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Skewness in (1 + 1)-dimensional Kardar-Parisi-Zhang–type growth
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We use the (1 + 1)-dimensional Kardar-Parisi-Zhang equation driven by a Gaussian white noise and employ
the dynamic renormalization-group of Yakhot and Orszag without rescaling [ J. Sci. Comput. 1, 3 (1986)]. Hence
we calculate the second- and third-order moments of height distribution using the diagrammatic method in the
large-scale and long-time limits. The moments so calculated lead to the value S = 0.3237 for the skewness. This
value is comparable with numerical and experimental estimates.
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I. INTRODUCTION

The study of surface growth has been one of the most
important problems in nonequilibrium statistical physics over
the past few decades [1–5]. The most generic continuum model
of surface growth is the Kardar-Parisi-Zhang (KPZ) equation
that is endowed with interesting properties of statistical scale
invariance. Kardar, Parisi, and Zhang [6] suggested a nonlinear
differential equation for local surface growth in the form

∂h(x,t)

∂t
= ν0∇2h + λ0

2
(∇h)2 + η(x,t), (1)

where h(x,t) is the height of the surface at position x and time t

on a d-dimensional substrate and ν0 is the surface tension that
has a tendency to make the surface smooth, and the coupling
constant λ0 measures the strength of the nonlinear interaction
term. The nonlinear term induces local growth along the
normal to the surface and gives rise to lateral correlations. On
the other hand, the linear term (containing ν0) is responsible
for diffusion of particles to the local minima [7]. The driving
term η(x,t), describing the random deposition of particles,
is assumed to obey a Gaussian distribution to account for the
stochastic nature of the flux of particles. It is taken to be a
Gaussian white noise with zero mean, 〈η(x,t)〉 = 0, and with
correlation

〈η(x,t) η(x′,t ′)〉 = 2D0 δd (x − x′) δ(t − t ′), (2)

where D0 is a constant and the angular brackets denote
ensemble averages.

There are many deposition models that have been identified
with the KPZ universality class. A few examples are the
ballistic deposition [5,8], the Eden model [9–11], the restricted
solid-on-solid (RSOS) model [4], and the single step model
(SSM) [8,12]. A large number of growth experiments show
scaling exponents close to those of the KPZ growth problem.
A few important phenomena are thin-film growth [1], bacterial
colony growth [10,13], growth of fractals [14], turbulent liquid
crystal (TLC) growth [15,16], one-dimensional polynuclear
growth (PNG) [17–20], and so on. Apart from such growth
models, the KPZ problem is related to various other processes
such as the noisy Burgers equation [21], flame front propaga-
tion [22,23], directed polymer in random media [3,6,24–26],
interface roughening due to impurities [27,28], and growing
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interfaces in randomly stirred fluids [29]. A great amount
of work has been carried out, mostly via numerical and
experimental studies, in various KPZ-type surface growth
problems. The interplay of nonlinearity, surface tension, and
uncorrelated noise in such problems establish a universality
class distinct from that of the Edward-Wilkinson–type growth
in the large-scale long-time limit. The mean square of the
height fluctuations is related to the critical exponents [30] as

〈[h(x,t) − h(x′,t ′)]2〉 ∼ |x − x′|2χ ψ

( |t − t ′|
|x − x′|z

)
, (3)

where χ is the roughness exponent describing the self-affine
geometry of the surface, z is the dynamic exponent (the ratio
χ

z
= β is the growth exponent), and ψ(·) is a scaling function.

The roughness exponent χ is an important parameter [31]
in the studies of adsorption, catalysis [32], and optical
properties [33] of a thin film. The properties of a rough surface
are determined by the distribution of height fluctuations and it
deserves attention both in theoretical and experimental studies
of growing interfaces [4].

Various analytical approaches have been employed to study
the universality class of the KPZ equation on the basis
of scaling exponents in different dimensions. The dynamic
renormalization-group by Kardar, Parisi, and Zhang [6] leads
to the values of roughness exponent χ = 1

2 and dynamic
exponent z = 3

2 at one-loop order for the (1 + 1)-dimensional
KPZ equation. Motivations in the theoretical study of the KPZ
equation in higher dimensions have led to formulations of
different analytical techniques. Examples of such theoretical
studies are the mode coupling scheme [34–36], the operator
product expansion [37], the self-consistent expansion [38],
and a nonperturbative renormalization group [39,40] for the
calculation of scaling exponents in the strong coupling regime.

These exponents have also been computed numerically
considering different growth rules. Apart from the numerical
studies, many experiments have been carried out to find
these exponents. Various experimental studies [16,41,42] have
indicated that the roughness exponent is about 0.50 and
the growth exponent 0.33, which have been identified with
the universality class of the (1 + 1)-dimensional KPZ-type
surface growth.

Besides the critical exponents, the probability distribution
function is an important feature to classify the universality
of a physical process [26]. In experiments, measurements of
normalized moments is expected to be more accurate than
the measurement of scaling exponents [4]. Thus higher-order
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TABLE I. Values of skewness in one dimension.

System of study Reference Methodology Skewness

SSM (flat) [44] Numerical 0.28 ± 0.04
SSM (stationary) [44] Numerical ≈0.33
DPRM (point-to-line) [44] Numerical −0.296 ± 0.028
DPRP (point-to-line) [26] Numerical −0.29 ± 0.02
RSOS (flat) [26,56] Numerical ≈− 0.29
TLC (flat) [16] Experimental 0.29
PNG (curved) [20] Numerical 0.2241
PNG (flat) [20] Numerical 0.2935
PNG (stationary) [20] Numerical 0.35941
KPZ (mean field, flat) [47] Analytical ±0.46
Combustion front (flat) [57] Experimental 0.33
Combustion front (stationary) [57] Experimental 0.32
KPZ (present calculation) Eq. (70) Analytical 0.3237

moments can infer about the universality class in a better
way than the critical exponents [43]. Consequently, higher-
order moments are very important in the study of surface
morphology and the universality class can be better realized
through the values of higher-order moments and a parameter
such as skewness.

The skewness has been computed numerically employing
a variety of deposition algorithms. Krug et al. [44], using
the simulation in a single-step model for flat initial con-
dition, obtained |S| = 0.28 ± 0.04 in the transient regime.
Following the same model, they prepared stationary interfaces
by taking uncorrelated spins (σi = ±1) and obtained |S| ≈
0.33. Prähofer and Spohn [20] took the polynuclear growth
model and mapped it into a random permutation through the
droplet geometry thereby onto Gaussian random matrices to
understand the dependence of the initial conditions on height
fluctuations. They inferred that the droplet and flat substrates
have the same scaling form but distinct universal distributions.
They estimated the skewness for three different shapes, namely
curved, flat, and stationary self-similar in (1 + 1) dimensions.
For the flat shape, they obtained S = 0.2935, for the curved
shape S = 0.2241, and for the stationary self-similar case
S = 0.35941. They proposed an expression for the height
distribution, namely h(x,t) � v∞t + (�t)1/3ζ with ζ a random

variable, where � = D2
0λ0

8ν2
0

is a model parameter and v∞ is the

growth rate in the asymptotic limit [15]. It was found that
ζ obeys the Tracy-Widom (TW) distribution corresponding
to the largest eigenvalues of random matrices [16]. For
curved interfaces the random matrices form a Gaussian unitary
ensemble (GUE) [45], whereas for flat interfaces they form a
Gaussian orthogonal ensemble (GOE).

In an experiment on growing interfaces in liquid crystal
turbulence, Takeuchi et al. [15,16] found that the growth and
roughness exponents are the same as those of the KPZ-type
growth in one dimension in the asymptotic limit. Their
experimental data indicated the value for skewness S � 0.29
for a flat interface, whereas for a curved interface their experi-
mental data converged to S = 0.2241. They concluded that the
probability distribution function (pdf) of interface fluctuations
precisely agrees with the GOE of TW distribution for the flat
interface, whereas the curved interface fluctuations agree with
the GUE of TW distribution, up to fourth-order cumulants.

Sasamoto and Spohn [45,46] solved the (1 + 1)-dimensional
KPZ problem with an initial condition of curved-height profile
and showed that the pdf follows the GUE of TW distribution
of random matrices.

It may be noted that there have been very few analytical
evaluations of the skewness and higher-order moments for
the KPZ-type growth problem. The one known to the authors
is a mean-field calculation yielding S = ±0.46 in (1 + 1)
dimensions [47] with the flat initial condition h(x,0) = 0 for
the transient regime.

In this work, we are interested in the KPZ growth problem
for a flat interface and seek to calculate the skewness of height
fluctuations in the stationary state. Consequently, we apply the
dynamic renormalization group scheme without rescaling to
the KPZ equation. This scheme was previously employed by
Yakhot and Orszag [48] to calculate various universal numbers
in the case of hydrodynamic turbulence. This scheme enables
us to calculate the second- and third-order moments of height
fluctuations in a straightforward manner. The ensuing result for
skewness is compared with the findings of various numerical,
experimental, and theoretical studies in Table I.

The paper is organized as follows. In Sec. II, the
renormalizaiton-group scheme without rescaling is applied
to the KPZ problem. Section III outlines the definition
of statistical moments of height fluctuations and presents
calculations of the second- and third-order statistical moments.
Finally, Sec. IV presents a discussion and conclusion and a
comparison with other findings.

II. RENORMALIZATION SCHEME
WITHOUT RESCALING

The nonlinear dynamics described by the KPZ equation (1)
incorporates interaction among many degrees of freedom [30].
The complexity of such interactions among the collective set
of height fluctuations is most easily seen when we Fourier
transform the height fluctuations h(x,t) and the driving field
η(x,t). The Fourier space is also suitable for employing the
dynamic renormalization-group techniques [49]. The Fourier
transform of the height fluctuations h(x,t) is expressed as

h(x,t) =
∫

ddk dω

(2π )d+1
h(k,ω) ei(k·x−ωt), (4)
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where d is the substrate dimension. The stochastic noise
η(x,t) is also Fourier transformed in a similar manner. The
Fourier amplitude of the noise fluctuations has a zero mean,
〈η(k,ω)〉 = 0, and the noise correlation can be expressed as

〈η(k,ω) η(k′,ω′)〉 = 2D0 (2π )dδd (k + k′) 2πδ(ω + ω′), (5)

in the Fourier space, as a consequence of Eq. (2). Using Eq. (4),
the Fourier transform of the KPZ equation [Eq. (1)] is obtained
as

(−iω + ν0k
2) h(k,ω)

= η(k,ω) − λ0

2

∫∫
ddq d�

(2π )d+1
[q · (k − q)]

×h(q,�) h(k − q,ω − �). (6)

which is in a form particularly useful for implementing the
renormalization-group scheme.

A. Scale elimination

To implement the renormalization-group scheme, we elim-
inate height fluctuations h>(q,�) belonging to the shell
�0e

−r � q � �0 in the wave-vector space by substituting for
h>(q,�) in the equation for h<(k,ω) following from Eq. (6).
This process generates a perturbation series in powers of the
coupling constant λ0. Considering terms up to second order in
λ0 yields the equation

[−iω + ν0k
2 + �(k,ω)] h<(k,ω)

= η<(k,ω) − λ0

2

∫∫
ddq d�

(2π )d+1

× [q · (k − q)] h<(q,�) h<(k − q,ω − �) (7)

in the range 0 � k � �0e
−r in the wave-vector space, where

�(k,ω) is the self-energy correction represented by the
amputated part of the Feynman diagram shown in Fig. 1.
The corresponding loop integral is given by

�(k,ω) = 4

(
−λ0

2

)2 ∫
ddq

(2π )d
(k · q) [q · (k − q)]

×
∫ ∞

−∞

d�

2π
|G>

0 (q̂)|2 (2D0) G>
0 (k̂ − q̂), (8)

where G0(k̂) ≡ G0(k,ω) = [−iω + ν0k
2]−1 is the bare prop-

agator and the prefactor 4 is a combinatorial factor. Following
Refs. [30,48], we symmetrize the internal momenta by taking
the transformation q → (q + k/2). Performing the frequency
convolution and evaluating the integral over the internal

4

FIG. 1. Self-energy correction. The self-energy �(k,ω) corre-
sponds to the loop. Propagators are indicated by arrowed lines and
correlation by a wiggly line.

+ 2

FIG. 2. Perturbation expansion of the correlation Q(k,ω) to one-
loop order.

momenta in the shell �0e
−r � q � �0 yields the self-energy

�(k,0) = λ2
0D0

2ν2
0�2−d

0

Sd

(2π )d

(
2 − d

2d

)
e(2−d)r − 1

2 − d
k2 (9)

in the large-scale (k → 0) and long-time (ω → 0) limits,
where Sd = 2πd/2

�(d/2) is the surface area of a sphere of unit radius
embedded in a d-dimensional space. As a result of the above
elimination, the effective surface tension is obtained as

ν<(r) = ν0

[
1 + 1

4
Kd

λ2
0D0

ν3
0�2−d

0

e(2−d)r − 1

d

]
, (10)

where Kd = Sd

(2π)d and the second term in the parentheses
comes from the self-energy correction.

The height-height correlation is also expanded in a pertur-
bative series in a similar manner. This gives rise to a correction
to the noise amplitude, given by

2D<(r) = 2D0 + 2

(−λ0

2

)2 ∫
ddq

(2π )d
[q · (k − q)]2

×
∫ ∞

−∞

d�

2π
|G>

0 (q̂)|2 (2D0)2 |G>
0 (k̂ − q̂)|2, (11)

where D<(r) is the effective amplitude of noise correlation,
whereas D0 is the bare parameter appearing in the noise
correlation in Eq. (5). The corresponding equation is shown
diagrammatically in Fig. 2.

Calculating the loop integral in the large-scale and long-
time limits, k → 0 and ω → 0, the correction to the noise
amplitude is obtained as

�D = D0
λ2

0D
2
0

4ν3
0�2−d

0

Sd

(2π )d
e(2−d)r − 1

2 − d
. (12)

Thus the effective amplitude of the noise correlation is given
by

D<(r) = D0

[
1 + 1

4
Kd

λ2
0D0

ν3
0�2−d

0

e(2−d)r − 1

2 − d

]
. (13)

We observe that the surface tension ν0 and noise amplitude
D0 acquire corrections due to the elimination of small scales
belonging to the high-momentum shell �0e

−r � k � �0.

B. Flow equations and fixed point

To implement the renormalization scheme, we shall follow
a procedure suggested by Yakhot and Orszag [48,50] where
the renormalized parameters are not rescaled after the above
scale elimination operation. A particular advantage with
this scheme is that the flow equations for the renormalized
parameters are obtained directly with respect to the elimination
parameter r . Implementing this scheme, we obtain, from
Eqs. (10) and (13), the flow equations for the renormalized
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surface tension ν(r) and renormalized noise amplitude D(r)
as the differential equations

dν

dr
= 1

4
Kd

(
2 − d

d

)
λ2

0D(r)

ν2(r)�2−d (r)
(14)

and

dD

dr
= 1

4
Kd

λ2
0D

2(r)

ν3(r)�2−d (r)
, (15)

where �(r) = �0e
−r . In this scheme, there is no flow equation

for the coupling constant λ0 as it does not acquire any
correction due to Galilean invariance. In order to find the fixed
point, we define an effective coupling, g(r), as

g(r) = Kd

λ2
0D(r)

ν3(r)�2−d (r)
. (16)

Using Eqs. (14) and (15), the flow equation for this effective
coupling is obtained as

dg

dr
= a g(r) − b g2(r), (17)

where a = 2 − d and b = 3−2d
2d

. Integrating this equation, we
obtain an r-dependent expression for the effective coupling,
given by

g(r) = g0e
ar

1 + b
a
g0(ear − 1)

, (18)

where g0 = g(0) = Kd
λ2

0D0

ν3
0 �2−d

0
. The fixed point value g∗ is

obtained in the limit r → ∞. For d � 2, we get

g∗ = a

b
= 2d(2 − d)

(3 − 2d)
. (19)

We see that the fixed point value g∗ diverges for the substrate
dimension d = 1.5 and it is finite and positive in the range
0 � d < 1.5. However, in the range 1.5 < d < 2, the coupling
constant is finite but negative, and it vanishes at d = 2. These
fixed point values are consistent with Frey and Täuber’s one-
loop calculation [51, cf. Eq. (3.18)]. In this paper, we are
interested in the substrate dimension d = 1; thus the effective
coupling constant approaches the fixed point value g∗ = 2.

Using Eqs. (16) and (18), the differential Eqs. (14) and (15)
yield the exact solutions

ν(r) = ν0

[
1 + bg0

a
(ear − 1)

]a/4bd

(20)

and

D(r) = D0

[
1 + bg0

a
(ear − 1)

]1/4b

. (21)

For very large r , the above solutions lead to the asymptotic
expressions

ν(r) � ν0

(
bg0

a
ear

)a/4bd

(22)

and

D(r) � D0

(
bg0

a
ear

)1/4b

. (23)

in the large-scale limit. Noting that a = 1 and b = 1
2 for our

case d = 1, these expressions for surface tension and noise
amplitude reduce to

ν(r) � ν0

√
g0

2
er/2 (24)

and

D(r) � D0

√
g0

2
er/2. (25)

These asymptotic expressions, for very large r , correspond to
the renormalized surface tension

ν(k) � ν0

√
λ2

0D0

2πν3
0

k−1/2 (26)

and renormalized noise amplitude

D(k) � D0

√
λ2

0D0

2πν3
0

k−1/2 (27)

in the large-scale long-time limit.
The dynamic exponent z can be defined via the renormal-

ized response function as

G−1(k,ω) = [−iω + ν(k)k2]−1 ∝ kz φ

(
ω

kz

)
, (28)

suggesting the scaling ν(k)k2 ∼ kz. This leads to the dynamic
exponent z = 3

2 and roughness exponent χ = 1
2 , the latter

being a consequence of the scaling relation χ + z = 2.

III. STATISTICAL MOMENTS AND SKEWNESS

The nth moment of the height fluctuations is defined as

Wn = 〈[h(x,t) − h̄(t)]n〉. (29)

These moments obey power laws in the stationary state and
they scale as Wn ∼ Lnχ , where L is the size of the substrate.

The statistical measure corresponding to the (square of)
interface width (or standard deviation) is given by the second
moment,

W2 = 〈h2(x,t)〉 − 〈h(x,t)〉2. (30)

The skewness is related to the third moment,

W3 = 〈h3(x,t)〉 − 3〈h2(x,t)〉〈h(x,t)〉 + 2〈h(x,t)〉3. (31)

In this paper, we calculate the skewness S of surface height
fluctuations in the KPZ surface growth model. It is defined as

S = W3

(W2)3/2
. (32)

We present the calculations of the moments W2 and W3 in the
following subsections.

A. The second moment

The second moment is expressed in the Fourier space as

〈h2(x,t)〉 =
∫

ddk dω

(2π )d+1

∫
ddk′ dω′

(2π )d+1
〈h(k,ω) h(k′,ω′)〉

× ei(k+k′)·x e−i(ω+ω′)t . (33)
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We shall assume the growth process to be statistically
homogeneous in space and stationary in time. This assumption
yields the form

〈h(k,ω) h(k′,ω′)〉 = Q(k,ω) (2π )d δd (k + k′) 2π δ(ω + ω′).

(34)

From Eq. (6), we see that 〈h(k,ω)〉 = 0 for any k �= 0,
implying 〈h(x,t)〉 = 0 for all practical purposes. Thus from
Eqs. (30), (33), and (34), we obtain

W2 = 〈h2(x,t)〉 =
∫

ddk dω

(2π )d+1
Q(k,ω). (35)

We write the integrand in terms of renormalized quantities as

W2 =
∫

ddk dω

(2π )d+1
G(k,ω) L2(k,ω) G(−k, −ω). (36)

We first consider the bare value

L
(0)
2 (k,ω) = 2D0 + 2

(−λ0

2

)2 ∫
ddq d�

(2π )d+1
[q · (k − q)]2

× |G0(q,�)|2 |G0(k − q,ω − �)|2 (2D0)2,

(37)

where the propagators are unrenormalized.
We evaluate the second term in Eq. (37), which corresponds

to the amputated part of the loop diagram in Fig. 2. Performing
the integrations over the internal frequency and internal
momentum in the shell �0e

−r � q � �0, we obtain

L<
2 (r) = 2D0 + Kd

λ2
0D

2
0

2ν3
0�2−d

0

e(2−d)r − 1

2 − d
, (38)

Following Yakhot and Orszag’s procedure of renormalization,
we make the assumption that thin shells in momentum space
are eliminated recursively in iterative steps. This leads to a
differential equation for L2(r),

dL2

dr
= 1

2π

λ2
0 D2(r)

ν3(r) �(r)
, (39)

representing the evolution of L2(r) with respect to the recursive
steps of the shell elimination scheme. Using Eqs. (24) and (25),
and integrating over r , Eq. (39) yields

L2(r) = D0

√
2λ2

0D0

πν3
0�0

er/2 (40)

for d = 1 in the asymptotic limit of large r . We transform
this expression into a wave-number- and frequency-dependent
expression identifying �0e

−r as kf ( ω
kz ), where z is the

dynamic exponent and f (·) is a dimensionless scaling function.
Thus, we obtain the renormalized function corresponding to
Eq. (40) as

L2(k,ω) = D0

√
2λ2

0D0

πν3
0

k−1/2f −1/2
( ω

kz

)
. (41)

We identify the scaling function by considering consistency in
the ω → 0 limit, so

k f
( ω

kz

)
= 1

k3 ν2(k) |G(k,ω)|2 , (42)

where the modulus of the response function G(k,ω) signifies
further consistency with the fact that �0e

−r is a real quantity.
Thus the renormalized quantity L2(k,ω) is expressed as

L2(k,ω) = λ2
0D

2
0

πν2
0

k |G(k,ω)|. (43)

We notice that the first diagram in Fig. 2 does not contribute to
L2 and the contribution comes solely from the loop diagram.

Substituting the expression (43) into Eq. (36) and treating
the propagators as renormalized given by Eq. (28), with the
renormalized surface tension ν(k) coming from Eq. (26), we
obtain the contribution to the second moment as

W2 = λ2
0D

2
0

πν2
0

∫
ddk

(2π )d
k

∫ +∞

−∞

dω

2π

[
1

ω2 + ν2(k) k4

]3/2

. (44)

Performing the frequency integration using∫ +∞

−∞

dω

(ω2 + m2)α
=

√
π

(m2)α−1/2

�
(
α − 1

2

)
�(α)

(45)

and carrying out the momentum integration in Eq. (44), we
obtain

W2 = 4

π

(
D0

2πν0

)
1

μ
, (46)

where μ is an infrared cutoff in the momentum integration.

B. The third moment and skewness

The third moment 〈h3(x,t)〉 can be expressed in the Fourier
space as

W3 = 〈h3(x,t)〉 =
∫

ddk dω

(2π )d+1

∫
ddk′ dω′

(2π )d+1

×
∫

ddk′′ dω′′

(2π )d+1
〈h(k,ω) h(k′,ω′) h(k′′,ω′′)〉

× ei(k+k′+k′′)·x e−i(ω+ω′+ω′′)t . (47)

Contribution to W3 comes from the one-loop diagram shown
in Fig. 3. Thus W3 can be written in terms of the one-loop
contribution L3(k̂,k̂′) as

W3 =
∫

dd+1k̂

(2π )d+1

∫
dd+1k̂′

(2π )d+1
G(k̂) G(k̂′) L3(k̂; k̂′)

×G(−k̂ − k̂′), (48)

where k̂ stands for (k,ω) and k̂′ for (k′,ω′).

FIG. 3. The third-order moment.
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We first consider the bare value of the loop integral. Integrating over ω′′, the bare loop integral can be written as

L
(0)
3 (k,ω; k′,ω′) = 8

(−λ0

2

)3 ∫
ddq d�

(2π )d+1
[(q − k) · (k′ + k − q)] [q · (k − q)]

× [−q · (q − k′ − k)] Q0(q,�) Q0(k − q,ω − �) Q0(k + k′ − q,ω + ω′ − �). (49)

Carrying out the frequency convolution in Eq. (49), we
extract the leading-order contribution from this integral in the
large-scale and long-time limits, namely the limits k → 0,
k′ → 0, ω → 0, ω′ → 0 for the external momenta and
frequencies. Working out the momentum integration in the
high-momentum shell �0e

−r � q � �0, we obtain

L<
3 (r) = 3

2
Kd

λ3
0D

3
0

ν5
0�4−d

0

e(4−d)r − 1

4 − d
. (50)

As before, we consider the iterative nature of the shell
elimination scheme in thin shells in the momentum space and
obtain the flow of L3(r) in the form of a differential equation

dL3

dr
= 3

2π

λ3
0D

3(r)

ν5(r)

1

�3(r)
(51)

for d = 1. The functions ν(r) and D(r) being known from
Eqs. (24) and (25), the differential equation is solved to obtain

L3(r) = 3

2

λ0D
2
0

ν2
0�2

0

e2r (52)

in the asymptotic limit of large r .
The corresponding renormalized function L3(k̂; k̂′), being

symmetric with respect to interchange of k̂ and k̂′, its frequency
dependent expression can be obtained by replacing (�0e

−r )−2

with the expression

k−1k′−1f −1

(
ω

kz

)
f −1

(
ω′

k′z

)
. (53)

Employing Eq. (42) in (52), we thus obtain

L3(k,ω; k′,ω′) = 3

8π2

λ5
0D

4
0

ν4
0

k2 k′2 |G(k,ω)|2 |G(k′,ω′)|2.

(54)

Using this expression in Eq. (48), the third moment is obtained
as

W3 = 3

8π2

λ5
0D

4
0

ν4
0

∫
dd+1k̂

(2π )d+1

∫
dd+1k̂′

(2π )d+1
k2k′2 G(k̂)

× |G(k̂)|2 G(k̂′) |G(k̂′)|2 G(−k̂ − k̂′), (55)

where the propagators are treated as renormalized as expressed
in Eq. (28) with the renormalized surface tension ν(k) given
by Eq. (26). Performing the frequency integrations over ω and
ω′ yields

W3 = 3

2

(
D0

2πν0

)3/2 ∫ +∞

−∞
dkx

∫ +∞

−∞
dk′

x F (kx,k
′
x) (56)

in one dimension, where

F (kx,k
′
x) = U (kx,k

′
x)

V (kx,k′
x)

(57)

with

U (kx,k
′
x) = 3(|kx |3 + |k′

x |3) + 4|kx + k′
x |3/2(|kx |3/2 + |k′

x |3/2)

+ 14|kx |3/2|k′
x |3/2 + |kx + k′

x |3 (58)

and

V (kx,k
′
x) = 16 |kx | |k′

x |(|kx |3/2 + |k′
x |3/2 + |kx + k′

x |3/2)3.

(59)

The integrations in Eq. (56) can be decomposed to obtain

W3 = 3

2

(
D0

2πν0

)3/2 [
2
∫ ∞

μ

dkx

∫ ∞

μ

dk′
x F (kx,k

′
x)

+ 2
∫ ∞

μ

dkx

∫ ∞

μ

dk′
x F (−kx,k

′
x)

]
, (60)

where we have set infrared cutoffs at μ as these integrals have
infrared divergences. Thus we write

W3 = 3

2

(
D0

2πν0

)3/2

[2I (μ) + 2J (μ),] (61)

where

I (μ) =
∫ ∞

μ

dkx

∫ ∞

μ

dk′
x F (kx,k

′
x) (62)

and

J (μ) =
∫ ∞

μ

dkx

∫ ∞

μ

dk′
x F (−kx,k

′
x). (63)

The infrared divergences in these integrals suggest the follow-
ing forms:

I (μ) = I0 μ−3/2, (64)

J (μ) = J0 μ−3/2, (65)

where I0 and J0 are dimensionless constants.
Substituting from Eqs. (64) and (65) in Eq. (61), we obtain

the third moment as

W3 = 3

(
D0

2πν0

)3/2

(I0 + J0)
1

μ3/2
. (66)

According to the definition of skewness, we thus obtain from
Eqs. (46) and (66)

S = W3

W
3/2
2

= 3

8
(I0 + J0) π3/2. (67)

We calculate the constants I0 and J0 from Eqs. (62) and (63),
using the expressions given by Eqs. (57), (58), and (59) and
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obtain

I0 = lim
μ→0+

[μ3/2I (μ)] = 0.034946, (68)

J0 = lim
μ→0+

[μ3/2J (μ)] = 0.120089, (69)

by means of numerical integrations. The computation shows
convergence to the above numerical values as the parameter μ

is chosen to approach values close to zero.
From Eq. (67), the value of skewness is thus found to be

S = 3
8 (0.155035) π3/2 = 0.323732. (70)

IV. DISCUSSION AND CONCLUSION

We employed Yakhot and Orszag’s scheme of renormalization
without rescaling and obtained the renormalized surface
tension and the strength of the noise correlation for the surface
growth problem governed by the KPZ dynamics on a flat
substrate. This scheme of renormalization slightly differs from
the usual perturbative renormalization group analysis with
rescaling that has been employed for dynamical problems
by Ma and Mazenko [52], Forster et al. [21], and Medina
et al. [30]. This method allowed us the advantage of obtaining
the flow equations directly without rescaling by considering
the iterative nature of the scale elimination procedure. This
yielded the fixed point from the r-dependent expression of
effective coupling constant g(r) in the limit r → ∞. Similarly
to the other calculations, the renormalized surface tension
and the strength of the noise correlation are found to be
renormalized in the same way so D(r)/ν(r) is r independent,
a consequence of fluctuation dissipation theorem for the case
of (1 + 1)-dimensional KPZ equation [21,53].

To obtain a numerical value for the skewness, we employed
the diagrammatic approach for the second- and third-order
moments W2 and W3. The Fourier integrals of these moments
involve the loop integrals L2 and L3. The simplicity of
Yakhot and Orszag’s renormalization scheme allowed us to
find renormalized expressions for these loop integrals in a
straightforward manner. Although the renormalized diagrams
are infrared divergent, the calculated value of skewness turns
out to be finite due to cancellation of the infrared cutoff
parameter μ. We obtained a value of skewness S = 0.323732
for the flat geometry in the stationary state which is compared
with the results of numerical simulations for various growth
models and those of experiments in Table I. We present
a discussion with regard to these results in the following
paragraphs.

It has been shown by numerical simulations for polynuclear
growth (PNG) that the roughness and growth exponents are
in good agreement with the one-dimensional KPZ expo-
nents [17,18]. Further numerical work by Krug et al. [44]
and Bartelt and Evance [54] have ensured that the PNG model
belongs to the universality class of the KPZ growth model [4].
Prähofer and Spohn [20] have shown that the PNG model
follows the TW distribution with different initial conditions.
They estimated the skewness for three different shapes, namely
S = 0.2241 for the curved shape (GUE TW), S = 0.2935 for
the flat shape (GOE TW), and S = 0.35941 for the stationary
self-similar case [20]. On the other hand, the distribution of
height fluctuations for the KPZ growth model with sharp

wedge initial condition was shown to be the same as that
of the GUE TW distribution, as established by Sasamoto
and Spohn [45,46]. Calabrese and Doussal [55] obtained
the GOE TW distribution by mapping the one-dimensional
KPZ problem with flat initial condition to a one-end-free
directed polymer, referred to as a point-to-line configuration.
The curved initial condition, on the other hand, maps onto a
point-to-point configuration of the directed polymer.

For the case of directed polymers at zero temperature in
a random potential (DPRP), Kim et al. [26] introduced two
types of random site potentials μ(x,t), namely uniform and
Gaussian distributions for μ(x,t), with the bending energy
(γ ) of the polymer as the only tunable parameter. They
obtained skewness S = −0.29 ± 0.02 of the minimum energy
distribution in 1 + 1 dimensions for uniform distribution of
μ(x,t) for a point-to-line configuration via simulations for
γ > 1. The same value of skewness was obtained for Gaussian
distribution of μ(x,t), which is independent of γ . Kim and
others [26,56] studied height fluctuations of surface growth
using the RSOS model with a flat initial condition where
the scaling form of the height distribution matches with the
energy distribution of the DPRP within numerical accuracy.
The skewness in the same model turned out to be S ≈ −0.29,
suggesting universality of the probability distribution function.

Using a mean-field theory in terms of densities at different
heights applied to the KPZ equation in (1 + 1) dimensions,
Ginelli and Hinrichsen [47] started with the flat initial
condition h(x,0) = 0 and obtained the skewness S = ±0.46
for the transient regime. Takeuchi et al. [16] carried out an
experiment on a growing interface in liquid crystal turbulence
and established that it is in the KPZ universality class. For
flat initial conditions, their experimental asymptotic value
for skewness was close to �0.29 as suggested by their
experimental plots. These values are displayed in Table I for
comparison with our result.

We observe that our calculated result for the skewness
is comparable with some of the experimental values and
numerical simulations. It deviates from the nonstationary
results and the deviation is more pronounced from the result
for curved interfaces. This is expected as our calculations are
applicable for a flat geometry in the stationary state. We also
observe that the result of the mean-field calculation deviates
somewhat strongly from all other results. Since skewness
is determined by the underlying probability distribution, its
calculation following from the governing dynamics is of
importance in inferring the universality class. Moreover,
the existing studies indicate that the pdf is determined by
not only the governing dynamics but also by the boundary
conditions. Thus it may be said that there are different
subclasses belonging to the same universality class. Different
numerical values of skewness may thus be said to correspond
to different universality subclasses although they may have
the same scaling exponents for the correlation and response
functions.

Since the renormalization scheme involves calculations of
the statistical moments in the large-scale limit k → 0, such
calculations are expected to lead to the statistical properties
of the growth process at large scales. The fact that W2 and
W3 turn out to be infrared divergent implies a dominant role
of the large-scale fluctuations in determining these statistical

062402-7



TAPAS SINGHA AND MALAY K. NANDY PHYSICAL REVIEW E 90, 062402 (2014)

moments. Moreover, since the renormalization scheme in-
volves calculations in the long-time limit ω → 0, such cal-
culations are expected to capture the statistical properties of
the growth process in the stationary state.

However, for a large system, achieving a stationary state
is difficult [58], especially in experiments and numerical
simulations, unless a stationary state is taken as an initial
condition [59]. To achieve a stationary pdf for the flat
one-dimensional KPZ problem, Imamura and Sasamoto took
both-sided Brownian motion as an initial condition [58,60]
and obtained the generating function for the replica partition
function as a Fredholm determinant. This allowed for the
calculation of the pdf which was found to approach the Baik-
Rains F0 distribution in the long-time limit. Krug et al. [44]
investigated the stationary state skewness for the SSM model
with random uncorrelated spins (σi = ±1). They obtained
|S| ≈ 0.33, which agrees well with our calculated value.
Maunuksela et al. [61] identified that the universality class
of slow combustion fronts of a paper sheet belongs to the
KPZ universality class on the basis of scaling exponents.
With the same experimental conditions, Miettinena et al. [57]
performed an experiment on paper burning to find the
skewness from the pdf. They studied the height distribution
of combustion fronts for flat initial conditions in the saturation
regime and obtained the value S = 0.32 which agrees well
with our calculated value. However, it may be noted that
Takeuchi [62] has suggested that their analysis of the pdf may
need modifications.

Although our calculated value for the skewness (0.3237)
compares excellently (within 1–2%) with the above-mentioned
stationary values (0.33 and 0.32), we observe that there is a
slight departure (of about 10%) from the value S = 0.3594
coming from the PNG model [20]. This departure may be
due to the dominating role of large-scale fluctuations in
determining the moments W2 and W3. The infrared cutoff
μ may be interpreted as the inverse of the size L of the
substrate and thus the calculations appear to be influenced by
finite-size effects. In spite of this slight departure, together with
the agreements with the experimental results, our calculation
for the skewness seems to identify the relevant universality
subclass of the KPZ equation.

Ideally speaking, full information about the pdf enables
one to classify many seemingly similar problems into varying
universality classes. However, an analytical calculation of the
full pdf is an extremely difficult task, whereas the calculation
of higher-order moments such as the skewness is a more
viable approach. Thus a classification scheme for universality
beyond the scaling exponents can be formulated via the values
of skewness for various processes. Takeuchi and Sano [15]
have proved through the TLC experiment that the KPZ class
has geometry-dependent subclasses in spite of having the
same scaling exponents. Thus, to characterize the subclasses,
knowledge of skewness and higher-order moments is very
much essential. The calculation of skewness, directly from the
KPZ dynamics, is therefore an important step in identifying a
universality subclass of the KPZ equation.
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