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Nucleation phenomena in an annealed damage model: Statistics of times to failure
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In this paper we investigate the statistical behavior of an annealed continuous damage model. For different
model variations we study distributions of times to failure and compare these results with the classical case
of metastable nucleation in statistical physics. We show that our model has a tuning parameter, related to the
degree of damage reversibility, that determines the model’s behavior. Depending on the value of this parameter,
our model exhibits statistical behavior either similar to classical reversible nucleation phenomena in statistical
physics or to an absolutely different type of behavior intrinsic to systems with damage. This comparison allows
us to investigate possible similarities and differences between damage phenomena and reversible nucleation.
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I. INTRODUCTION

Damage as a complex phenomenon has been studied by
many authors. Studies that have recently appeared in the
literature illustrate the similarity between damage phenomena
and phenomena of phase transitions [1–3]. This similarity pro-
vides an opportunity to apply the well-developed formalism of
statistical physics to the occurrence of damage. Indeed, many
approaches [2–4] have been developed to apply equilibrium
statistical mechanics to damage phenomena. However, this
question remains far from being completely resolved since
damage phenomena usually exhibit more complex behavior
than gas-liquid or magnetic systems [3,5].

The approaches used to model damage can generally be
separated into two different categories: quenched or annealed.
In the case of quenched damage, the ensemble of systems is
represented by the initial distribution of system properties,
and fluctuations are attributed to differences in this initial
ensemble. This type of behavior can be described by the for-
malism of statistical physics [3,5]. However, damage growth
in this case is governed not by fluctuations occurring in time
but by the “frozen,” “topological” fluctuations of the initial
ensemble. This type of behavior is to be expected in the case
of brittle fracture when the dynamical time scale of fracture is
much faster than the time scale of material relaxation, so that
dissipation processes have no time to attenuate the quenched
defects.

On the contrary, in the case of annealed damage the
system’s behavior is governed by fluctuations occurring during
its evolution. These types of phenomena directly inherit
their behavior from the formalism of thermal fluctuations in
statistical physics. The main representative of the annealed
damage model is the Griffith theory, in which a crack that has
appeared as the result of a fluctuation can either disappear or
grow in size. These types of phenomena usually represent the
case of quasistatic load increase when relaxation processes
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have enough time to provide a “choice” for the crack to either
grow or heal.

In this paper we investigate the annealed behavior of a
continuous damage model [6]. We consider two major regimes
of damage growth: postcritical and precritical. In the case of
postcritical (or supercritical) loading we consider the values
of initial damage which are much higher than the critical
threshold. Due to the presence of nuclei with sizes larger than
critical the damage growth is fast, and the role of fluctuations
in the ensemble is determined by the quenched disorder of the
initial damage.

As the second regime we consider the precritical (subcriti-
cal) damage nucleation when the initial values of damage are
much lower than the critical threshold (all initial nuclei have
sizes much smaller than the critical). The role of fluctuations
in this case is played by a noise term we introduce into the
mesoscale equation so that the nucleation in the metastable
state is performed by means of annealed damage growth.

In Sec. II we introduce the model, while the statistical
distributions used in our study are presented in Sec. III. In
Sec. IV we investigate postcritical damage growth in the
presence of damage nuclei above a critical size. In Sec. V
we introduce noise into the system to simulate the irre-
versible behavior of precritical damage nucleation, for which
initially there are no nuclei larger than the critical size. In
Sec. VI, to make a correspondence with classical phenomena
of nucleation, we investigate what happens if our model
becomes reversible. In Sec. VII we introduce a tuning
parameter which switches the behavior of the system from
the irreversible, “damage” type to the reversible, “classical”
type intrinsic to statistical physics.

II. MODEL

In this paper we utilize the continuous damage model
developed by Cusumano et al. [6]. The model is used to
simulate the coupled macroscale-mesoscale physics of elastic
media and is based on the principle of stationary action in
theoretical mechanics.

The model follows the evolution of longitudinal displace-
ments u(t, x) and damage ϕ(t, x) in the time-space domain
until the point of failure when at some location the damage ϕ

reaches unity. In Ref. [6], the damage variable ϕ is interpreted
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as a microcrack or microvoid density, and the nondimensional
coupled-field evolution equations are

∂2u

∂t2
− c∇2 ∂u

∂t
− ∇(1 − ϕ)∇u = 0, (1)

∂ϕ

∂t
= η

〈ϕ
2

(∇u)2 − αϕ2/3
〉
, (2a)

u|x=0 = 0, {(1 − ϕ)∇u}|x=1 = F, (3)

where angle brackets indicate the positive part (that is, 〈�〉 =
� for � � 0 and zero otherwise), which makes damage growth
in our model irreversible (that is, when there is no “healing,”
the damage can only grow). The parameter c indicates the
strength of macroscale damping processes in the system, and
parameter η represents the time scale of damage growth.

The term αϕ2/3 is determined using Griffith energy ar-
guments, and represents the critical threshold above which
the damage is allowed to grow. The derivation of this term,
including the power 2/3, is discussed in detail in Cusumano
et al. [6].

In our simulations, a continuous model with 128 finite
elements is used. Numerical simulations are accomplished
with program code based on the Open Source Library
deal.II [7]. Further details on the model and its numerical
implementations can be found in Ref. [6].

The rate of damage growth, given by Eq. (2a), is propor-
tional to the difference between the tendency for the damage
to grow ϕ

2 (∇u)2 and the critical threshold αϕ2/3. Only damage
above the critical value ϕC = [ 2α

(∇u)2 ]3 is allowed to grow. This
works much like a threshold in the Griffith theory for a single
crack, or a potential barrier in nucleation. However, in the
case of our continuous model [6] we consider not separate
cracks but mesoscopic nuclei where each nucleus represents a
distribution of microcracks or other defects in a small volume.

The initial values of damage in each simulation must be
nonzero since, otherwise, the derivative ∂ϕ/∂t in Eq. (2a) is
zero and does not provide damage growth (the rate of damage
growth has a power-law dependence on ϕ and hence is zero
if the damage is zero). Therefore, in all ensembles considered
below we choose the initial values of damage to be nonzero
with the magnitude and stochastic distribution determined by
the ensemble.

One main difference between the model employed by
Cusumano et al. [6] and that used for our simulations is
that we utilize a constant load F = 3 × 10−4 as an external
boundary constraint. We choose constant load for this paper
for multiple reasons. First, the majority of results in statistical
physics are for constant boundary constraints, and since one
of the major goals of this study is to compare damage and
classical phenomena of nucleation, to develop this comparison
we utilize a constant loading here. Second, fatigue behavior of
a system under an oscillating load is more complex than the
damage arising from a constant load. Therefore, we follow
the principle of going from “simple to complex” and postpone
the investigation of cyclic fatigue arising from load oscillations
to future studies.

Throughout the manuscript we utilize different numerical
values for the parameters of Eqs. (1)–(3). These numerical

values do not represent specific constants or known properties
of particular systems. Instead, they are chosen merely to yield
reasonable times for numerical simulations at the Penn State
University Unix cluster. Since in the paper we consider very
different ensembles, from the postcritical to the precritical
with irreversible or reversible damage, simulations of each
ensemble generally require their own set of parameters. The
time of these numerical simulations is very sensitive to the
values of α and η: The values used in this work were chosen
to limit computation time to no more than 1 month using
20 CPUs for simulations of each ensemble.

III. STATISTICAL DISTRIBUTIONS

As a convenience to the reader, we here present the
probability distributions used in what follows. Throughout,
we will use a lowercase p to refer to the probability density
function (PDF) of the distribution, whereas a capital P will
refer to the cumulative distribution function (CDF).

Sample statistical distributions of times to failure for the
ensembles considered in the paper were fitted using many
different trial distributions. It was found that the closest
fits were provided by three distributions: namely, those of
exponential, Weibull, and gamma types.

The exponential distribution,

p(x) ≡ 1

μ
exp(−x/μ), (4a)

P (x) ≡ 1 − exp(−x/μ), (4b)

is a one-parameter distribution where the parameter μ repre-
sents the mean value. If a sample distribution is fitted by the
exponential distribution, the results are generally presented
in the form of a so-called exponential plot, wherein we
plot the dependence of − ln [1 − P (x)] against x so that the
exponential CDF transforms into a straight line.

The Weibull distribution,

p(x) ≡ β

x0

(
x

x0

)β−1

e
−( x

x0
)β
, (5a)

P (x) ≡ 1 − e
−( x

x0
)β
, (5b)

is a two-parameter distribution, where the parameter β is called
the Weibull exponent (or shape parameter), and x0 is the scale
parameter. This distribution also has its own plot: By plotting
ln{− ln[1 − P (x)]} vs ln x one obtains a straight line for a
“pure” Weibull distribution.

Finally, the gamma distribution,

p(x) ≡ xk−1

�k	(k)
e− x

� , (6a)

P (x) ≡
∫ x

0

yk−1

�k	(k)
e− y

� dy, (6b)

is also a two-parameter distribution, where k is the gamma
distribution exponent (or shape parameter), and � is the scale
parameter.
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IV. DAMAGE GROWTH WHEN INITIAL DISORDER
IS POSTCRITICAL

In this section we consider an ensemble with postcritical
(supercritical) damage growth, when the initial disorder in the
model is above a threshold so that nuclei larger than the critical
size are present.

Using the constant load F = 3 × 10−4 in our simulations,
the strain ∇u at early stages of damage growth is constant
throughout the model and equals the load F [since Eqs. (1)–(3)
are dimensionless]. For reasonable computation times, we set
α = 1.2 × 10−11 and η = 1.9 × 103. Note, however, that the
resulting statistical distribution of failure times is not sensitive
to the precise parameter values.

For this value of α the critical threshold for damage
is ϕC ≈ 2 × 10−11. For c we use a large value, c = 5, to
damp macroscale oscillations. For the same reason, the initial
displacement u was set equal to a static solution of Eq. (1) for
the given load.

For the initial values of the damage ϕ, similar to [6], we
utilize a uniform distribution in the range from 0 to 0.01,
independently and identically distributed in the spatial variable
x. Given the value of the critical threshold, ϕC ≈ 2 × 10−11,
the initial damage at all locations is much higher than ϕC with
a probability close to unity. Therefore, simulations with these
initial conditions correspond to the case of damage growth well
above the critical threshold, and we expect a burst evolution of
damage in simulations. Furthermore, because the initial nuclei
typically have sizes on the order of 10−4 − 10−2 (as a uniform
distribution from 0 to 0.01 among 128 elements), we expect
this burst evolution to be so fast and so deterministic that
neither changes in irreversibility criterion nor the introduction
of possible thermal microfluctuations in the system would have
any significant influence on the model’s behavior.

For a particular system in the ensemble, the postcritical
growth of damage starts from a priori defined (quenched)
initial values, and since well above the critical threshold
annealed fluctuations can be neglected, the system follows
a deterministic “trajectory” specified by the particular realiza-
tion of the initial disorder. To reach material rupture, that is, a
point at which the value of damage becomes equal to unity at
a particular location, a finite time is required.

The damage variable is present in the equation of “interac-
tions” [Eq. (1)] only via the expression (1 − ϕ), which for small
values of damage ϕ � 1 does not influence the evolution [via
Eq. (1)] of u until almost the point of the rupture. Therefore,
during almost the whole time prior to rupture, all locations
of the model are nearly decoupled and damage in each finite
element grows independently from the neighboring locations,
so that ∂ϕ

∂t
∝ η

ϕ

2 (∇u)2 ∝ ϕ. Only at the latest stages of damage
evolution does ϕ approach the value of unity, and so only at that
point do the nonlinear effects of interactions between different
locations begin to influence the statistics.

Thus, for small levels of damage its evolution at a particular
location is nearly independent from the damage state at other
locations. Therefore, the site of rupture is determined a priori
by the location with the maximal value of the initial damage.
Since for all simulations this location has the initial value of
damage always close to 0.01 (as a maximum of elements of a
sample distribution with the upper boundary 0.01), the times

(a)

(b)

FIG. 1. Cumulative distribution function of shifted times to
failure tf for postcritical irreversible nucleation: (a) CDF plot and
(b) exponential plot.

to failure are almost deterministic and have similar values for
all simulations with a very small variance.

To apply trial distributions, we shift the statistics of times
to failure by the minimum time to failure. The cumulative
distribution function of shifted times to failure tf is shown in
Fig. 1(a) as a CDF plot, and in Fig. 1(b) as an exponential plot.
Also in these figures we plot the maximum likelihood fit of
an exponential trial distribution. We see that the statistics of
failure times are exponential.

There is a need for experimental studies that specifically
investigate postcritical failure time distributions, that is, for
the case where initial disorder is above the critical threshold.
We hypothesize that the exponential distributions found here
are attributed to the structure of Eq. (2a) and will hold for any
postcritical system governed by a similar equation.

Indeed, neglecting the threshold term in Eq. (2a) and
assuming that the evolution of damage at each location is
decoupled from other locations (∇u = const), we obtain

∂ϕ

∂t
= η

ϕ

2
(∇u)2 ∝ ϕ. (2b)

The solution of this equation is

ϕ(t) = ϕ(t = 0)e
η(∇u)2

2 t . (7)
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At rupture we have ϕ(t) = 1 so that the equation for the
time of failure is

ϕ(t = 0) = e− η(∇u)2

2 tf . (8)

From probability theory, we know that if quantity x is
distributed in accordance with the PDF px(x) and quantity
y is a function of x, y = f (x), to keep the probabilities
invariant we require py(y)dy = px(x)dx. This provides the
connection between two probability distributions as px(x) =
py [f (x)] df

dx
. Thus, since the initial values ϕ(t = 0) of damage

are distributed uniformly, we expect failure times to be well
represented by an exponential distribution:

ptf (tf ) = const
d

dtf
e− η(∇u)2

2 tf ∝ e− η(∇u)2

2 tf . (9)

On the other hand, if Eq. (2a) had the form

∂ϕ

∂t
= η

〈
ϕ�

2
(∇u)2 − αϕ2/3

〉
, (2c)

with � 	= 1, and again neglecting the threshold term, the
solution would be

ϕ(t) =
{
ϕ1−�(t = 0) + (1 − �)η(∇u)2

2
t

} 1
1−�

, (10)

so that the equation for the failure time would transform into

ϕ(t = 0) =
{

1 − (1 − �)η(∇u)2

2
tf

} 1
1−�

, (11)

which provides the distribution

p(tf ) = const
d

dtf

{
1 − (1 − �)η(∇u)2

2
tf

} 1
1−�

∝
{

1 − (1 − �)η(∇u)2

2
tf

} �
1−�

. (12)

Note that the CDFs of distributions (9) and (12) are linear
in tf for small values of shifted failure times: P (tf ) ∼ tf .
Therefore, analysis of the statistics extremes, as carried out in
Secs. V and VI, returns us to the exponential distribution.
Thus, the exponential distribution of shifted failure times
is universal for postcritical damage phenomena described
by Eq. (2c), for an arbitrary value of the exponent �.
Summarizing, for the case of postcritical damage growth
the observed evolution is deterministic. Above the critical
threshold, any stochastic, fluctuating input during the model
evolution would be negligible in comparison with the initial
quenched disorder, and the evolution of the model follows a
deterministic path given by Eq. (2a). For the same reason, the
condition of irreversibility imposed on the model does not have
any influence on the failure time statistics. Indeed, the system
is well above the critical threshold, and therefore the quantity
� in the structure 〈�〉 in Eq. (2a) is always positive, so relaxing
the irreversibility imposed by the positive part operator would
have no effect on the system’s behavior.

In the following sections we turn our attention to the
precritical case, corresponding to nucleation below the critical
threshold. To make this work we will need to switch from deter-
ministic to stochastic evolution. Because only rare fluctuations

will be expected to exceed the threshold level, the quantity � in
the structure 〈�〉 in Eq. (2a) will take negative values, and we
expect the condition of irreversibility to significantly influence
the model’s behavior.

V. PRECRITICAL IRREVERSIBLE NUCLEATION

In the previous section we investigated the growth of
damage for the system with postcritical initial disorder. Since
the sizes of nuclei in the model were much higher than the
critical value, we neglected annealed fluctuations and observed
a burst evolution of damage in which the model was following
the deterministic path of Eq. (2a) corresponding to the initial
quenched disorder.

In this section we investigate precritical (or subcritical)
behavior in which the initial nucleus sizes are much lower than
the critical threshold. In contrast to the postcritical burst dam-
age behavior of Sec. IV (where the system “rolls downwards”
into a global minimum of a free energy potential), in this
section we investigate the slow process of metastable damage
nucleation (the system “climbs up” the potential barrier from
a local, metastable minimum of the free energy potential).

In the previous section the evolution of each system in the
ensemble was deterministic and was determined by the initial
quenched distribution of nuclei, which at almost all locations
were above the critical value. The same approach cannot be
employed here since well below the critical threshold the
influence of any initial disorder is negligible in comparison
with the long metastable life governed by annealed stochastic
fluctuations. Instead, these dynamical thermal fluctuations
play the crucial role: only when their size overwhelms the
potential barrier will the system rupture. Therefore, from this
point on we do not use disorder in the initial conditions.

If we take a closer look at Eqs. (1)–(3), we see that Eq. (1)
is macroscopic and determines the evolution of the macrodis-
placement u. On the other hand, Eq. (2a) is mesoscopic,
determining damage evolution on the level of defects. By
using the term “mesoscopic” (instead of “microscopic”) we
here emphasize that the damage variable ϕ does not refer to
individual cracks or defects, but to a density of microcracks.
The microscopic, atomistic level of singular defects is not
directly represented in our continuum model.

However, the implementation of microscopic dynamics is
crucial for our simulations. Indeed, Eq. (2a) does not contain
any possibility for the system below the critical threshold to
evolve; for initial damage below this level the growth rate is
zero forever.1 In other words, Eqs. (1)–(3) of our model are de-
terministic and do not support fluctuating behavior. However,
this formulation contradicts damage phenomena we observe
in Nature: any solid has a constant process of defect birth and
death due to thermal fluctuations. That is, on the microscopic
level thermal fluctuations can influence the system’s behavior,
resulting in complex fluctuating interactions of damage and
strain on this scale.

1In later sections we will relieve the criterion of irreversibility in
order to compare our results with the theory of nucleation. For that
case we will see that the threshold returns the system towards the
state of zero damage.
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Thus, we need to introduce thermal fluctuations into
Eq. (2a) to allow for subcritical damage evolution. Each degree
of freedom in statistical mechanics has averaged fluctuations of
the order of kBT /2 because of the equipartition of energy. If we
imagine a piston on a spring as a boundary constraint for a gas
in a volume, the piston will have Gaussian micro-oscillations
of its position, and its averaged energy will be kBT due to
thermal fluctuations. In the same way, the neighborhood of
any defect will have Gaussian microfluctuations of strain. For
our model we introduce such fluctuations for the local strain as

∇u(x · t) → ∇u(x · t) + ϒξ (x,t), (13)

where ξ (x, t) is Gaussian white noise with zero mean and unit
standard deviation. A similar approach has been suggested in
[8–10]. Substituting Eq. (13) into Eq. (2a), we obtain

∂ϕ

∂t
= η

〈
ϕ

2
[∇u + ϒξ (x,t)]2 − αϕ2/3

〉
. (2d)

However, thermal fluctuations are microscopic and do not
influence the mesoscopic level of Eq. (2d) directly. And, of
course, they do not influence the macroscopic level of Eq. (1).
Therefore, we do not include their influence in Eq. (1) for
the strain evolution and we should be careful when we are
including them in Eq. (2d) for the damage evolution. If,
considering only microscopic thermal fluctuations, we directly
substituted for ∇u in Eq. (2a) from Eq. (13), the value of ϒ

would be of the order of kBT . But, again, this noise would be
negligible on the mesoscopic level and would have no influence
on the damage evolution.

This problem is well known in damage mechanics; and
experimental studies [11,12] show that the variance of actual
fluctuations is much higher than kBT . Many authors [8,9,12–
14] have attributed this behavior to complex interactions of
microdisorder in a system (i.e., the presence of microdefects
can cause the amplification of fluctuations). Another possi-
bility is to associate this phenomenon with the influence of
thermal fluctuations on the unstable, frustrated parts of mi-
crodefects (e.g., crack tips) at the microscopic level. Although
these fluctuations are spatially and quantitatively microscopic,
and influence only microscopic parts of microcracks, their
presence causes damage growth on the mesoscopic level. Thus,
the “sensitive” crack tip works in this case as an amplifier,
causing the microscopic thermally induced fluctuations to
influence the mesoscopic growth of damage nuclei. A third
possible explanation is provided by considering a phenomenon
observed in bubble chambers in particle physics. In that case,
radiation of high-energy particles can facilitate nucleation [15]
and causes the effective temperature to be higher than the
“actual” temperature of a specimen. This effect should be
especially noticeable for the materials working in conditions of
high radiation. The suggestion that radiation can influence the
growth of defects in solids requires experimental verification.
However, the counterpart of this effect for gas-liquid systems
is well known and widely utilized in bubble chambers.

Following the above discussion, the noise in the mesoscopic
Eq. (2d) is supposed to represent not microscopic but effective
mesoscopic fluctuations whose amplitude is much higher
than the amplitude of thermal fluctuations. Therefore, for our
simulations we choose the strain fluctuations to be of the order
of the strain itself by setting ϒ = 1 in Eq. (2d).

(a)

(b)

FIG. 2. Cumulative distribution function of times to failure tf for
precritical irreversible nucleation: (a) CDF plot and (b) Weibull plot.

For the damage initial conditions we choose the constant
value of 1.5 × 10−6, all along the length of the model. We do
not include any stochastic variability in the initial conditions
because after the long precritical evolution of the model due to
the presence of noise [Eq. (13)] this “quenched” stochasticity
will not influence the final results.

Again, a careful choice of parameters is required to provide
a reasonable time for numerical simulations. We utilize
η = 108 and α = 2 × 10−8. This value of α, which represents
the energy cost of opening additional free surface in a local
distribution of microcracks, gives a critical damage level of
ϕC = [ 2α

(∇u)2 ]3 ∝ 0.01 for ∇u ∝ F = 3 × 10−4. With this high,
macroscopic value of the critical threshold, almost the entire
damage evolution, from 1.5 × 10−6 to 0.01, is precritical
nucleation. Only after a long metastable time, when the level of
damage exceeds the critical threshold 0.01, does the evolution
of damage switch from the precritical to postcritical regime, re-
sulting in a sharp transition to burst damage growth. However,
the duration of the postcritical burst is very short in comparison
with the long, “random walk” time of many “attempts” of the
precritical fluctuations to exceed the threshold. Therefore, our
statistics of failure times in these simulations are almost purely
those of the precritical fluctuating behavior.

The cumulative distribution function of (nonshifted) times
to failure tf is given in Fig. 2(a) as a CDF plot, and in Fig. 2(b)
as a Weibull plot. Also in these figures we plot the maximum
likelihood fits of the Weibull and gamma trial distributions.
We see that the statistics of times to failure are close to the
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Weibull distribution with exponent 1.83 ± 0.02. However,
Fig. 2(b) shows that although the statistics are close to Weibull,
they are, in fact, described by a gamma distribution with
exponent 2.85 ± 0.05. This is an interesting result because
it appears to contradict the fact that the Weibull distribution
has been chosen to be a best-fit distribution in many previous
studies of precritical damage nucleation [16]. (However, see
also [17,18] and references therein. In particular, in Eq. (3.13)
of Ref. [17], the gamma distribution is found to describe the
statistics in a special case of a time-dependent fiber-bundle
model.) To examine this subtle issue more thoroughly we have
to implement additional verifying simulations.

As was discussed above, almost the total evolution time
of the model in the metastable state is represented by the
fluctuating random walk of many attempts to exceed the
threshold, and only a negligible fraction of time is spent by the
system in the final, burst, postcritical state before rupture. In
Sec. IV, where we specifically studied the postcritical, burst
stage of damage growth, we were able to qualitatively explain
our results by ignoring the nonlinear coupled interactions
of different locations during almost the entire evolution of
the system. In the current section, dealing with precritical
nucleation, neglecting all possible interactions among different
locations is an even better approximation, and we can thus
integrate Eq. (2d) as a separate ordinary differential equation
for each independent location.

Therefore, we initially construct statistics of “local” failure
times by integrating Eq. (2d) separately for each independent
location, as if all elements were loaded independently. We will
refer to these as “min of 1” statistics, that is, as the statistics
of local failure times for one particular model element.

However, we should recall that, from the perspective of
damage mechanics, rupture is a “horse race” among different
locations, and the global failure time is the time when the
“winner crosses the finish line”. Therefore, because the system
is in a state of uniform macrostrain and model elements are
decoupled one from another, we can group N consecutive
independent results from simulating Eq. (2d) and choose the
minimum time to failure in the group, corresponding to the
rupture of a model or a solid built of N independent elements.
We say that ensembles of such grouped simulations yield “min
of N” statistics. For this study, we used N = 100, 500, 1000,
and 5000.

The cumulative distribution functions of times to failure tf
are given in Fig. 3(a) as CDF plots, and in Fig. 3(b) as Weibull
plots. Also in these figures we plot the maximum likelihood
fits of the Weibull and gamma trial distributions for the “min
of 1” and “min of 5000” statistics. We see that the “min of 1”
statistics, which are the statistics of failure times of a single
element, are fit by a gamma distribution with exponent 8.78 ±
0.12. The Weibull distribution for these statistics is clearly
not applicable. However, when we increase the number N of
elements in the model from 1 to 5000 (i.e., when we move from
“min of 1” to “min of 5000” statistics), the sample distribution
transforms step by step from the gamma distribution to the
Weibull distribution, and for the “min of 5000” statistics we
obtain already a good fit to the Weibull distribution with
exponent 20.4 ± 0.2.

What we observe here clearly resembles a crossover effect
(that is, a finite-size effect) from one asymptote (the gamma
distribution) to another asymptote (the Weibull distribution):

(a)

(b)

FIG. 3. Cumulative distribution function of times to failure tf for
precritical irreversible nucleation of independent locations: (a) CDF
plot and (b) Weibull plot.

The statistics of failure times for one particular, undivided ele-
ment in our model are determined by the gamma distribution,
while in the thermodynamic limit of an infinite number of
elements the statistics approach the Weibull distribution. The
size N of the system plays the role of a scaling parameter that
controls the crossover.

Crossover effects are generally observed when we consider
scaling hypotheses in the vicinity of critical or spinodal
points [5,19]. The finite-size effect is well known for damage
phenomena also (see, e.g., a recent review [20], and studies
[17,18] and references therein). In the case of our study, the
crossover effect has local damage growth (in one element) up
to the value of unity as one asymptotic regime, and rupture at
the weakest link as another asymptote.

For the finite element simulation of the continuous model
used for Fig. 2 we had 128 elements in the model. These 128 el-
ements represent neither the local nucleation (one element) nor
the global nucleation (infinite number of elements). Instead,
the 128-element case corresponds to an intermediate value of
the scaling parameter when neither of the asymptotic regimes
is applicable, but the scaling function forms a “transitional”
statistical distribution between the two.

In applications one may expect the results of finite element
models to deviate from the thermodynamic limit of the Weibull
distribution due to a finite-size effect if the considered number
of elements N is too small. Indeed, as we can see from Fig. 2,
when N = 128, our model is still represented well by the
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gamma distribution. However, already with the “min of 500”
statistics in Fig. 3 (or, better, the “min of 1000” statistics),
the approach to the Weibull distribution asymptote for N→∞
is apparent. Thus, the crossover number of elements is not
expected to be too large. In fact, in many cases it is likely to
be comparable to the number of elements normally required
for accurate simulations of systems for engineering purposes.

Let us summarize the main aspects of the discussion
above. First, in the parameter regime of interest here, damage
evolution at each location of our model is effectively decoupled
from the adjacent locations, especially in the precritical case
which we currently consider. Therefore, there are two different
statistics of times to failure in our model. The first statistics
describes the distribution of times to failure at a given location,
independent from any other location. This statistics we have
called “min of 1”, and numerical experiments demonstrated
that they were well fit by the gamma distribution.

The second statistics corresponds to the failure of the
total specimen. We called this type of statistics “min of
5000” because it takes into account “all” (5000 different)
locations along the specimen length, each with its own “min
of 1” statistics. Therefore, the “min of 5000” statistics is the
weakest-link statistics among 5000 elements.

Can we, in a manner consistent with the weakest-link
hypothesis, connect these two statistics? Indeed, we can, since
it is well known that the Weibull distribution is the consequence
of the weakest-link hypothesis when the local distribution has
a power-law lower tail [21]. To demonstrate this, let us denote
the cumulative distribution function of the “min of 1” statistics
as Plocal(tf ) because it is responsible for local damage growth,
independent of adjacent locations. In contrast, we denote the
cumulative distribution of the “min of 5000” statistics as
Pglobal(tf ) because it is responsible for the global specimen
failure.

The probability for a particular location along the specimen
to have been broken at time tf is Plocal(tf ), by definition. The
probability for this location to be still intact is, therefore,
1 − Plocal(tf ). Then, assuming independent elements, the
probability for a whole specimen with N elements to be intact
at time tf is {1 − Plocal(tf )}N .

On the other hand, Pglobal(tf ), by definition, is the proba-
bility that the whole specimen will have failed at �1 location
at time tf . Therefore, we immediately find the connection
between these two probabilities to be

Pglobal(tf ) = 1 − {1 − Plocal(tf )}N = 1 − eN ln{1−Plocal(tf )}.

(14)

Since we consider the weakest-link hypothesis, and the
probability of failure at any one location is very small for
sufficiently large N , we can expand the logarithm in Eq. (14)
to leading order as

Pglobal(tf ) = 1 − e−NPlocal(tf ). (15)

However, our numerical simulations show that Plocal(tf ) is
given by the gamma distribution, whose probability density
function is

plocal(tf ) = t k−1
f e−tf /�

	(k)�k
. (16)

Because weakest-link statistics implies relatively small
times to failure (tf � �) and we are talking about statistical
extremes, we can approximate the lower tail of the local
distribution as

plocal(tf ) ∝ t k−1
f , (17)

which, integrated, provides the cumulative distribution func-
tion

Plocal(tf ) ≈
(

tf

t0

)k

, (18)

where t0 is some constant of proportionality.
Substituting expression (18) into (15), we arrive at the

Weibull distribution for the failure times of the whole speci-
men,

Pglobal(tf ) = 1 − e
−N(

tf

t0
)
k

, (19)

where the gamma exponent plays now the role of the Weibull
exponent. Therefore, we see that for sufficiently large N

the gamma statistics of times to failure for each particular
element transforms into the Weibull distribution for the whole
specimen.

As mentioned above, for the Weibull distribution to describe
the global failure time it is only required that the lower tail of
the local probability distribution be a power law [21]. Since this
requirement is satisfied by many statistical distributions, which
each represent possible nonuniversal, system-dependent local
damage growth phenomena, the finite-size crossover effect is
typically expected to result in universal Weibull statistics of
times to failure. However, in works [17,18] and references
therein, it is demonstrated that in addition to Weibull statistics,
other distributions can result from quasi-weakest-link behavior
in what are called local load-sharing systems.

Another important fact here is that the found distributions
are gamma or Weibull but not exponential, and therefore our
results do not correspond to classical phenomena of nucleation
theory. That is, while the exponential distribution is expected
to be universal for the majority of precritical nucleation
phenomena, we observe a different result. The appearance of
nonexponential distributions in nucleation has been previously
found to take place in systems with amorphous disorder, when
a free energy potential has multiple minima, and has been
suggested for the cases of polymer crystallization [22] and
glass-forming materials [23]. For our model, we posit that
the primary difference from classical gas-liquid nucleating
systems is the irreversibility of damage. In contrast to, say,
gas nuclei in a liquid, fluctuations in the system can exceed the
threshold of α to grow damage further, but cannot decrease the
density of microcracks that are already present in the system.
Therefore, it is natural to consider this irreversibility as the
reason why our results diverge from the classical theory of
nucleation. To test this hypothesis, in the next section we turn
our attention to the case of a system with reversible damage.

VI. REVERSIBLE NUCLEATION

In Sec. V we followed [6] in considering only irreversible
damage growth. This was represented in Eq. (2d) by the
positive part operator, denoted by angle brackets (〈�〉 = � for
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� � 0 and zero otherwise). However, the majority of studies
in the theory of nucleation investigate reversible systems.
Indeed, in the theory of gas-liquid systems, if a small bubble
of another phase appears in a metastable state, there is no
constraint on these systems that would prohibit the bubble
from disappearing. The same is true for magnetic systems
where nothing prohibits a small domain of another phase
from disappearing. Thus, to compare our results with previous
studies in nucleation theory, in this section we remove the
condition of irreversibility and allow defects to disappear.

To consider reversible phenomena that allow material
healing we remove the angle brackets from Eq. (2d):

∂ϕ

∂t
= η

{
ϕ

2
[∇u + ϒξ (x,t)]2 − αϕ2/3

}
. (2e)

However, if we simulate the system below the critical
threshold, the probability of successful attempts to grow
damage is expected to be small. Thus, the derivative ∂ϕ/∂t is
generally negative, which attenuates damage to zero. However,
at zero damage, ∂ϕ/∂t , which has a power-law dependence on
ϕ, is also zero, and so Eq. (2e) does not allow the system to
evolve away from zero.

Contrary to this, in Nature there is always a nonzero level
of microdamage, as a result of fluctuations. Therefore, we
introduce a small, nonzero level of damage ϕ0 below which the
system cannot go: ϕ = max(ϕ,ϕ0). In other words, we allow
the model to heal but at each time step of our simulations we
check whether the damage has fallen below the minimum level
and, if it has, we restore the damage back to ϕ0:

∂ϕ

∂t
= η

{
ϕ

2
[∇u + ϒξ (x,t)]2 − αϕ2/3

}
, where

ϕ � ϕ0 always, (2f)

which for the damage evolution provides

ϕt+dt =
{

ϕt + ∂ϕ

∂t
dt if

(
ϕt + ∂ϕ

∂t
dt

)
� ϕ0

ϕ0 if
(
ϕt + ∂ϕ

∂t
dt

)
< ϕ0

. (20)

The initial values of damage are set to the same level ϕ0

without any variability since any influence on the final results
of such quenched stochasticity will be lost during the long
precritical evolution.

To provide a reasonable time for numerical simulations, we
utilize in this section a high value of the damage base level,
ϕ0 = 0.0003, which is still well below the critical value ϕC =
[ 2α

(∇u)2 ]3 ∝ 0.01. Other parameters we keep unchanged. Again,
damage nucleation dynamics from 0.0003 to 0.01 dominates
the duration of the simulations up to failure, and our statistics
of times to failure are almost purely the consequence of the
precritical fluctuating behavior.

The cumulative distribution function of (nonshifted) times
to failure tf for this case is given in Fig. 4(a) as a CDF plot, and
in Fig. 4(b) as an exponential plot. Also in these figures we plot
the maximum likelihood fit of the exponential trial distribution.
We see that the failure time statistics are exponential. This
result is similar to the result obtained by Bonn et al. [24] and
also to the results of nucleation theory [15,25].

As in the previous section, we verify our results with
spatially decoupled numerical simulations. The cumulative

(a)

(b)

FIG. 4. Cumulative distribution function of times to failure tf for
precritical reversible nucleation: (a) CDF plot and (b) exponential
plot.

distribution functions of times to failure tf are given in Fig. 5(a)
as CDF plots and in Fig. 5(b) as Weibull plots for “min of 1”,
“min of 100”, “min of 500”, “min of 1000”, and “min of 5000”
statistics. In these figures we also plot the maximum likelihood
fits of the exponential trial distributions. In Fig. 5(a), to exhibit
all data on a single plot, we have rescaled failure times by
factors of 80, 320, 510, and 1600 for “min of 100”, “min of
500”, “min of 1000”, and “min of 5000” statistics, respectively.
For the same reason—to be able to plot on the same figure a
very wide range of failure times—we have utilized in Fig. 5(b)
the Weibull plot with a logarithmic abscissa axis instead of the
more appropriate exponential plot whose abscissa axis is linear.
We see that the statistics of times to failure are exponential.

The exponential statistics of times to failure in this case are
as expected. A brittle solid ruptures just as a liquid nucleates,
that is, when the size of fluctuations overwhelms the critical
activation energy. For our model the specific activation energy
is

EC = αϕC
2/3 = ϕC(∇u)2/2 = 4α3

(∇u)4 . (21)

The probability for a fluctuation to reach energy level E is

p(E) ∝ exp(−const · E/ϒ2), (22)

where ϒ2 represents the temperature. Therefore, failure times
are distributed exponentially and the average time to failure
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(a)

(b)

FIG. 5. Cumulative distribution function of times to failure tf for
precritical reversible nucleation of independent locations: (a) CDF
plot and (b) Weibull plot. In (a) we rescaled failure times by factors
of 80, 320, 510, and 1600 times for the “min of 100”, “min of 500”,
“min of 1000”, and “min of 5000” statistics, respectively.

[26] is proportional to

tf ∝ exp(const · EC/ϒ2) ∝ exp(const/(∇u)4), (23a)

where in the last proportionality we put ϒ = 1, as in our
simulations.

However, almost the entire duration of the precritical
damage nucleation takes place when the damage is very small
(that is, for the simulations in this section, for fluctuations
near ϕ0 = 0.0003), and so does not couple to Eq. (1) for
stress redistribution. Therefore, precritical nucleation does
not distinguish between constant stress and constant strain
as possible boundary constraints, and we can use the external
force F instead of the strain ∇u in Eq. (23a):

tf ∝ exp(const/F 4). (23b)

We see that the logarithm of the average time to failure
is inversely proportional to the fourth power of the constant
external strain or constant external stress as a boundary
constraint. This is a direct consequence of the Griffith theory
[27,28]. Similar results of load dependence were obtained
experimentally by Guarino et al. [12,14,29] for the irreversible
damage of wood and fiberglass. Pauchard and Meunier [11]
obtained similar dependence for two-dimensional solids with
the inverse proportionality to the second power of strain/stress,

tf ∝ exp(const/F 2). (24)

Dependence (24) was also found in numerical investiga-
tions of a fiber-bundle model with noise [8]. As discussed by
Bonn et al. [24], the general dependence for the average time
to failure is

tf ∝ exp(const/(∇u)τ ) ∝ exp(const/F τ ), (25)

where the exponent τ is determined by the dimensionality of
the system and by the fractal structure of the microdisorder.
Our model, based on Griffith theory, provides τ = 4;
however, by changing exponents in Eq. (2f), ∂ϕ

∂t
=

η{ ϕχ

2 [∇u + ϒξ (x,t)]2 − αϕκ}, we can easily achieve other
values of τ = 2κ

χ−κ
.

But what would happen if for the case of reversible damage
we again considered two statistics, local and global, similar to
the formulae of Eqs. (14)–(19)? If Plocal(tf ) is the exponential
distribution,

Plocal(tf ) = 1 − e−tf /t0 , (26)

and, again, a weakest-link argument provides small values of
times to failure, we can expand (26) as

Plocal(tf ) ≈ tf

t0
. (27)

Substituting this expression into (15),

Pglobal(tf ) = 1 − e−Ntf /t0 , (28)

we return to the exponential distribution. In other words,
a local exponential distribution of failure times provides a
global exponential distribution of failure times for the whole
specimen, which was confirmed by numerical simulations.

VII. PARTIAL REVERSIBILITY

In previous sections we investigated two extreme cases of
nucleation: that of complete irreversibility, intrinsic for brittle
materials; and that of complete reversibility, intrinsic to liquids
and gels. In this section we consider the intermediate case of
partial reversibility.

As was suggested by Golubovic and Feng [28] and
Golubovic and Peredera [30], processes of surface and body
diffusion can relieve the stress in a crack’s neighborhood that
was caused by its formation. This suggests that the longer a
particular part of a crack exists, the less it becomes reversible.
To provide a simple modification to our model representing
the effect of reversibility, we assume that a given fraction D of
damage is reversible. In other words, if ϕmax is the maximum
value of damage that has occurred up to a given time at a
given location, we assume that, for this location, damage is
reversible in the range [(1–D)ϕmax, ϕmax] and irreversible in
the range [0,(1–D)ϕmax]. This choice seems to be reasonable:
for a circular crack, the condition that a fraction D of damage
is reversible is equivalent to the condition that the fraction
R = 1 − √

1 − D of the crack radius is reversible while the
fraction 1 − R = √

1 − D of the crack radius is irreversible.
The same characterization of reversibility as a fraction of crack
radius was originally used by Golubovic and Feng [28] and
Golubovic and Peredera [30].
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FIG. 6. Cumulative distribution function of times to failure tf for precritical nucleation with damage reversibility: D = 25%: (a) CDF plot
and (b) Weibull plot; D = 50%: (c) CDF plot and (d) Weibull plot; D = 75%: (e) CDF plot and (f) Weibull plot.

As examples we consider the cases of partial reversibility:
D = 25%, D = 50%, and D = 75%. First, we carry out
simulations using the continuous, fully coupled, N = 128,
finite element model. The cumulative distribution functions
of times to failure tf are given in Figs. 6(a), 6(c), and 6(e)
as CDF plots, and in Figs. 6(b), 6(d), and 6(f) as Weibull
plots. In these figures we also plot the maximum likelihood
fits of Weibull and gamma trial distributions. We see again
the crossover of the statistics of failure times from the
gamma to Weibull distributions, as previously described for
Fig. 3.

To examine the crossover effect in the system’s failure time
statistics more carefully, we compare the above results with
the spatially decoupled model. As an example we consider
the case D = 50%. The cumulative distribution functions of
times to failure tf for the decoupled model are given in
Fig. 7(a) as CDF plots, and in Fig. 7(b) as Weibull plots, and
we also plot the maximum likelihood fits of the Weibull and
gamma trial distributions for the “min of 1” and “min of 5000”
statistics. We see that for the “min of 1” statistics, which are
for failure times of a single element, the distribution of failure
times is gamma with exponent 7.11 ± 0.12. The Weibull

062401-10



NUCLEATION PHENOMENA IN AN ANNEALED DAMAGE . . . PHYSICAL REVIEW E 90, 062401 (2014)

(a)

(b)

FIG. 7. Cumulative distribution function of times to failure tf
for precritical nucleation of independent locations with damage
reversibility D = 50%: (a) CDF plot and (b) Weibull plot.

distribution for this case is clearly not applicable. However,
when we increase the number of elements in the model
from N = 1 to N = 5000, the sample distribution transforms
step by step from the gamma distribution asymptote to the
Weibull distribution asymptote: Already for the “min of 5000”
statistics we obtain a good fit of the Weibull distribution with
exponent 2.85 ± 0.03.

We see that the behavior for 50% reversibility is more sim-
ilar to the completely irreversible case than to the completely
reversible, with, however, a much lower Weibull exponent.
Therefore, for systems with restricted reversibility we expect
the behavior to be different from nucleation in completely
reversible systems. For the general case of partial reversibility
we can conclude that the statistics of failure times for one
particular, undivided element in our model is represented by
the gamma distribution, while in the thermodynamic limit of an
infinite number of elements the statistics approach the Weibull
distribution. The transition from Weibull to exponential global
failure time distributions is expected to occur near the point
where complete reversibility switches to partial irreversibility.
This behavior will be investigated in further studies: We may
find a bifurcation or a phase transition in the vicinity of
D = 100%.

VIII. CONCLUSIONS

In this study we have investigated the behavior of damage
nucleation, particularly concentrating on the statistics of times
to failure. We consider two distinct cases: postcritical, burst
damage growth, when the system has already overwhelmed the
potential barrier; and precritical, metastable nucleation, when
the system climbs up the potential barrier by means of large
fluctuations.

For the first case, the growth of damage is deterministic—
well above the critical threshold, when any stochastic input in
Eq. (2d) becomes negligible in comparison with the initial
disorder, and so deterministic, nonlinear damage growth
occurs. While the evolution of a particular system in the
ensemble is deterministic, the variability of the quenched
disorder in the ensemble leads in our case to the appearance of
exponential failure time statistics. The exponential dependence
seems to be universal when the derivative of damage with
respect to time is proportional to a power law in the damage
itself. Furthermore, since the system is considered to be well
above the critical threshold, its evolution does not distinguish
irreversible and reversible damage formulations.

For the second case, subcritical nucleation, the behavior of
the system is significantly different. We introduce the tuning
parameter D as a measure of the reversibility of damage and
discover that this parameter affects the failure time statistics.
That is, for the completely reversible D = 100% case we
obtain results analogous to nucleation theory in gas-liquid
systems, when the statistics of failure times are exponential
(equivalent to the Weibull distribution with exponent 1). So,
in the case of complete reversibility our system falls into the
universal class of systems exhibiting Poissonian nucleation.
However, for the irreversible or partially reversible cases we
obtain the Weibull distribution for failure times. The more
irreversible the damage is, the higher the Weibull expo-
nent: 1 for D = 100% (completely reversible fluctuations),
2.85 ± 0.03 for D = 50% (half of the damage is reversible),
and 20.4 ± 0.2 for D = 0% (the irreversible, subcritical
case).

Thus, we find that the introduction of irreversibility sig-
nificantly modifies the behavior of the system and pushes
it away from the universality class of classical nucleation
phenomena. On the other hand, since the exponential dis-
tribution is just the Weibull distribution with exponent 1,
one could say that the common universality class of nucle-
ation phenomena that follow Weibull statistics includes com-
pletely reversible phenomena with exponential statistics as a
subclass.

In this study we found that the failure time statistics were
described by a Weibull distribution for the cases of 0%, 25%,
50%, and 75% reversibility. Therefore, we expect the transition
from exponential to Weibull failure time statistics to take place
in the vicinity of the point where the system changes from
completely reversible to partially irreversible phenomena. We
hypothesize that this behavior may arise from a bifurcation
or, possibly, a phase transition in the system that moves the
failure time distribution’s Weibull exponent away from unity.
The case of low rates of irreversibility will be investigated in
future studies.
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These results indicate that damage phenomena represent
a specific type of nucleation with its own intrinsic features,
and so caution should be exercised when nucleation theory is
applied to their study.
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