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Local shear stress and its correlation with local volume fraction in concentrated non-Brownian
suspensions: Lattice Boltzmann simulation
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The local shear stress of non-Brownian suspensions was investigated using the lattice Boltzmann method
coupled with the smoothed profile method. Previous studies have only focused on the bulk rheology of complex
fluids because the local rheology of complex fluids was not accessible due to technical limitations. In this study,
the local shear stress of two-dimensional solid particle suspensions in Couette flow was investigated with the
method of planes to correlate non-Newtonian fluid behavior with the structural evolution of concentrated particle
suspensions. Shear thickening was successfully captured for highly concentrated suspensions at high particle
Reynolds number, and both the local rheology and local structure of the suspensions were analyzed. It was
also found that the linear correlation between the local particle stress and local particle volume fraction was
dramatically reduced during shear thickening. These results clearly show how the change in local structure of
suspensions influences the local and bulk rheology of the suspensions.
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I. INTRODUCTION

Understanding the rheology of particle suspensions is
important in designing the materials and processes of many
industrial applications such as electronic materials and sec-
ondary batteries to name a few, and many studies are still done
to understand the complex flow behaviors of these complex
fluids [1]. One of the key issues in suspension rheology is the
shear thickening behavior which is often observed in hard-
sphere suspensions, especially, at high volume fraction. Shear
thickening of hard-sphere suspensions has been widely studied
in experiments [2–6]. Structural evolution of particle sus-
pensions during shear thickening was probed by rheo-optical
experiments [4] and by small angle neutron scattering (SANS)
[5]. Recently, the internal structure of a suspension in both
shear thinning and shear thickening was directly observed by
fast confocal microscopy [6]. However, despite the progress of
experimental techniques, direct observation of the microstruc-
ture still has many limitations. Therefore, numerical simulation
needs to be done to support experimental observations and to
theoretically explain the various phenomena of these complex
fluids. One representative numerical study for hard-sphere
suspensions was performed by Brady and co-workers using
the Stokesian dynamics (SD) [7–9] and accelerated Stokesian
dynamics (ASD) simulation techniques [10]. SD has been
widely used because it considers many-body hydrodynamic
interactions accurately at the low Reynolds number region.
Foss and Brady [9] investigated the nonequilibrium behavior of
concentrated Brownian suspensions under a simple shear flow.
They focused on the effect of the Péclet number on the particle
dynamics, and shear thickening at the high Péclet number
region (hydrodynamic dominant region) was successfully
captured. In that study, they showed that the lubrication force
has a crucial role in forming clusters among the approaching
particles, and these clusters can trigger shear thickening in
hard-sphere suspensions. They also explained how anisotropy
in the pair-distribution function affects the rheology of the

*Corresponding author: ahnnet@snu.ac.kr

suspensions. In this way, the SD algorithm contributed to un-
derstanding suspension rheology including shear thickening,
but it also has several limitations. One is that only the flow
behavior can be explained at low Reynolds number; that is
to say, only a system in which the inertia effect is negligible
can be considered. In real processes, suspensions that include
various sizes of particles from several nanometers to several
millimeters are commonly used. Furthermore, they are usually
transported under complex flow situations at a high flow rate. In
these conditions, the inertia may not be negligible. Therefore,
understanding flow behavior with inertia is quite important.
Taking inertia into consideration at finite Reynolds number is
still challenging. Though a study on particle suspensions with
inertia has been carried out by direct numerical simulation
(DNS) [11], only a few studies have been done due to high
computational cost. Recently, the lattice Boltzmann method
(LBM) has been introduced, and it has been widely applied
to investigate various fluid dynamics problems [12] as well as
the dynamics of particle suspensions [13] at finite Reynolds
number. Shakib-Manesh et al. [14] successfully predicted
the relative shear viscosity of non-Brownian suspensions in
a two-dimensional (2D) Couette flow by LBM, and they
reported on the shear thickening behavior of hard-sphere
suspensions at high particle Reynolds number. Raiskinmäki
et al. [15] captured shear thickening, and they tried to correlate
shear thickening with particle clustering in a regime where
hydrodynamic forces are dominant. Kromkamp et al. [16]
also studied non-Brownian suspensions by LBM, and they
compared the flow behaviors of 2D and three-dimensional
(3D) suspensions in a laminar flow. They investigated the
shear viscosity of the suspensions and reasonable results were
confirmed in both cases. Kulkarni and Morris [17] reported
the rheology of 3D particle suspensions at finite Reynolds
number, and successfully observed an increase in the shear
stress as well as in the normal stress with an increase in inertia.
Although there have been many studies on the non-Newtonian
behavior of suspensions, only wall shear stress or bulk shear
stress [18] has been measured in simulations. They have
limitations in investigating local shear stress, and it is hard
to explain how local structural evolution affects the rheology
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in a local region and subsequently, the bulk rheology of
suspensions.

Therefore, this study investigated the “local rheology” of
non-Brownian suspensions with a readopted algorithm. For
non-Brownian suspensions, wall shear stress and local shear
stress were measured for various particle volume fractions, and
they were correlated with locally evolved particle microstruc-
tures. To describe non-Brownian suspensions, smoothed pro-
file method (SPM) [19], which was successfully coupled with
LBM, was adopted, and the method of planes (MOP) [20]
was additionally applied to access the local stress of the
suspensions. The paper is organized as follows. Numerical
methods and the computational algorithm are introduced in
Sec. II, and the simulation results are provided in Sec. III.
The simulation conditions with algorithm verification are
explained in Secs. III A and III B, and the shear viscosity of
the suspension is reported in Sec. III C. In Sec. III D, the shear
thickening behavior of a concentrated suspension is discussed,
and the microstructure of the suspension is analyzed to find
the origin of shear thickening in Sec. III E. Furthermore, the
local rheology and its correlation with the microstructure are
explained in Sec. III F, and finally, conclusions are given in
Sec. IV.

II. NUMERICAL METHOD

A. Lattice Boltzmann method (LBM)

Since its introduction two decades ago, the lattice Boltz-
mann method (LBM) has been recognized as a useful tool in
computational fluid dynamics, and it has been widely adopted
for various applications such as microfluidics, turbulent flows,
and multiphase systems due to its easy implementation [12].
In LBM, macroscopic dynamics can be described by the
lattice Boltzmann equation (LBE) which is an approximate
and discretized form of the Boltzmann equation. While
conventional methods such as the finite element method (FEM)
or finite volume method (FVM) directly solve Navier-Stokes
(NS) equations, the LBM introduces virtual particles which
are the packets of mesoscopic particles [12,13]. The evolution
of the probability distribution function is given by the lattice
Boltzmann equation with the Bhatnagar-Gross-Krook (BGK)
collision operator [21] which takes the form of Eq. (1). By
solving this equation, the incompressible Navier-Stokes (NS)
equations can be correctly recovered [21].

fi(x + ci�t,t + �t) − fi(x,t) = − 1

τ

[
fi(x,t) − f

eq
i (x,t)

]
.

(1)

The LBM algorithm consists of streaming and collision
steps. At the streaming step, the probability distribution
function from the previous time step is propagated along
the discretized velocity vector ci to the next neighbor lattice

nodes. This process can be imposed by the left-hand side
of Eq. (1), where x is the position of the lattice node at
time t ; c is the discrete velocity, and fi is the distribution
function for the i direction. τ denotes the dimensionless
relaxation time of the solvent, and it is related to the kinematic
viscosity, ν = c2

s (τ − 1/2)�x2/�t [21]. In our study, the
D2Q9 lattice model was used which was designed to consider
nine direction velocities in two-dimensional space [12]. The
speed of sound has the form of cs = √

1/3�x/�t , where �x

and �t denote the lattice spacing and time step, respectively.
After the streaming step, the probability distribution function
is determined for each lattice point with the collision step,
according to the right-hand side of Eq. (1). During this process,
momentum conservation is constrained by the equilibrium
distribution, f

eq
i , which is determined by Eq. (2).

f
eq
i (x) = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
. (2)

The equilibrium distribution can be obtained by the
truncated form of the Maxwell distribution, and it is well
known as a good approximation for small Mach numbers
[21]. The macroscopic properties of the solvent such as the
density ρ and the velocity u are obtained from the zeroth and
first velocity moments of the distribution function fi shown
in Eqs. (3) and (4).

ρ =
∑

i

fi, (3)

ρu =
∑

i

fici . (4)

Direction dependent weight coefficients wi and the lattice
velocity ci were used according to Table I.

B. Smoothed profile method (SPM)

Various algorithms have been suggested to consider the
motion of solid particles in LBM [22–26], and they have been
widely used to investigate the dynamics and rheology of sus-
pensions [14–17]. In this study, the smoothed profile method
(SPM) was adopted, which has been successfully combined
with LBM [19]. SPM is a promising numerical algorithm,
which considers multibody hydrodynamic interactions among
solid particles accurately and efficiently, and has been suc-
cessfully applied to a neutrally buoyant cylinder under simple
shear flow, sedimentation of two circular cylinders, and so
on [19,27–29]. In SPM, the boundaries between solid objects
and the host solvent are replaced with a continuous interface
by assuming a smoothed profile, so that the discontinuity
problem, which arises on the boundary of solid objects, can
be dramatically reduced. SPM is also efficient because it does
not need additional Lagrangian nodes [27] near the surface of
solid objects. Furthermore, it is more accurate for momentum

TABLE I. Weight coefficients wi and the lattice velocity ci in D2Q9 lattice model.

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

wi 4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36
ci (0,0) (1,0) (0,1) (−1,0) (0, −1) (1,1) (−1,1) (−1, −1) (1, −1)
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conservation than that of other link-based methods [22–24].
In SPM, the profile function φP (x) that defines a spherical
particle (cylinder in 2D) can be chosen arbitrarily, but in this
study, it was defined in the form of Eq. (5) as follows:

φP (x) = 1

2

[
1 + tanh

R − |x − X|
ξ

]
. (5)

Here, R is the radius of the solid particle; X is the center
position of the solid particle, and x is the position of the
lattice node. In the fluid region, φP = 0 while φP = 1 in the
solid particle region, and its value changes continuously at
the interfacial region. The interface thicknesses was controlled
by parameter ξ , and the accuracy can be enhanced by
controlling ξ [19,27]. In this study, ξ = 1 was applied which
is commonly used in the literature, and the cutoff radius was
set as Rcutoff = R + �x for an efficient calculation.

The solvent-solid interaction force on solid boundary node,
x at time t , can be evaluated by Eq. (6) with the assumption
that the forces and torque are distributed during the interval
time �t as follows:

fP (x,t) = φP (x,t) [uP (x,t) − u(x,t)] /�t, (6)

where u is the macroscopic velocity at the solvent node which
was defined in Eq. (4), and uP is the velocity at the solid node.
uP is defined in terms of the translation velocity of the solid
particle U and the angular velocity of the solid particle � at
the lattice node x covered by solid particles.

uP (x,t) = U + � × (x − X). (7)

The hydrodynamic force affected by the solid particles to
the solvent boundary node is calculated by Eq. (8);

fH (x,t) = −fP (x,t), (8)

and then, the hydrodynamic force fH is added to the collision
operator in Eq. (1) as a body force which considers the
interaction between two phases. This process is presented by
Eq. (9).

fi(x + ci�t,t + �t) − fi(x,t)

= − 1

τ

[
fi(x,t) − f

eq
i (x,t)

] + wi�t

c2
s

[fH (x,t) · ci]. (9)

The hydrodynamic force FH and torque TH , which in-
fluence each particle, are calculated by Eqs. (10) and (11),
respectively.

FH =
∑
x∈Vp

ρ(x)fP (x,t), (10)

TH =
∑
x∈Vp

(x − xs) × ρ(x)fP (x,t). (11)

Translation velocity and angular velocity of the solid
particles at a new time step are obtained by Eqs. (12) and (13).

V(t + �t) = V(t) + FH

MP

�t, (12)

�(t + �t) = �(t) + TH

IP

�t. (13)

The mass of a solid particle MP and the moment of inertia
IP are defined by Eq. (14) and Eq. (15), where ρP denotes the
density of a solid particle.

MP = ρP πR2, (14)

IP = 0.5MP R2. (15)

The particle position is updated from the new particle
velocity, which was obtained by Eq. (12), and it was integrated
by the Adams-Bashforth method [30], as in Eq. (16), which
has a second-order accuracy.

X(t + �t) = X(t) + [
3
2 V(t + �t) − 1

2 V(t)
]
�t. (16)

To prevent overlap among solid particles, the short range
repulsive potential in Eq. (17) was additionally imposed. The
potential has the form of the Weeks, Chandler, and Andersen
(WCA) which has been widely used to describe nearly hard
spheres [31]. σ is the diameter of a solid particle, r is the
particle to particle center distance, and ε is the potential
strength. In this work, ε was set to 0.1, and it was determined
by trial and error not to allow overlap between the particles at
the highest shear rate we could cover.

UPP (r) =
{

ε
[(

σ
r

)36 − (
σ
r

)18]
, r � 21/18σ,

0, r > 21/18σ.
(17)

When two particles come into close contact with each
other, the lubrication force becomes important. However, the
lubrication force cannot be exactly resolved with LBM when
the gap distance between two particles is on the order of
one lattice spacing due to the discretization of the particles
and fluids. To overcome this problem, a lubrication correction
method based on an explicit calculation of the lubrication force
was introduced [16,23]. For a 3D system, it is given by

Flub =
{

−6πη
a2

1a2
2

(a1+a2)2

(
1
h

− 1
hc

)
U12 · R̂12, h < hc,

0, h > hc.
(18)

Here, a1 and a2 denote the radius of two solid particles,
and they have the same value a in the monodisperse system. η
means the solvent viscosity; U12 = U1 − U2 denotes the rela-
tive velocity of the particles, and R̂12 = (R1 − R2)/ |R1 − R2|
is a unit vector between two particles. h is the surface to surface
distance of two particles and hc is the cutoff distance.

The analytically derived equation by Kromkamp et al. [16]
was adopted for a 2D particle (cylinder), which is defined as
follows.

Flub =
{

− 1
2ηU12 · R̂12R̂12

[(
a1+a2

h

)3/2(
F0 + h

a1+a2
F1

) − (
a1+a2

hc

)3/2(
F0 + hc

a1+a2
F1

)]
, h < hc,

0, h > hc.
(19)
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hc = 1.5�x was adopted, and it was determined by the lubri-
cation test for two approaching particles (it will be discussed
in the next section). Even though this value is a little different
from the optimum cutoff distance used by Kromkamp et al.
[16] (1.1�x for a 3D system and 2.0�x for a 2D system), the
verification test confirms that hc = 1.5�x is also reasonable
in this system. F0 is the numerical constant, and F1 is the
first-order correction to the lubrication limit, h/2a � 1. In this
study, they were determined as 3

4π
√

2 and 231
80 π

√
2, respec-

tively, from the analytical derivation by Kromkamp et al. [16].

C. Moving wall boundary condition

To apply shear flow in a confined system, the halfway
bounce-back method [22,23] was imposed, which is com-
monly used to describe the no-slip or moving wall boundary
condition in LBM. In this algorithm, fluid distribution hitting a
solid wall during propagation is bounced back in the direction
it came from, and this microscopic boundary rule finally leads
to a no-slip behavior of the macroscopic fluids at the wall.
To describe the moving wall with velocity uw, the original
equation is modified as in Eq. (20), where f ∗

i means the
fluid distribution after the collision process, and i ′ denotes the
inverse direction of i. The newly added term in the right-hand
side of Eq. (20) captures the additional momentum transfer by
the motion of the wall.

fi ′ (x,t + �t) = f ∗
i (x,t) − 2wiρ(x,t)uw · ci

c2
s

. (20)

During the bounce-back process, the wall momentum
exchange �p can be derived by Eq. (21),

�pi ′

(
xw,t + 1

2
�t

)
=

[
2f ∗

i (x,t) − 2wiρ(x,t)uw · ci

c2
s

]
ci .

(21)

It is straightforward to evaluate the wall shear stress through
the wall momentum exchange �p per time �t . It can be
obtained by Eq. (22), where A is the wall surface area (the
length of the wall boundary in a 2D case),

σw = �pi ′

�tA
. (22)

D. Shear stress measurement by the method of planes (MOP)

Measuring rheological properties from wall shear stress
(WSS) is realistic and commonly accepted in rheometry.
However, it does not allow the separation of solvent and
particle contributions from the total stress, and the local shear
stress of the fluid cannot be easily accessed. If the system is
nonhomogeneous, it is more desirable to evaluate the local
contribution of the solvent and particle to the total stress.
However, it is hardly accessible in numerical simulations.
To overcome this problem, a novel algorithm, the so-called
method of planes (MOP), was proposed by Todd et al. [32].
This algorithm has successfully predicted the local stress of a
simple liquid, and has been further applied to polymer melts
[33]. Recently, it was extended to LBM coupled with the
immersed boundary method (IBM) [20]. In this study, we
applied the MOP algorithm to the smoothed profile method

(SPM) with a slight modification. Even in this case, the
solvent and particle contributions to total stress can be locally
measured at each of the planes along the shear-gradient
direction in the same manner as the original algorithm [20].

The solvent shear stress in each lattice node x at time t can
be obtained by Eq. (23) [34,35], and the local solvent stress
at plane Y was defined as Eq. (24), where j means the lattice
nodes in plane Y .

σ s
xy(x,t) =

(
1 − τ

2

) ∑
i

(
fi(x) − f

eq
i (x)

)
cxicyi , (23)

σ s
xy,local(Y,t) = 1

A

∑
j

σ s
xy(j,t). (24)

Imaginary plane y between lattice planes Y and Y + �Y

(usually, �Y = 1 in LBM) is assumed to calculate the local
particle stress, and local particle stress at plane y is obtained
by Eq. (25). In Krüger’s work [20], Fjx(t) was defined as the x

component of the force imposed on the lattice node j at time
t , and it could be directly measured by the interfacial tension
or the membrane forces on the Lagrangian nodes (for soft
particles). In the present SPM system, Fjx can be alternatively
changed to the x component of the hydrodynamic force fH
on a solid particle in Eq. (9), and is considered at the lattice
nodes covered with solid particles. The sign function, sgn(x)
has the values of +1 or −1 depending on the sign of x, and A

denotes the length of the domain size in the x direction (flow
direction in our system) in the case of a 2D simulation. Local
particle stress at lattice node Y can be obtained by the average
of two planes separated by one lattice constant �Y ; it is given
by Eq. (26). Finally, the total stress in plane Y can be locally
evaluated by the sum of each stress component as shown in
Eq. (27).

σ
p

xy,local(y,t) = 1

2A

∑
j

Fjx(t)sgn(y − Y ), (25)

σ
p

xy,local(Y,t) = 1

2

[
σ

p

xy,local

(
Y + �Y

2
,t

)

+ σ
p

xy,local

(
Y − �Y

2
,t

)]
, (26)

σ tot
xy,local(Y,t) = σ s

xy,local(Y,t) + σ
p

xy,local(Y,t). (27)

To verify the MOP algorithm in LBM coupled with SPM,
a preliminary test was performed as follows. The shear stress
of a single particle placed at the center of a confined channel
was measured by both WSS and MOP. The simulation domain
was 100 × 102 (including wall nodes), and the solid particle
diameter was set as D = 20. The dimensionless relaxation
parameter τ was set to unity, and the kinematic viscosity
was set as ν = 1/6. The moving wall boundary condition in
Eq. (20) was imposed for the upper and lower wall with a
shear rate of γ̇ = 10−4, and the periodic boundary condition
was applied to the flow direction. As shown in Fig. 1(a), a
shear stress developed in the simulation domain, and high
stress was generated around a particle. The stress distribution
for both the solvent and particle was measured by MOP,
and it was plotted in terms of channel height H shown in
Fig. 1(b) together with the result of the WSS. At the center of
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FIG. 1. (Color online) (a) Distribution of shear stress around a single particle and (b) stress distribution as a function of channel height, H .

the channel where the single particle was located, the stress
contribution by the particle phase was dominant, and the total
stress coincided well with that of the WSS. As verified by this
result, the stress contribution from both the solvent and particle
was well decomposed, and the local stress could be measured
successfully in the present LBM coupled with SPM and MOP.

III. RESULTS AND DISCUSSION

A. Simulation setup

In this study, LBM was adopted as a solvent solver, and SPM
was coupled with LBM to describe the motion of particles that
had a hydrodynamic interaction. A solvent density of ρ = 1,
dimensionless relaxation time of τ = 0.8, and kinematic
viscosity of ν = 0.1 were used. For solid particles, a non-
Brownian particle was assumed, and the particle diameter and
particle density were set to D = 20 and ρp = 1. These material
properties correspond to a real solvent system with a density
of 1000 kg/m3, kinematic viscosity of v = 10−6m2/s, and to
real hard-sphere particles with a diameter of 20 μm and a
density of 1000 kg/m3. In this case, the lattice unit length and
unit time are �x = 1 μm and �t = 0.1 μs, respectively. The
simulations were performed for suspensions with the following
particle volume fractions and numbers of solid particles: φ =
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6; and 49, 100, 156, 204, 255,

and 306, respectively. The size of the simulation domain was

400 × 402 (width × height, including wall nodes), and the
channel height was 400, which corresponds to 400 μm in a real
system. It is large enough compared to the particle diameter of
20 μm, and it is quite similar to the usual gap size of 500–1000
μm in the rotational rheometer in real experiments. Moving
wall boundary conditions were imposed to both the upper and
lower walls, and the periodic boundary condition was used in
the flow direction.

B. Algorithm verification

To confirm the wall effect, the rotation of a single particle in
a Couette flow was investigated for varying ratios of channel
height to particle radius, H/R. The angular velocity of the
particle at the centerline was calculated. The solvent density
and the kinematic viscosity were set to ρ = 1 and ν = 0.1. For
solid particles, the diameter was D = 20 (R = 10), and the
density was ρp = 1. The height of the channel H was 25–300,
and the size of the simulation domaion was 400 × (H + 2).
For the upper and lower walls, the wall boundary condition
was imposed at a shear rate of γ̇ = 5 × 10−6. In Fig. 2, the
equlibrium angular velocity of a particle ω is plotted as a
normalized one which was divided by the shear rate at the wall.
When the ratio of the channel height to particle radius H/R

is low, the normalized ω was less than 0.5 due to the strong
influence of the wall. As the channel height is increased, the
flow disturbance by the wall is reduced, and the normalized

FIG. 2. (Color online) (a) Streamlines around a single particle in Couette flow for H/R = 5. (b) Normalized angular velocity for different
ratio of channel height to particle radius, H/R.
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FIG. 3. (Color online) (a) Lubrication force between two identical spheres (3D) for different particle radius, R. The dashed line was
obtained from the lubrication theory, Eq. (27). (b) Lubrication force between two identical cylinders (2D) for different particle radius, R.

angular velocity converges to 0.5. This result coincides well
with Taylor’s analytical solution [36] and that of Kromkamp
et al. [16] by LBM. From this result, we could confirm
that the wall height H = 400 in Sec. III A is appropriate
to minimize the wall effect in our system. In concentrated
particle suspensions, the role of short range hydrodynamic
interaction (HI), or the lubrication force among the particles
becomes imporatant [7–10]. To confirm the reproducibility of
the lubrication force in the present LBM coupled with SPM,
the lubrication force between two spheres (3D case) and two
cylinders (2D case) moving toward each other at a constant
speed was computed in a rectangular channel. The density of
the solvent and particle was ρ = 1 and ρp = 1, respectively.
Verification was performed at fixed particle Reynolds number,
Re = U12(2R)/ν = 0.2 with a constant relative velocity for
two approaching particles, U12 = (U1 − U2) = 0.001. The
size of the simulation domain was set to 4R × 2R × 2R (R =
2.5−10 in 3D case) and 4R × 2R (R = 5−20 in 2D case),
respectively. A periodic boundary condition was imposed on
all boundaries, and the tests were peformed with varing particle
radii, R, to confirm the dependency of the lattice resolution in
our algorithm. In the 3D system, the lubrication force Flub for
the two approaching particles was calulated by simulation, and
it was comapared with the analytical solution from Eq. (28)
[37–39].

Flub

2ρνU12/λ
= 3π

4s
+ Cw. (28)

For two spherical particles with the same radius, λ was
defined as 1/R, and s was d/R − 2, where d means the center
to center distance between the particles. Cw is a constant
which depends on the wall, and Cw = 0 was used under the
assumption of an infinite channel height. As shown in Fig. 3(a),
the result coincides well with the theoretical prediction in the
3D system. A 2D simulation was also performed. The Flub

values obtained by the simulation are plotted with the ana-
lytical solution of Dodd et al. [40] in Fig. 3(b). The simulation
results matched well with the analytical solution. These results
confirm that the lubrication force between two particles (or
cylinders) is well represented in SPM-LBM.

C. Relative shear viscosity at low particle Reynolds number

We investigated the viscosity at a particle Reynolds number
of Rep = 0.01, for which the inertia can be neglected. Rep

means the ratio of the inertia force to the viscous force on a
solid particle, and it is defined by Eq. (29).

Rep = γ̇ D2

ν
. (29)

The Mach number Ma was kept below 0.1 for a stable
calculation under an incompressible fluid assumption [41]. It
was defined by Eq. (30), where H denotes the channel height.

Ma = γ̇ H

2cs

. (30)

The initial velocity was set to zero, and the shearing wall
boundary condition was adopted. As shown in Fig. 4, the shear
flow was imposed in the simulation domain, and the shear
stress induced by the interaction between the solid particles
and solvent was monitored. The enhanced shear stress was
captured for the higher particle volume fraction shown in
Figs. 4(d)–4(f).

Next, the shear viscosity of the suspension was quanti-
tatively analyzed for varying particle volume fractions. To
measure the shear stress, both wall shear stress (WSS) and
the method of planes (MOP) were used. Calculations were
performed for 300 000 time steps in each case, and the shear
stress was obtained by averaging over 200 000 of the final
time steps, where the stress reached a steady state with some
fluctuations. We also performed simulations for 4 000 000 time
steps, and found that the results (shear stress, viscosity, and
local density distribution) are basically the same. Thus we will
provide the results only for 300 000 time steps. The shear stress
was measured only at the wall in the WSS case; however, it
was obtained by averaging the local shear stress in Eq. (27)
over all the planes along the gradient direction in MOP. The
shear viscosity of the suspension was determined by the shear
stress divided by the applied shear rate on the system, and the
relative shear viscosity was defined as a ratio of the suspension
viscosity and solvent viscosity shown in Eq. (31).

ηr = ηsuspension

ηsolvent
. (31)
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FIG. 4. (Color online) x component of velocity and shear stress (of the solvent) at time step 300 000 (Rep = 0.01). (a)–(c) denote particle
configurations with x component of velocity in color for φ = 0.1, φ = 0.3, and φ = 0.5. (d)–(f) show the distribution of shear stress (of the
solvent) for φ = 0.1, φ = 0.3, and φ = 0.5.

Because the shear viscosity was determined in terms of the
wall shear rate, it could well be regarded as an apparent shear
viscosity.

Nonhomogeneous shear rate is known to develop in the
concentrated suspension in the confined system due to the
absence of particles near the wall region [16,17]. The shear
viscosity which is defined according to the bulk shear rate
can be different from the apparent shear viscosity (∼1% for
Rep = 0.01, ∼20% for Rep = 1.0). The two results may be

different to some degree, but the trend itself does not change
at all. Therefore, we will use wall shear rate to define the shear
viscosity in this study.

The relative shear viscosity is plotted in Fig. 5. For both
WSS and MOP, the relative viscosity showed an overshoot
followed by a decrease and finally reached a steady state.
The results are the same at long times for both cases.
The relative shear viscosity can often be predicted by the
Krieger-Dougherty equation, Eq. (32), which is a well-known

FIG. 5. Relative shear viscosity at different volume fraction of solid particles (Rep = 0.01). (a) WSS and (b) MOP.
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FIG. 6. (Color online) Relative shear viscosity in terms of vol-
ume fraction of solid particles (Rep = 0.01). Error bar was obtained
by averaging the data from 200 000 to 300 000 time steps (for
five simulation sets). Both algorithms (WSS and MOP) predict the
Krieger-Dougherty equation very well.

semiempirical model for a particle suspension [42].

ηKD
r =

(
1 − φ

φmax

)−[η]φmax

. (32)

In Eq. (32), φ is the overall particle volume fraction; φmax

is the maximum packing fraction, and the dimensionless
factor [η] denotes the intrinsic viscosity of the suspension.
In this study, φmax = 0.88 and φmax[η] = 1.82 were used as
in previous experimental and simulation reports [16,43]. Even
though the experiment was carried out with 3D particles, it was
applicable to both the 2D and 3D suspensions at low Reynolds
number as shown in Kromkamp et al. [16].

The relative shear viscosity as a function of the particle
volume fraction is plotted in Fig. 6. It was evaluated by both
WSS and MOP, and the result was obtained by averaging five
simulation sets with different initial configurations of solid par-
ticles. An increase in the relative shear viscosity was observed
with an increase in the particle volume fraction, and the results
corresponded well with the Krieger-Dougherty equation for
both WSS and MOP. It means that LBM coupled with SPM can
be applied to investigate the rheology of particle systems from
dilute to concentrated suspensions. Furthermore, it also proves
that MOP can be used as an alternative approach to measure
the rheological properties in LBM coupled with SPM.

D. Shear thickening at high particle Reynolds number

The rheology of concentrated particle suspensions (φ =
0.3−0.6) was investigated at high particle Reynolds number.
Rep was only controlled by the shear rate, and the other
simulation parameters were the same as in Sec. III A. The
relative shear viscosity was obtained through the same process
as in the previous section, and is plotted in Fig. 7. For all the
cases, a strong overshoot was observed at first, and it decreased
to equilibrium at around 100 000 time steps. Even though there

exists a discrepancy at the initial stage, the predictions by MOP
and WSS coincided well for a large strain. In WSS, the shear
stress is measured only at the wall boundary, while the shear
stress is averaged from the local shear stress obtained at each
plane in MOP. This difference may lead to a slightly different
stress, especially at the initial stage when the momentum is
not fully transferred to the domain.

The increase in the relative shear viscosity at a high shear
rate, the so-called shear thickening, was captured with an
increase in Rep; however, the growth rate was different for
different volume fractions. For φ = 0.4 shown in Figs. 7(a)
and 7(b), a small difference was observed for Rep = 0.01
and Rep = 1.0, but for more concentrated suspensions of
φ = 0.5 and 0.6, a highly enhanced relative shear viscosity
was observed at high Rep seen in Figs. 7(c)–7(f).

The total relative shear viscosity showed a strong fluctu-
ation with time, especially in the shear thickening region for
both WSS and MOP. When we separated the contribution of
each phase, only the particle contribution showed a strong
fluctuation in the shear thickening region, in which the solvent
contribution was constant at 1.0 shown in Figs. 7(b), 7(d), and
7(f). These results prove that the fluctuation in the total relative
shear viscosity originates from the particle contribution. It
could be that shear thickening is strongly correlated with
the microstructural evolution of the suspension under large
deformation as in previous reports [9,10] which will be
discussed in the next section.

In Fig. 8, the relative shear viscosity is plotted in terms
of Rep. The increase in shear viscosity and shear thickening
was clearly captured, and the results by both WSS and
MOP coincided well with each other. In Table II, the
values for the relative shear viscosity are compared. At
φ = 0.3, the difference in the relative shear viscosity at
Rep = 0.005 and Rep = 2.0 was 0.3059 (WSS) and 0.2958
(MOP). In this case, both results from WSS and MOP
were well matched, but shear thickening was not strong.
However, for higher particle volume fractions of φ = 0.4−0.6,
shear thickening was more pronounced. Differences in the
shear viscosity between Rep = 0.005 and Rep = 2.0 was
as follows: for φ = 0.4, 0.8387 (WSS) and 0.8146 (MOP);
for φ = 0.5, 1.9798 (WSS) and 1.9985 (MOP), and for φ =
0.6, 4.4340 (WSS) and 4.5485 (MOP). It is well known that
shear thickening is more pronounced for more concentrated
and higher shear rate systems [6,9,14], and our simulation
corresponds well with previous experimental and numerical
studies. Furthermore, the results obtained by both WSS and
MOP match well with each other, which also means that we
can use MOP as an alternative method to measure the shear
stress (or shear viscosity) in LBM coupled with SPM.

E. Microstructure

In the previous section, the shear viscosity was evaluated
by both the WSS and MOP. Shear thickening was successfully
captured, but the origin of the shear thickening is still
less clear. Therefore, we tried to explain shear thickening
from a microstructural change in the suspensions. First, the
pair-distribution function for the particle configuration was
investigated in the shear-gradient (x − y) plane because the
non-Newtonian behavior of the particle system is closely
related with the anisotropy in the pair-distribution function
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FIG. 7. (Color online) Relative viscosity measured by wall shear stress (WSS) and by the method of planes (MOP): (a) φ = 0.4, Rep = 0.01;
(b) φ = 0.4, Rep = 1.0; (c) φ = 0.5, Rep = 0.01; (d) φ = 0.5, Rep = 1.0; (e) φ = 0.6, Rep = 0.01; and (f) φ = 0.6, Rep = 1.0.

[10]. The pair-distribution function for φ = 0.6 at various
particle Reynolds numbers is plotted in Fig. 9. In Fig. 9(a), the
pair-distribution function at low Rep (Rep = 0.01) is plotted.

In this case, a strong intensity to the flow direction is clearly
observed, which means that most particles are aligned to the
flow direction under the shear flow. If the system is dominated

TABLE II. Relative shear viscosity which was measured by wall shear stress (WSS) and the method of planes (MOP).

Rep = 0.005 Rep = 0.01 Rep = 0.1 Rep = 1.0 Rep = 2.0

φ = 0.3 (WSS) 2.1762 2.1897 2.4356 2.3819 2.4821
φ = 0.4 (WSS) 2.8945 3.0826 3.4766 3.6098 3.7332
φ = 0.5 (WSS) 4.3476 4.3854 5.3655 6.0123 6.3274
φ = 0.6 (WSS) 7.7917 7.8427 9.4512 10.8428 12.2257
φ = 0.3 (MOP) 2.1747 2.1905 2.4452 2.4130 2.4705
φ = 0.4 (MOP) 2.9120 3.0404 3.3956 3.6146 3.7266
φ = 0.5 (MOP) 4.3043 4.4066 5.5489 5.9823 6.3028
φ = 0.6 (MOP) 7.6391 7.9973 9.4619 10.7896 12.1876
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FIG. 8. (Color online) Shear viscosity as a function of particle
Reynolds number. Increase of relative shear viscosity was observed
at high particle Reynolds number Rep. The results from WSS and
MOP are matched well with each other (error bar was obtained by
time average from 200 000 to 300 000 time steps for five simulation
sets which have different initial particle configurations).

by the Brownian motion, the particle alignment is suppressed
by self-diffusion, and the isotopic pair-distribution function is
obtained [9]. However, an anisotropic particle distribution was
observed even at low Rep as small as 0.01 because our system
corresponds to the hydrodynamics dominant region where the
Brownian motion is negligible. As shown in Figs. 9(b) and
9(c), a more orientated structure to the compressive axis was
observed at high Rep. In other words, more particles were
aligned to the compressive axis at a higher shear rate. It is
well known that the structural change of the particles is related
with non-Newtonian behavior such as shear thinning and shear
thickening [9,10]. In particular, the particle alignment in the
compressive axis was strongly correlated with shear thickening
in hard-sphere suspensions, which was well explained by
the simulation studies with Stokesian dynamics (SD). In this
regard, our simulation confirms the results of previous reports.

The increase in particle distribution in the compressive
axis means that the particles come closer in that direction,
which facilitates the formation of clusters [7]. The relationship
between shear thickening and particle clusters has been widely
reported in both experiments [4–6] and numerical studies
[7,8,15]. D’Haene et al. observed particle clustering in the
shear thickening region by rheo-optical studies [4]. Cheng
et al. reported a particle structure in both shear thinning and
shear thickening regimes [6]. They directly observed cluster
formation along the compressive axis in a shear thickening
regime by fast confocal microscopy, and they confirmed that
shear thickening is related with the size of the clusters at a high
Péclet number. Brady and Bossis [7] related shear thickening
of Brownian hard-sphere suspensions with particle clustering,
which are the so-called hydroclusters in a suspension. They
argued that more clusters can be formed by a strong lubrication
force among the particles at a high Péclet number, which
leads to shear thickening. Raiskinmäki et al. [15] investigated
shear thickening of non-Brownian suspensions by LBM,
and reported a relationship between the probability of the
clustering of particles and the shear thickening intensity. They
confirmed that the number of clusters as well as their size
increases with Rep in the shear thickening region. Even though
previous studies dealt with systems with minor differences
between each other, they all concluded that the formation of
clusters can trigger shear thickening in suspensions.

We also carried out an analysis to confirm the relationship
between shear thickening and cluster formation. In our
analysis, a cluster was defined as a group which has more
than one bond among the particles. The bond was counted
when the surface to surface distance of the particles was
lower than 4% of the particle diameter, which was determined
from the first peak in the pair distribution of the particles.
The particle configuration at time step 300 000 is plotted in
Fig. 10. The particles included in the same cluster were marked
with the same color. Here, the particles with a white color
denote the ones belonging to the largest cluster, while the
particles with a black color are the individual particles which
are not included in the cluster. As seen in Fig. 10, a small
amount of clusters was formed at Rep = 0.01 even at a high
particle volume fraction, but more clusters were observed at
higher Rep. In particular, in the case of φ = 0.6 in Figs. 10(c)
and 10(f), the formation of a larger cluster is clearly observed
with the increase in Rep. At the same time, most clusters
aligned in the compressive axis, which explains qualitatively

FIG. 9. Time averaged pair-distribution function for φ = 0.6. (a) Rep = 0.01, (b) Rep = 0.01, and (c) Rep = 1.0. Abscissa denotes flow
direction and ordinate denotes gradient direction. Darker region represents higher probability to find particles.
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FIG. 10. Particle configuration at time step 300 000. (a) φ = 0.5, Rep = 0.01; (b) φ = 0.5, Rep = 0.1; (c) φ = 0.5, Rep = 1.0; (d) φ = 0.6,
Rep = 0.01; (e) φ = 0.6, Rep = 0.1; and (f) φ = 0.6, Rep = 1.0. The particles in the same cluster have the same color. Nonclustering particles
are black, and the particles in the larger cluster are close to white.

well the anisotropy in the pair-distribution function shown in
Fig. 9.

The size distribution of the clusters was quantitatively
analyzed too. Here, the number of particles N and the
probability PN were calculated to find clusters that consist of
N particles. The results were obtained by averaging the values
from the simulation time 200 000 to 300 000 for five simulation

sets with different initial configurations. Graphs in terms of PN

and N are shown in Fig. 11. In Fig. 11(a) where φ = 0.4, only
a small amount of clusters was formed even at high Rep, but
more clusters were observed at a higher volume fraction. This
was more pronounced at higher Rep shown in Fig. 11(b). The
increase in cluster size at high Rep was in accordance with the
shear thickening behavior in Fig. 8, which coincides well with

FIG. 11. (Color online) Time averaged probability of the number of solid particles in clusters. (a) φ = 0.4 and (b) φ = 0.6. Larger clusters
were formed with an increase in particle Reynolds number at higher volume fraction.
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FIG. 12. (Color online) Time averaged angular distribution of clusters. (a) φ = 0.4 and (b) φ = 0.6. Higher angular distribution was
observed over 90°, which means that the clusters are aligned to the compressive axis.

previous reports from both experiments [4–6] and simulation
studies [7,8,15]. Especially, the increase in cluster distribution
is qualitatively similar to the results of Cheng et al. [6]. Even
though they studied Brownian suspensions, both results show
a resemblance in terms of the formation of clusters in the
hydrodynamic force dominant region.

The orientation of clusters was also checked in terms of
the angular distribution of the particles which are included in
the clusters. The angle between two particles in cluster θ was
calculated by Eq. (33) in terms of the center to center distance
rij and the y component of the vector Xi,y − Xj,y for the i and

j particles.

θ = tan−1

(
Xi,y − Xj,y

rij

)
. (33)

Time averaged probability is plotted in Fig. 12. Here, Pθ

denotes the angular distribution of the particles within a cluster.
A θ < 90◦ describes a region of extension, and a θ > 90◦
means a region of compression in the flow direction. For φ =
0.4, the distribution was lower than that of φ = 0.6 shown in
Fig. 11, and the angular distribution increased at higher Rep for
all the cases. For a more concentrated system such as φ = 0.6,

FIG. 13. (Color online) Time averaged (from 200 000 to 300 000) local shear stress measured by the method of planes (MOP) to the gradient
direction for φ = 0.6: (a) Rep = 0.01 and (b) Rep = 1.0. Time averaged particle volume (area) fraction: (c) Rep = 0.01 and (d) Rep = 1.0.
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an increase in the distribution was clearly observed, which
means that more particles were aligned in the compressive axis
with clustering. This can be related to the particle alignment
which was described in Figs. 9 and 10, and it also coincides
with previous reports in both experiments [6] and numerical
studies [7–9,17].

F. Correlation between local shear stress and local particle
volume fraction

As already mentioned, shear thickening is closely related
to the increase in clusters at high particle Reynolds number
Rep. The bulk rheology is strongly affected by the structural
change of the suspension, especially by the formation of
clusters. However, it is still unclear how the local structure
of the material affects the local rheology, and changes the bulk
rheology. There exist few reports on the correlation between
local rheology and local structure of a suspension because it
is hard to directly measure the local rheology of a material

either by experiments or by simulation due to many technical
limitations. We adopted the method of planes (MOP) [20]
which was recently introduced to access the local dynamics
of a suspension. In our system, the shear stress in each plane
along the gradient direction was defined as the local shear
stress [35], and it was obtained by the summation of the shear
stress of solvent and that of the particles which was locally
measured by Eqs. (23)–(27).

First, the time averaged solvent and particle contributions
to the total shear stress were locally calculated along the
channel height, and the results are compared with WSS in
Figs. 13(a) and 13(b). Here, we described the local shear
stress as normalized by the shear rate at the moving wall γ̇wall

multiplied by the solvent viscosity η0. Under the assumption
that the local shear rate is the same with the shear rate near
the wall, the normalized shear stress can be explained as
the relative shear rate. The time averaged local shear stress
by MOP coincided well with that measured by WSS, and
shear thickening at high Rep was also captured. In the particle

FIG. 14. (Color online) Local particle stress and local particle volume fractions at t = 300,000. (a) φ = 0.4, Rep = 0.01; (b) φ = 0.4,
Rep = 1.0; (c) φ = 0.5, Rep = 0.01; (d) φ = 0.5, Rep = 1.0; (e) φ = 0.6, Rep = 0.01; and (f) φ = 0.6, Rep = 1.0. Dashed line (medium dash,
light gray) above the local stress line denotes time averaged local stress (total) which was normalized by the shear viscosity of pure solvent
multiplied by wall shear rate.
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contribution measured by MOP, a fluctuation exists near the
wall, which might be correlated with the density distribution of
the particles near the wall. To confirm this, the particle volume
fraction was locally measured. The local particle volume (area
in 2D) fraction was calculated by the smoothed profile function
in Eq. (5). After summing the smoothed profile functions at the
LBM nodes in each plane, it was divided by the surface area
(length in 2D) of each plane. Then, the local particle volume
(area) fraction in each plane could be obtained.

The time averaged local particle volume (surface area
in 2D system) fraction is plotted in Figs. 13(c) and 13(d)
in terms of the channel height H . For all the cases, a
strong concentration fluctuation was observed near the wall,
and it looks qualitatively similar to the results in previous
experimental [6] and simulation studies [14,16,17]. The
fluctuation of the local particle volume fraction in Figs. 13(c)
and 13(d) was well reflected in the particle contribution to
the local shear stress shown in Figs. 13(a) and 13(b), and
these results show how MOP captures the local shear stress
upon microstructural changes. We now focus on the local
shear stress at specific times because the local rheology could
be constantly changing due to the structural evolution of the
suspension during the flow. The data at simulation time step
300 000 were chosen as representative for which the cluster
formation was clearly captured with shear thickening shown
in Fig. 10. The normalized local particle stress (the particle
contribution in local shear stress) and local particle volume
fraction at time step 300 000 are plotted in Fig. 14. At high
Rep, an increase in the local shear stress was observed, and this
was enhanced for a more concentrated system and for higher
Rep shown in Fig. 8. Of note is the correlation between the
local shear stress and local particle volume fraction. At low Rep

where shear thickening did not occur, the fluctuation for both
the local shear stress and local particle volume fraction looks
similar as shown in Figs. 14(a), 14(c), and 14(e). However, as
seen in Figs. 14(b), 14(d), and 14(f), the correlation between
the local shear stress and local volume fraction decreased at
high Rep (Rep = 1.0), which is more clearly observed at a
higher particle volume fraction.

Correlations between the local shear stress and the local
particle volume fraction can be quantitatively analyzed by
Pearson’s correlation coefficient [44]. It is denoted as rcorr

and is defined by Eq. (34). Here, φi,local and σ
p

xy,i,local mean the
local particle volume fraction and the local particle stress in
plane i, and φ̄local and σ̄

p

xy,i,local are the averaged values over
all the planes.

rcorr =
∑

(φi,local − φ̄local)(σ
p

xy,i,local − σ̄
p

xy,i,local)[∑(
φi,local − φ̄local

)2∑(
σ

p

xy,i,local − σ̄
p

xy,i,local

)2]0.5
.

(34)

When the linear correlation is strong, rcorr is close to 1, and
it reduces to 0 when there is no correlation. The Pearson’s
correlation coefficient rcorr between the local particle stress
and the local volume fraction is plotted in Fig. 15. For φ =
0.4, rcorr was 0.9022 at Rep = 0.01 and 0.8838 at Rep = 1.0.
There exists a strong linear correlation, even though it slightly
decreases at high Rep. For more concentrated suspensions,
a reduction of rcorr was observed. In the case of φ = 0.5,

FIG. 15. (Color online) Pearson’s correlation coefficient be-
tween local particle stress and local particle volume fractions as a
function of time. (a) φ = 0.4, (b) φ = 0.5 and (c) φ = 0.6.

rcorr was 0.8720 at Rep = 0.01 and 0.8239 at Rep = 1.0. In the
case of φ = 0.6, rcorr was 0.7946 at Rep = 0.01 and 0.7040 at
Rep = 1.0. It clearly shows that a linear correlation between
the local particle stress and the local particle volume fraction
decreases for more concentrated suspensions at a high shear
rate. For every 2000 time steps, the correlation between the
local particle stress and the local particle volume fraction was
calculated by Eq. (34), and rcorr is plotted as a function of time
in Fig. 15. At the initial stage, a low rcorr was observed for all
the cases; however, it gradually increased after some time. A
low rcorr at the initial stage can be understood as the progress
of the shear stress (or shear viscosity) growth. As shown in
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FIG. 16. (Color online) Time averaged Pearson’s correlation co-
efficient between local particle stress and local particle volume
fraction. The correlation decreases with the increase in local particle
volume fraction and particle Reynolds number, Rep.

Figs. 5 and 7, viscosity overshoot was predicted at the initial
stage, and then, it equilibrated after enough strain. This could
be related with the sudden momentum exchange near the wall
boundary in LBM, and this is also verified in rcorr in Fig. 15.
The increase of rcorr looks proportional to the particle volume
fraction because the probability to form clusters increases due
to the reduced distance among the particles. At low Rep, a
relatively high rcorr was observed with weak fluctuation, but
the decrease of rcorr was observed at high Rep with a strong
fluctuation. The fluctuation in rcorr looks similar to that in the
relative shear viscosity which was shown in Fig. 7, and it could
be related with the microstructural change, especially cluster
formation at high Rep.

To more clearly understand the effect of Rep on the
linear correlation between the local particle stress and the
local particle volume fraction, the time averaged Pearson’s
correlation coefficient rcorr was plotted as a function of the
Rep in Fig. 16. rcorr decreased with an increase in the particle
volume fraction, and it also decreased with Rep. When shear
thickening was not strong, a slight decrease in rcorr was
observed at low Rep, while it showed a sharp decrease at
high Rep with shear thickening. It means that, even though
the particles occupied the same amount of space, they can
show different rheology depending on their microstructure.
Local structural change at higher Rep could be related with
cluster formation shown in Figs. 10 and 11. It is hard to strictly
argue that cluster formation during shear thickening is a key
factor in reducing the correlation between the local particle
stress and the local particle volume fraction yet, but we could
confirm that the local rheology of the suspension that originates

from the local microstructural change affects the bulk rheology
of the suspension.

IV. CONCLUSIONS

The dynamics of a non-Brownian suspension was investi-
gated by the lattice Boltzmann method (LBM) coupled with the
smoothed profile method (SPM). The method of planes (MOP)
was adopted in SPM to measure the local shear stress, and we
confirmed that the results by MOP matched well with those by
the wall shear stress (WSS). At low particle Reynolds number,
both results followed the Krieger-Dougherty equation, and we
confirmed that the present algorithm is promising in studying
suspension rheology. At high particle Reynolds number, an
increase in the relative shear viscosity, which is the so-called
shear thickening, was observed. To correlate the rheology
and microstructure of the suspension, we performed various
structural analyses. According to the pair-distribution function,
more particles were aligned in the compressive axis as the
particle Reynolds number increased. By analyzing the cluster
size and angular distribution, we observed that larger clusters
were formed at high particle Reynolds number, and they were
aligned in the compressive axis with shear thickening. The
local rheology and local microstructure of the suspension were
also investigated by the MOP algorithm. The time averaged
local shear stress by MOP coincided well with that measured
by WSS, and shear thickening at high Rep was also captured.
With an increase in the particle Reynolds number, shear
thickening was enhanced with more fluctuations in the local
shear stress. The local stress fluctuation could be correlated
with local microstructural changes of the suspension, and a
linear correlation between the local particle stress and the
local particle volume fraction was investigated by Pearson’s
correlation coefficient. When shear thickening was not strong,
the Pearson’s correlation coefficient maintained a value close
to 1, which means that they have a strong linear correlation
with each other. On the other hand, a significant decrease in
the Pearson’s correlation coefficient was observed with shear
thickening. This result means that even though the particles
occupied the same amount of space, they can show different
rheologies depending on their microstructure. It is clear that
the local rheology of a suspension, which originates from a
local microstructural change, affects the bulk rheology of a
suspension. We believe this work provides good inspiration on
how to access the local dynamics of suspensions and analyze
them.
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