref. [26]:

UE(λ,W ) = f (φ)
BW

λ
, f (φ) = 4[1 − cos(φ/2)]2, (30)

where B is the bending modulus of the sheet, and λ and W are
the length and the width of the ridge, respectively. Therefore,
instead of Eq. (13), we have now

F = −∂λUE = f (φ)
BW

λ2
and ∂WUE = f (φ)

B

λ
. (31)

For such a ridge, there is no transverse curvature (ϕ = 0).
Equation (10a) together with Eq. (31) fixes the ridge length as

λ = [f (φ)BW/(γ t cos θ )]1/2. (32)

The crack path direction is obtained by combining Eq. (10b)
with Eq. (31) and using Eq. (32):

tan θ [cos θ ]
1
2 = [f (φ)B/(γ tW )]1/2. (33)

This equation shows that for large W (W � 1 mm), θ is small,
and the left-hand side can be approximated by tan θ . We can
now solve Eq. (8) to obtain the crack path equation:

W (�)

t
=

[
3f (φ)

4(1 − ν2)

] 1
3
[(

Et

γ

) 1
2 �

t

] 2
3

. (34)

FIG. 3. (Color online) (a) Data for the crack paths in the trousers
configuration from Refs. [40,41] rescaled by the sheet thickness.
Inset: Schematic of the trousers configuration where large arrows
indicate the directions of the applied forces. (b) Same data rescaled
by the scaling obtained in Eq. (34). Data are rescaled using E = 2.2
GPa, K = 2.6 MPa m1/2 [41], and γ = K2/E [23]. The crack path
obtained from Eq. (34) is shown for φ = 90◦ (solid line) and φ =
80◦ (dashed line). (a, b) The different colors correspond to several
realizations of the same experiment.
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We notice that the peeling angle does not affect the exponent
of this scaling as for the tearing of adhesive sheets [26,39].
Experiments for various peeling angles smaller than π are
needed to test this scaling.

Notice, however, that this scaling with φ = π/2 should
describe well the data obtained in Refs. [40,41] in the
“trousers” configuration; see inset of Fig. 3(a). Indeed, in this
configuration, we expect that the crack tips should not be points
of high curvature in the sheet and the ridge joining them should
also be described by Eq. (30). The bending energy stored in the
sheet outside this ridge should not affect significantly the crack
path. Figure 3 shows the evolution of the distance between
the two crack tips as a function of the distance from the point
where they meet. In Fig. 3(a), the data are rescaled by the sheet
thickness, as proposed in Ref. [41], whereas in Fig. 3(b), the
data are rescaled according to the scaling obtained in Eq. (34).
A better collapse of the data is obtained in Fig. 3(b) compared
to Fig. 3(a) together with a good agreement with Eq. (34)
without any fitting parameter.

VIII. CONCLUSIONS

We have shown how the energies focused in the tip
of the cracks and in the elastic ridge joining them act
together in a nontrivial way to produce characteristic crack
paths described by a power law with an exponent 8/11 and
a prefactor reflecting the competition between elastic and
fracture energies; see Eq. (21). The close agreement with
experiments is shown in Fig. 2. In addition, a second regime,
induced by the transverse curvature of the ridge, occurs for
small distances between the crack tips. This regime is only
asymptotic but slightly modifies the crack path such that the
exponent of the power law increases to reach values close to
9/8; see Eq. (24) and Fig. 2. A global rescaling has been found
and leads to Eqs. (25)–(27). The governing equation has also
been solved numerically to obtain the complete crack path,
beside its asymptotic scalings, with a good agreement with
experiments using only one free parameter of order 1.
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APPENDIX: LOBKOVSKY-WITTEN RIDGE

We consider a sheet of width W in the configuration shown
in Fig. 4 with a fixed dihedral angle α. We consider the limit of
small dihedral angle where the curved parts of the ridge shown
in Figs. 4(a) and 4(c) can be approximated by arc of circles.

Notice that the scalings Eq. (11), obtained from a boundary
layer analysis, are not restricted to small values of α [44].

(a) (b)

(c)
(d)

FIG. 4. (Color online) Schematics of the Lobkovsky-Witten ridge.

From the triangles ABD, BCD, and ABC of Fig. 4(b), we
have, respectively, cos α = R1/(R1 + b), cos α = (R1 − a)/R1,
and tan α � α = 2(b + a)/h. The two first relations implies
a = b cos α � b and R1 = b cos α/(1 − cos α) � 2b/α2. We
thus obtain α � 4b/h. In addition, we have λ = 2αR1, which
is equivalent to b � λα/4 as mentioned in the main text. Using
the expression of α obtained above, we also have λ � h.

The energy, UE , of the ridge is composed essentially of
a bending energy, Ub, in the longitudinal direction along its
length λ (z axis) and a stretching energy, Us , in the transverse
direction along its width W (y axis); see Fig. 4(a). These ener-
gies are localized in a region of area S ∼ λW . From Fig. 4(b),
the longitudinal curvature is given by κ ∼ a/h2 ∼ b/λ2.
Therefore, the bending energy reads

Ub ∼ Et3(b/λ2)2S ∼ Et3α2W/λ. (A1)

The stretching is due to the sag of the ridge inducing an increase
in length along its width of order (b/W )2. The stretching
energy thus reads

Us ∼ Et(b/W )4S ∼ Et α4λ5/W 3. (A2)

Upon minimization of the total energy UE = Ub + Us with
respect to λ (∂UE/∂λ = 0), we obtain the scalings Eq. (11) of
the main text.

The angle ϕ originating from the sag of the ridge is
computed from Fig. 4(d), where we have R2 = W 2/(8b) + b/2
and sin ϕ = W/(2R2) � 4b/W at the first order in b/W . Using
the expression of b obtained above, we have sin ϕ � λα/W .
Using Eq. (11b) of α, we obtain Eq. (15).
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