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Evaluation of x-ray Brillouin scattering data
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Making use of the classical second-moment sum rule, it is possible to convert a series of constant-Q x-ray
Brillouin scattering scans (Q momentum transfer) into a series of constant frequency scans over the measured Q

range. The method is applied to literature results for the longitudinal phonon dispersion in several glass formers.
The constant frequency scans are well fitted in terms of a Q-independent phonon damping depending exclusively
on the frequency, in agreement with two recent theories of the boson peak. The method allows us to link the
x-ray Brillouin scattering to the diffuse Umklapp scattering from the boson peak vibrations at higher momentum
transfer on an absolute intensity scale.
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I. INTRODUCTION

Our knowledge of the sound waves at and above the boson
peak in glasses is to a large part due to x-ray Brillouin scattering
measurements [1–6], which allow us to see the longitudinal
part of the sound wave motion in the frequency range between
2 and 20 meV. The experimental arrangement makes scans of
S(Q,ω) at constant momentum transfer Q much easier than
constant-ω scans [3]. It is usual to fit such a constant-Q scan in
terms of the damped harmonic oscillator function, the so-called
DHO

S(Q,ω)

S(Q)
= fQδ(ω) + 1 − fQ

π

�2
Q�Q(

ω2 − �2
Q

)2 + ω2�2
Q

. (1)

Here symbols with the index Q depend on the momentum
transfer Q, but not on the frequency ω. �Q is the sound wave
frequency, which defines the sound velocity cQ = �Q/Q at
this Q; �Q is the damping of the sound wave, and fQ is the
elastic (in liquids quasielastic) fraction of the scattering at
this Q.

The weak point of this evaluation is the following: The
strong damping that one fits to the sound waves above the
boson peak is not a real physical damping of the vibrations at
the sound wave frequency. Instead, it reflects a deviation of the
eigenvectors from a perfect sine function in space. Thus, it is
not a damping for all frequencies at fixed Q, as supposed by
Eq. (1), but rather a distribution of sound wave vectors around
an average one at the given frequency. It is a property of the
frequency window rather than a property of the momentum
transfer window. In fact, this weak point can be directly seen
at larger Q, where the DHO fit has too much intensity close to
the elastic line [1].

On the other hand, at most points in the relevant (Q,ω)-
space, the DHO manages to fit the data very well. Thus, it
certainly supplies a good parameter set for the description
of S(Q,ω). The question is only whether the parameters are
indeed meaningful. There will be two well-studied cases—
silica and glycerol—where they are not, at least not at higher
frequencies.

The present paper introduces a method to convert a
sequence of DHO fits over a whole range of Q into the set
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of constant frequency scans that one needs, making use of
the classical second moment sum rule [7]. The method is
applied to measurements in beryllium fluoride [8], vitreous
silica [5], polybutadiene [9], and glycerol [4]. The data are
fitted in terms of the phonon structure factor of generalized
hydrodynamics [10], which according to two recent theories
of the boson peak [11–13] is also appropriate for glasses.

At higher momentum transfer, the scattering is no longer
dominated by the longitudinal sound waves but begins to
reflect the full vibrational density of states (the Umklapp
scattering [14]). This crossover requires the introduction of
an additional Umklapp term in polybutadiene and glycerol.

The following Sec. II derives the equation for the dynamic
structure factor and its fitting function. Section III applies
the equations to the four above-mentioned examples. The
fit parameters are compared to the DHO parameters. For
beryllium fluoride and polybutadiene, where both parameter
sets agree within experimental error, the results are compared
to the predictions of one of the theories [13]. Section IV
discusses and concludes the paper.

II. THEORETICAL BASIS

Fortunately, it is easy to translate a set of DHO measure-
ments at a series of different Q into the set of constant-ω scans
that one would like to have. One notes first that for a DHO
(1 − fQ)S(Q) is fixed to the value

(1 − fQ)S(Q) = kBT

Mc2
Q

(2)

by the classical second moment sum rule [7],

∫ ∞

−∞
ω2S(Q,ω)dω = kBT Q2

M
, (3)

where M is the average atomic mass. The second moment sum
rule has already been successfully used to normalize x-ray
Brillouin data in liquid lithium [15], in liquid cesium [16], as
well as in glassy sulfur [17] and glassy sorbitol [18].

With this equation, one can calculate a constant-ω scan of
S(Q,ω) for any ω in absolute units, each DHO scan supplying
a point at its Q value. The result is best plotted in terms of the
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dimensionless dynamical structure factor Fω(Q) defined by

Fω(Q) = Mω3S(Q,ω)

kBT Q2
, (4)

which in terms of the DHO parameters is given by

Fω(Q) = 1

π

�Qω3

(
ω2 − �2

Q

)2 + ω2�2
Q

. (5)

The definition allows us to link the low-Q x-ray Brillouin
scattering results to inelastic x-ray or neutron scattering mea-
surements of the vibrational density of states [19–23] at higher
momentum transfer. As one passes the boundary of the first
Brillouin zone and approaches the first sharp diffraction peak,
one begins to see the whole density of vibrational states in
the given frequency window, of which the longitudinal sound
waves are only a small fraction. At high momentum transfer,
the coherent scattering cross section approaches the incoherent
one, in which all vibrations appear on the same intensity level.
This high-momentum transfer scattering is called “diffuse
Umklapp scattering” [22], because it is the glassy counterpart
of the Umklapp scattering from phonons in crystals [14].

The classical one-phonon approximation for incoherent
scattering reads

Sinc(Q,ω) = kBT Q2e−2W

2M

g(ω)

ω2
, (6)

where g(ω) is the vibrational density of states and e−2W is
the Debye-Waller factor. This shows that within the range of
validity of the one-phonon approximation, Fω(Q) is related to
the oscillation function Sω(Q) = S(Q,ω)/Sinc(Q,ω), which
oscillates around 1 at higher momentum transfer,

Fω(Q) = Sω(Q)
ωg(ω)

2
e−2W . (7)

Sω(Q) contains information on the modes in the given
frequency window [23]. Within the classical one-phonon
approximation, the oscillation function

Sω(Q) =
˝

3

Q2Fnorm

∣∣∣∣∣∣
N∑

j=1

bj e−iQ·rj
Q·ej

M
1/2
j

∣∣∣∣∣∣
2˛

ω

, (8)

where the angular brackets denote an average over all eigen-
modes at the frequency ω, together with a directional average
over the momentum transfer vector Q. The sum j = 1,..N

goes over the N atoms of the sample, with the position vector
rj , the scattering length bj and the eigenvector component ej .
The mode normalization factor Fnorm is given by

Fnorm =
N∑

j=1

b2
j e2

j

Mj

. (9)

In a monatomic substance, the translational invariance condi-
tion

∑N
j=1 ej = 0 ensures an initial Q2 rise of Sω(Q) and thus

also of Fω(Q). The results of the present work suggest the
existence of such an initial Q2 rise in polyatomic glasses as
well.

In order to fit Fω(Q) in the Brillouin range, one can
use the dynamic structure factor of a damped longitudinal

phonon [10–13] plus the initial Umklapp term

Fω(Q) = fω

π

(�ω/ω)Q2Q2
B(

Q2 − Q2
B

)2 + (�ω/ω)2Q4
+ fUQ2, (10)

with parameters that no longer depend on Q. Instead, they
depend on ω as they should. The Brillouin wavevector QB

defines a frequency-dependent longitudinal sound velocity
cl = ω/QB and �ω describes the frequency-dependent damp-
ing. One can no longer reckon with the normalization property
of the second moment sum rule. Therefore, one needs not only
the two parameters QB and �ω, but an additional normalization
factor fω as well, which tends to one at frequency zero. At
higher momentum transfer, one has to include the initial rise
fUQ2 of the Umklapp scattering [19–23].

In generalized hydrodynamics [10], the first term of Eq. (10)
is a consequence of the viscous damping, but in the two theories
of Schirmacher [11,12] and the very recent one of DeGiuli
et al. [13], the term results from genuine theoretical treatments
of the boson peak. In the original Schirmacher theory [11], the
phonon form factor results from fluctuating elastic constants,
but it was shown later that one gets the same form factor if one
assumes an interaction between soft local oscillators and the
sound waves [12]. The second theory (denoted in the following
as DLDLW theory) emphasizes the connection between boson
peak modes and local structural instabilities, treating the
glass as a nearly unstable substance that can be pushed into
instability by a small external influence (in the DLDLW theory
a small pressure). The dynamic equations are then expanded
in terms of the small distance from instability. This leads to
a frequency ω∗, the lower boundary of the domain where the
phonon damping dominates. The boson peak frequency ωb

and the Ioffe-Regel crossover lie below this ω∗ and are pushed
down to the frequency zero as one approaches instability. The
relation of the parameters of Eq. (10) to the complex modulus
�k(ω) (more precisely the longitudinal modulus multiplied
with the mass density, the square of the sound velocity) of the
theory is

�k(ω) = ω2

Q2
B

+ i
�ωω

Q2
B

, (11)

yielding the complex wavevector

q∗ = ω(Re
√

�k − iIm
√

�k)

|�k| . (12)

Note that the real part Q∗
B of this complex eigenvector is

smaller than QB , the more so the stronger the damping is.
As an important consequence, the sound velocity ω/Q∗

B is
larger than ω/QB . This consequence holds generally for
both theories, but the DLDLW theory [13] emphasizes the
difference and makes detailed predictions for the two sound
velocities and the mean free path.

III. COMPARISON TO EXPERIMENT

Comparing the DHO with the constant-frequency Eq. (10),
one finds complete equivalence for the generic case of a
frequency-independent sound velocity together with a damp-
ing ∝Q2. Then for Q = QB and ω = �Q, �Q = �ω. This
seems to hold in beryllium fluoride, our first example.
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FIG. 1. Constant-ω scans of the dynamic structure factor Fω(Q)
calculated from the x-ray Brillouin scattering data of Scopigno
et al. [8] in BeF2 at 297 K. The lines are fits in terms of Eq. (10)
with fω = 1 and fU = 0. The arrows denote the two wavevectors Q∗

B

and QB , of which the smaller one is the true wavevector according to
theory [11–13].

Figure 1 shows that one can fit the Fω(Q) calculated from
the BeF2 x-ray Brillouin data of Scopigno et al. [8] with fω =
1 and fU = 0 up to 25 meV. Fitting fU , one gets 0 within
experimental error. At low frequency, the fit gets better if one
allows for fω slightly larger than 1, but above 10 meV the
fitted fω is 1 within experimental error. Since one also obtains
a reasonably constant sound velocity over the whole frequency
range, the conditions for the equality of both sets of parameters
are fulfilled—and one gets indeed the same parameters within
experimental error from both approaches (see the comparison
to the DHO parameters in Fig. 2).

Note that the influence of the Debye-Waller factor e−2W

is negligible in the Brillouin signal, because the mean
square displacement at the glass transition is of the order
of 10−3 nm2 [24]. In the Brillouin range, the Debye-Waller
deviation from 1 is therefore of the order of 1% and remains
within the error bars.

According to theory [11–13], the real part of the wave vector
is not QB , but rather the Q∗

B defined in Eq. (12). Figure 1 shows
both values as arrows. One sees that indeed Q∗

B is much closer
to the peak in Fω(Q) than QB , which at 24 meV in Fig. 1(d)
is nearly a factor of two larger than the peak position.

The DLDLW theory makes a prediction for the sound
velocity c∗

l (ω) = ω/Q∗
B ,

c∗
l (ω) = |�k|

Re
√

�k
∝ (ω2 + ω∗2)1/4. (13)

FIG. 2. Comparison of our structure factor fit parameters for
beryllium fluoride with the DHO parameters [8] and with the DLDLW
theory [13] for (a) the sound velocities (full squares, DHO; open
squares, ω/QB ; open triangles, ω/Q∗

B ; continuous line, DLDLW
theory with ω∗ = 5 meV), (b) the damping (full circles, DHO; open
circles, �ω/ω), and (c) the mean free path (open circles, ls from
this work; full circles, lres from the DHO parameters; dashed line,
DLDLW theory).

Figure 2(a) shows the sound velocities ω/Q∗
B divided by

c0 = 5500 m/s (this value was adapted to the lowest DHO
point), as open triangles. They follow the prediction of Eq. (13)
with ω∗ = 5 meV [the continuous line in Fig. 2(a)]. Above ω∗,
v(ω) separates from ω/QB in exactly the way predicted by the
DLDLW theory [13].

A second prediction of the DLDLW theory concerns the
mean free path of the sound waves

ls = |�k|
ωIm

√
�k

∝ (ω2 + ω∗2)1/4

ω
, (14)

which should separate above ω∗ from the DHO mean free path
lres = 2(�Q/Q)/�Q. The comparison to the calculated results
in Fig. 2(c) shows that the separation indeed begins at ω∗ as
predicted, but that it is only half as large as the prediction [the
dashed line in Fig. 2(c)].

Question: Why does one only see longitudinal phonons
and nothing else in the very large (Q,ω) range of Fig. 1? The
question is answered by our next example, vitreous silica. At
low frequency, one finds phonon structure factors that are very
similar to those of beryllium fluoride in Fig. 1. At 20 meV,
the Umklapp scattering begins to attain the same height as
the Brillouin peak. This is shown in Fig. 3, combining x-ray
Brillouin data at 1620 K [5] with neutron Umklapp scattering
data at a nearby temperature, 1673 K [25]. The figure illustrates
the technical problem at high frequencies: the x-ray data end
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FIG. 3. Constant-ω scan of the dynamic structure factor Fω(Q)
at 20 meV, calculated from the x-ray Brillouin scattering data of
Baldi et al. [5] in vitreous silica at 1620 K and from 1673 K neutron
data [25]. The continuous line is a fit in terms of Eq. (10); the dashed
line is its Umklapp scattering component.

at 4 nm−1 (though they needed not end there); the neutron data
begin at 20 nm−1.

Of course, dedicated experiments could close this gap
easily and completely. But even with the gap, one understands
immediately why the x-ray data [5] can be fitted with fU = 0:
The fU that one extrapolates from the measured Umklapp
scattering is too small to influence the fit results (remember that
both measurements are on the same absolute intensity scale).
Since silica and beryllium fluoride have similar structure and a
similar spectrum [21,26], this explains also why one does not
see any Umklapp contribution in BeF2.

The neutron Umklapp scattering shows the peak at
30 nm−1 characteristic for librations of corner-connected
tetrahedra [23], a motion which does not lead to a large signal
at small Q. This might be otherwise (and is indeed otherwise)
in other systems: a prominent example are the string-like
boson peak modes in glasses forming from simple liquids or in
selenium [27], which must be expected to show a large signal
already at small momentum transfer. The example illustrates
the importance of the method for a better understanding of
the interplay between the longitudinal sound waves and the
system-specific boson peak vibrations [28].

But though there is as yet no Umklapp scattering in the
Brillouin range in silica, fω is not 1 as in beryllium fluoride.
It shows a gradual decrease in Fig. 4(a) from a value of 1.15
at 4.5 meV to a value of 0.78 at 20 meV. Since the Umklapp
scattering cannot be responsible, the deviations of fω from
1 at these small QB-values must be due to the anomalous
dispersion seen in Fig. 4(b). In fact, if one fits the measured
sound velocity with a third-order function [the continuous line
in Fig. 4(b)], one can calculate fω with the equation

fω = cl

cl + ω∂cl/∂ω
(15)

from the measured sound velocity values cl = ω/QB . This
provides the continuous line in Fig. 4(a).

FIG. 4. Structure factor fit parameters for vitreous silica at 1620 K
for (a) the amplitude fω (open squares), compared to the continuous
line calculated from the measured dispersion, (b) sound velocities
ω/QB normalized to the Brillouin value c0 = 6500 m/s (open
squares, this work; continuous line, fit to the open squares; full
squares, DHO parameters from the same data [5]; full triangles, DHO
parameters from 1570 K data at higher Q [29]), and (c) damping �/ω

(open circles, this work; full circles, Ref. [5]; full triangles, Ref. [29]).

The parameters of fits with fU = 0 between 4.5 and 20 meV
in vitreous silica are compared in Figs. 4(b) and 4(c) with the
DHO parameters of Baldi et al. [5], taking again the Brillouin
light scattering sound velocity of 6500 m/s as the reference
velocity c0. One finds differences that are clearly out of the
error bars. On the other hand, there is reasonable agreement
with DHO values evaluated at higher Q, taking an additional
boson peak component into account [29]. This indicates that
the differences appear with the appearance of the boson peak
in the Umklapp scattering, a phenomenon to which the DHO
is naturally more susceptible than a structure factor fit. With
the appearance of the boson peak, the apparent DHO sound
velocity bends down and the damping increases, unless the
boson peak intensity is explicitly taken into account as in
Ref. [29].

In the silica case, one sees changes in fω from the dispersion
without any Umklapp scattering. But there must be a second
effect, namely a decrease of fω at high frequency, where
the weight of the second moment sum rule in Fω(Q) is
transferred from the longitudinal sound waves to the Umklapp
scattering. fω must decrease with increasing momentum
transfer according to

fω = 1 − Q2
B

Q2
U

, (16)
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FIG. 5. Constant-ω scans of the dynamic structure factor Fω(Q)
calculated from the x-ray Brillouin scattering data of Fioretto et al. [9]
in polybutadiene at 140 K. The continuous lines are fits in terms of
Eq. (10); the dashed lines show the Umklapp contribution. The arrows
denote the values of ωg(ω)/2 around which the Umklapp scattering
oscillates at high Q.

where Q2
U is the weighted average of the Umklapp contri-

butions at the different frequencies with a QU (ω) defined
by

fU (ω) = ωg(ω)

2QU (ω)2
. (17)

This effect is not seen in beryllium fluoride or in vitreous
silica, where the Umklapp scattering is too weak to play a
role in the momentum transfer range of the x-ray Brillouin
measurements. But it becomes visible in our third example,
polybutadiene [9], where the measurements extend up to
10 nm−1 and show a clear Umklapp contribution in Fig. 5.
The fits are again perfect up to 15 meV, but do now require a
small positive fU at higher frequencies, as well as a decrease
of fω from about 1.1 at low frequency to 0.8 at high frequency.

The decrease of fω at higher momentum transfer in Fig. 6(a)
is well described in terms of Eq. (16) with QU = 25 nm−1

(note there is also a slight influence of the dispersion in
Fig. 7(b), which displaces the whole curve to higher values).
The same QU (together with measured values for the density
of states [30]) allows us to reproduce within experimental error
the measured fU values from Eq. (17), as shown in Fig. 6(b).
The finding confirms the general considerations on a takeover
of the Umklapp scattering at higher momentum transfer which
led to the two equations.

The results are again compared to the DHO fits [9] and
to the DLDLW theory in Fig. 7, taking the measured [31]
light scattering Brillouin sound velocity 2770 m/s as the

FIG. 6. Evaluation of the 140 K polybutadiene data: (a) Fit
(continuous line) of the measured intensity factors fω (full squares)
in terms of Eq. (16) with QU = 25 nm−1 plus a slight upshift.
(b) Comparison of the fitted fU values (full triangles) with the
prediction of Eq. (17) (continuous line) for the same QU value,
calculated with the measured vibrational density of states [30].

reference sound velocity c0. In this case, the fitted value for
ω∗ = 4.2 ± 0.5 meV is clearly larger than the boson peak
frequency of 2 meV [30], showing that polybutadiene in terms
of the DLDLW theory is a glass close to its stability limit.
The experimental splitting for the DHO and DLDLW mean
free path occurs at ω∗ as predicted, but is again weaker than
predicted.

Figure 8 shows structure factor scans calculated from x-ray
Brillouin data in the last example, glycerol [4]. Their fit reveals
a fast disappearance of the longitudinal signal toward higher
frequency, together with a fast rise of the Umklapp component.
In this case, the disappearing sound wave signal sits on the
slope of a broad growing Umklapp scattering mountain, so
one does not expect agreement between DHO and constant-
frequency parameters. In fact, there is a marked difference
in the sound velocity: while the DHO parameters in Fig. 9
show a slight sound velocity decrease at high frequency, the
present evaluation shows an increase, similar to the one in
silica, but already setting in below the boson peak frequency
of 4 meV. Obviously, the silica explanation of the difference
is also appropriate here: The DHO gives the wrong answers
because the boson peak Umklapp scattering has not been taken
into account.

IV. DISCUSSION AND CONCLUSIONS

From the examples in the preceding section, one concludes
that the constant-energy scattering form factor, Eq. (10), is
indeed able to reproduce the structure factor scans derived
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FIG. 7. Comparison of the structure factor fit parameters for
polybutadiene determined here with the DHO parameters [9] and
with the DLDLW theory [13] for (a) the sound velocities (full
squares, DHO; open squares, from ω/QB ; open triangles, from
ω/Q∗

B ; continuous line, DLDLW theory with ω∗ = 4.2 meV),
(b) the damping (open circles, �ω/ω), and (c) the mean free path (open
circles, ls from this work; full circles, lres from the DHO parameters;
dashed line, DLDLW theory).

FIG. 8. Constant-ω scans of the dynamic structure factor Fω(Q)
calculated from the x-ray Brillouin scattering data of Monaco and
Giordano [4] in glycerol at 150 K. The continuous lines are fits in
terms of Eq. (10); the dashed lines are their Umklapp component.

FIG. 9. The parameters of the structure factor fits in glycerol
at 150 K for (a) the amplitude fω, (b) the sound velocity ω/QB

divided by the low-frequency sound velocity c0 = 3620 m/s, and
(c) the damping �ω/ω. Open symbols from the constant-ω scans of
the dynamic structure factor Fω(Q); full symbols calculated from the
DHO parameters [4].

from DHO data with the second-moment sum rule recipe
of the present paper. This confirms the finding of the two
theoretical treatments of the boson peak [11–13], according
to which the Brillouin scattering form factor of a glass or an
undercooled liquid should correspond to the one of generalized
hydrodynamics [10].

As emphasized in the DLDLW theory [13], the generalized
hydrodynamics form factor implies the existence of two
longitudinal sound velocities c∗

l = ω/Q∗
B and cl = ω/QB ,

which are equal for zero damping, a natural consequence
of a complex modulus. The wave vector Q∗

B determines
the oscillation period in space. The examples of beryllium
fluoride (Fig. 2) and of polybutadiene (Fig. 4) demonstrate
that the DLDLW theory describes the splitting of the two
sound velocities at a critical frequency ω∗ very accurately.
The measured scattering lengths are less well described,
probably because the two samples are not close enough to
the mechanical instability case, which is the basis of the
theory [13]. It is possible to get a better fit to the scattering
length with a more refined approximation, which is beyond
the scope of this paper.

The sound velocity cl (the square root of the real part of the
complex modulus �k) is not irrelevant, because it determines
the intensity factor. The example of beryllium fluoride (Figs. 1
and 2 of the preceding section) shows that the intensity factor
fω does not react at all to the large changes in c∗

l , while the
example of silica (Figs. 3 and 4 of the preceding section)
shows that it is very sensitive to changes in cl . The wavelength
is determined by c∗

l ; the intensity of the scattering function is
determined by ∂cl/∂ω according to Eq. (15).
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The same example illustrates very clearly the origin
of possible differences between DHO and structure factor
parameters, because they agree if the Umklapp scattering from
the boson peak vibrations is properly taken into account [29].

If the measurements extend to higher momentum transfer,
one has to add the initial quadratic rise of the Umklapp scat-
tering [19–21,23]. This has been illustrated by the examples of
polybutadiene and glycerol. In polybutadiene, this contribution
is weak, but in glycerol it tends to dominate the scattering
already at the boson peak. The Umklapp parameter brings the
number of parameters up to four, one more than those of a
DHO fit. When the Umklapp scattering becomes visible, the
Brillouin scattering form factor starts to diminish, a second
influence on the intensity factor fω.

Neither the Schirmacher theory [11] nor the DLDLW
theory [13] can predict the Umklapp scattering, because they
are continuum theories describing the effect of the atomic
disorder in a mean-field approximation. To cite from a new
simulation [32] evaluated in terms of the Schirmacher theory,
“We would like to emphasize again that the vibrational spec-
trum beyond the boson peak frequency cannot be described
by concepts borrowed from Debyes theory: The disorder is
dominant in this regime. It has been shown previously that the
vibrational states in this regime obey the statistics of random
matrices.”

To predict the Umklapp scattering, one needs to calculate
the dynamical matrix of the given substance on the atomic
level as in the new theoretical approach of Parshin et al. [28].
The result depends on the structure factor of substance-specific
boson peak modes, thus explaining the very different strength
of the Umklapp scattering in our four examples.

Glycerol is not the only glass former showing a dis-
appearance of the longitudinal correlation at relatively low

frequency. If one evaluates the selenium Brillouin x-ray data
of Scopigno et al. [33], one finds the same result. In this case,
the longitudinal correlation disappears at 6 meV, the maximum
of the dispersion curve derived from the data.

The two examples show an important advantage of the new
method. A DHO fit does not tell one how much is left of the
full longitudinal correlation, but the fit of the structure factor
scans supplies this information.

From the examples shown, it is obvious that one gets more
(and more accurate) information from the new evaluation
method proposed here, not only because it is better adapted
to the physics but also because it allows us to calculate the
dynamic structure factor on an absolute scale. For future
experiments, it is naturally not necessary to fit with the DHO,
because one can apply the second moment sum rule directly to
the measured data. This should extend the method beyond the
Brillouin scattering into the Umklapp range, where the data
are no longer well fitted by the DHO.

To conclude, the classical second moment sum rule allows
us to calculate dynamic Brillouin structure factors from
damped harmonic oscillator fits of constant-Q scans. The
dynamic Brillouin structure factors are not only better adapted
to modern theories of the boson peak but are also able to link the
Brillouin data to measurements of the full vibrational spectrum
at higher momentum transfer on an absolute intensity scale.
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