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Cluster perturbation theory for the self-assembly of associating fluids into complex structures
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Wertheim’s two-density thermodynamic perturbation theory (TPT) has proven to be an indispensable statistical
mechanical tool in the description of associating fluids with a single association site. TPT was developed to enforce
the monovalence of the hydrogen bond and only recently has been extended to account for divalent association
sites. It has been shown through experiment and molecular simulation that certain one-site associating fluids can
self-assemble into complex extended supramolecular structures as a result of multiple bonding of association
sites. In this paper we reorganize TPT into a form that is more easily applied to complex associated structures. The
derived theory is general to all possible self-assemble structures. We obtain the free energy and bonding fractions
in a general way in terms of single-cluster partition functions and averages. The new formalism removes any
reference to graph theory allowing for the conceptually straightforward application of the two-density formalism
to complex self-assembled structures.
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I. INTRODUCTION

Associating fluids contain molecules (or colloids) that
interact with strong, short-ranged, and highly directional
attractive forces. The most important example of an association
interaction is the hydrogen bond; however, more recently,
patchy colloids [1–5] have become an important application of
association interactions to the self-assembly of soft-matter sys-
tems. From a theoretical point of view, association attractions
are difficult to model due to the fact that the short-ranged, direc-
tional nature of the attraction results in bond saturation. That
is the association interaction has a limited valence. Typically,
hydrogen-bonding fluids are monovalent; however, the valence
of patchy colloid fluids can be tuned by patch size, resulting
in an enormous array [6] of possible associated structures.

The formally exact solution for the degree of association
in dimerizing (monovalent association site) fluids has been
obtained by Anderson [7,8], Chandler and Pratt [9], and
Wertheim [10], through very different cluster expansions.
When applied as a perturbation theory, where the pair
correlation function between associating molecules is taken
to be that of the reference fluid, the theory has been shown
to be highly accurate [11,12]. It has now been 30 years since
Wertheim [10] published his two-density cluster expansion
for one-site associating fluids, and only very recently have
researchers applied the two-density formalism to one-site
associating fluids, which self-assemble into structures [13–16]
more complex than simple dimers through multiple bonding
of a single association site. While a significant theoretical
advance for fluids with a single (and multiple [17–19])
association site, these approaches only account for a limited
class of new associated structures such as linear chains of
doubly bonded sites [13,15], small rings [14,20], and starlike
clusters [16]. However, it has been shown through experiment
and molecular simulations [6,21] that one-site associating
fluids can self-assemble into a wide range of large and complex
supramolecular structures such as lamellae, wormlike strings,
micelles, and vesicles [22].

As designed, Wertheim’s two-density formalism is most
simply applied to the case of a dimerizing fluid. To allow
for the application of Wertheim’s perturbation theory to one-
site fluids which self-assemble into complex structures, it will

prove valuable to rewrite the theory in a form more amiable to
application to these types of systems. This will be the subject
of this paper. We reorganize Wertheim’s theory into a form
that shows a clear dependence on the classes of associated
clusters that occur. We call this form of the theory “cluster
perturbation theory.” This new form of the theory is generally
applicable to any one-site system and will provide a convenient
starting place for the future development of theories for the
association of one-site molecules and colloids into specific
complex structures.

II. CLUSTER PERTURBATION THEORY

In this section we reorganize Wertheim’s thermodynamic
perturbation theory for one-site associating fluids into a form
that is convenient for application to associated clusters which
contain multibody effects not accounted for in first-order
perturbation theory. We begin with a definition of the pair
potential,

φ(12) = φref(12) + φAA(12), (1)

where φref (12) is the reference system pair potential, which
contains both short-range repulsions and nonassociation at-
tractions. The association pair potential φAA (12) represents the
highly directional, short-ranged association contribution to the
pair potential. In total, 5 degrees of freedom describe any single
molecule, three translational coordinates represented by the
vector �r1, and two orientation angles represented by �1. These
5 degrees of freedom are represented as 1 = {�r1,�1}. For the
potential given in Eq. (1) the Mayer function is decomposed as

f (12) = exp(−φ(12)/kBT ) − 1 = fref(12) + FAA(12), (2)

where

FAA(12) = eref(12)fAA(12)

eref(12) = exp(−φref(12)/kBT ) = 1 + fref(12)

fAA(12) = exp(−φAA(12)/kBT ) − 1. (3)

Using this definition of the pair potential Wertheim devel-
oped an exact cluster expansion for one-site associating fluids.
Instead of using the density expansion of the pair correlation

1539-3755/2014/90(6)/062316(6) 062316-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062316


BENNETT D. MARSHALL PHYSICAL REVIEW E 90, 062316 (2014)

function g(12) or Helmholtz free energy A, Wertheim uses the
fugacity expansion of ln �, where � is the grand partition
function, as the starting point. Building on the ideas of
Lockett [23], Wertheim then regroups the expansion such that
individual graphs are composed of s-mer graphs. An s-mer
represents a cluster of points that are connected by paths of
FAA bonds, each pair of points in an s-mer, which are not
directly connected by a FAA bond, receives an eref(12) bond.
This regrouping serves to include the geometry of association
with the eref(12) bonds enforcing the limited valence of the
association interaction. In the s-mer representation, graphs
which include unphysical core overlap are identically zero.
That is, if the association site is singly bondable all graphs
composed of s-mers of size s > 2 immediately vanish due to
steric hindrance.

This regrouping of the fugacity expansion allows for the
easy incorporation of steric effects. Wertheim uses the idea of

multiple densities, splitting the total density of the fluid as

ρ(1) = ρo(1) + ρb(1), (4)

where ρo(1) is the density of monomers (molecules not
bonded) and ρb(1) is the density of molecules that are bonded.
The density ρo(1) is composed of all graphs in ρ(1) that do not
have an incident FAA bond, and ρb(1) contains all graphs that
have one or more incident FAA bonds. Performing a topological
reduction from fugacity graphs to graphs that contain ρo(1) and
ρ(1) field points, allowed Wertheim to arrive at the following
exact free energy:

A

kBT
=

∫
(ρ(1) ln(ρo(1)�3) − ρo(1))d(1) − c(o), (5)

where the graph sum c(o) is given as

c(o) =
⎧⎨
⎩

sum of all irreducible graphs consisting of monomer points carrying factors
of ρ,s-mer graphs with s � 2 and every point carrying a factor of ρo,and
fref-bonds between some sets of points in distinct s-mers.

⎫⎬
⎭ (6)

To develop a form of Wertheim’s TPT that is suitable
for application to associated clusters that contain multiply
bonded sites, it is convenient to recast the theory into a form
that illustrates the classes of associated clusters. In TPT, all
contributions to c(o) that contain more than one associated
cluster are neglected. This allows the remaining diagrams to
be summed in terms of reference system correlation functions.
Since each contribution to �c(o) = c(o) − c

(o)
ref contains a single

type of associated cluster (c(o)
ref contains graphs with no

association bonds), it makes sense to write the sum �c(o) as a
sum over individual cluster types,

�c(o) =
all clusters∑

v

�cv, (7)

where �cv gives the sum of all diagrams that contain a single
associated cluster type v interacting with the reference fluid.
For a homogeneous fluid this infinite sum of diagrams for
each cluster type can be summed in terms of reference system
correlation functions as

�cv

V
= 1

S(v)

ρn(v)
o

�n(v)−1

∫
gref(1 · · · n(v))

×
∏

bonded
pairs

fAA(lk)d(2) · · · d(n(v)), (8)

where S(v) is the cluster symmetry number, n(v) is the number
of molecules in the associated cluster, and gref is the multibody
correlation function.

An alternative representation of Eqs. (7) and (8) can
be obtained by introduction of single-cluster averages and
partition functions. We begin by elimination of the multibody
correlation functions gref(1 · · · s) in favor of the cavity corre-
lation functions yref(1 · · · s) defined as

yref(1 · · · s)
∏

labeled pairs

eref(lk) = gref(1 · · · s). (9)

The probability that the isolated cluster v has a configura-
tion (1 . . . n(v)) is given by

Pv(1 · · · n(v)) =
∏

all pairs eref(lk)
∏

bonded
pairs

fAA(12)

Zv

, (10)

where the single cluster partition function Zv is given by

Zv =
∫ ∏

all pairs

eref(lk)
∏

bonded
pairs

fAA(12)d (2) · · · d (n(v)) . (11)

Equations (9)–(11) now allow Eq. (8) to be recast as

�cv

V
= 1

S(v)

ρn(v)
o

�n(v)−1
〈yref(1 · · · n(v))〉vZv. (12)

The braces 〈〉v represent a single cluster average over the
single cluster probability Eq. (10).

Now using Eqs. (7) and (12) the Helmholtz free energy
is minimized with respect to monomer density giving the
following relation for the density of molecules bonded:

ρb =
all clusters∑

v

ρ
(v)
b , (13)

where ρ
(v)
b is the density of molecules bonded in clusters of

type v, given by the relation

ρ
(v)
b = n(v)

S(v)

ρn(v)
o

�n(v)−1
〈yref(1 · · · n(v))〉vZv. (14)

The only unknown in Eq. (13) is the monomer densities, which
are obtained self consistently through Eqs. (4), (13), and (14).
Comparing Eqs. (12) and (14) we see

�cv

V
= ρ

(v)
b

n(v)
. (15)
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Taking the homogeneous limit of Eq. (5) and employing
Eq. (15) we obtain

A − Aref

NkbT
= ln(1 − Xb) + Xb −

all clusters∑
v

X
(v)
b

n(v)
, (16)

where N is the number of molecules, X
(v)
b = ρ

(v)
b /ρ is the

fraction of molecules bonded in cluster type v, and Xb = ρb/ρ

is the fraction of molecules bonded in any cluster,

Xb =
all clusters∑

v

X
(v)
b . (17)

Further, if we introduce the fraction of molecules in
associated clusters of size k,

X(k)
c =

∑
n(v)=k

X
(v)
b , (18)

where

Xb =
∞∑

k=2

X(k)
c , (19)

the free energy can be written as

A − Aref

NkbT
= ln(1 − Xb) + Xb −

∞∑
k=2

X(k)
c

k
. (20)

The results presented in this section provide a general
reorganization of TPT, which will allow for the conceptually
straightforward extension for systems that go beyond simple
dimerization. This general solution of TPT can be applied
by researchers without a background in graph theory or
Wertheim’s multidensity approach.

III. APPROXIMATE CLUSTER DENSITIES
FOR PATCHY HARD SPHERES

The results in Sec. II give a general reorganization of TPT
into a form that eliminates any reference to graph theory. In
general, the averages 〈yref(1 · · · n(v))〉v and cluster partition
functions Zv will be temperature dependent. The theory can be
significantly simplified if we consider a hard-sphere reference
fluid with conical square well association sites. These patchy
hard spheres have been used as primitive models for hydrogen-
bonding fluids for many decades. The patchy hard-sphere
potential, first introduced by Bol [24] and later used by
Chapman et al. [12,25], considers association as a square well
interaction, which depends on the position and orientation
of each molecule. Kern and Frenkel [26] later realized that
this potential could describe the interaction between “patchy”
colloids. For these conical sites the association potential is
given by

φAA(12) = −εAAOAA(12)

OAA(12) =
{

1, r12 � rc; θA1 � θc; θA2 � θc

0 otherwise

fAA(12) = (exp(εAA) − 1)OAA(12) = fAAOAA(12) (21)

where rc is the maximum separation between two colloids for
which association can occur, θA1 is the angle between �r12 and

FIG. 1. (Color online) Association parameters for conical asso-
ciation site.

the orientation vector passing through the center of the patch on
colloid 1, and θc is the critical angle beyond which association
cannot occur. Equation (21) states that if the spheres are close
enough, r12 < rc, and both are oriented correctly, θA1 < θc and
θA2 < θc, then an association bond is formed and the energy of
the system is decreased by εAA. Figure 1 gives an illustration of
two single-site spheres interacting with this potential. The size
of the patch is dictated by the critical angle θc, which defines the
solid angle to be 2π (1 − cos θc). The patch size determines
the maximum number of other spheres to which the patch
can bond. Specifically considering a hard-sphere reference
fluid with association occurring at hard-sphere contact rc =
d, it is possible for a patch to associate at most once for
0◦ � θc < 30◦, twice for 30◦ � θc < 35.3◦, three times for
35.3◦ � θc < 45◦, and four times for 45◦ � θc < 58.3◦ [13].

The advantage of employing this patchy hard-sphere model
is twofold. This choice of potential renders the cluster averages
〈yref(1 · · · n(v))〉v independent of temperature. For this patchy
hard-sphere model it is beneficial to define a new temperature
independent cluster partition function,

Z̃v =
∫ ∏

all pairs

eHS(lk)
∏

bonded
pairs

OAA(12)d(2) · · · d (n(v)) .

(22)
Equation (22) is simply the total number of associated states

of isolated cluster v. For the patchy hard-sphere case the cluster
graph sums and densities can now be rewritten as

�cv

V
= ρ

(v)
b

n(v)
= (fAA)n(fAA)

S(v)

ρn(v)
o

�n(v)−1
〈yHS(1 · · · n(v))〉vZ̃v,

(23)

where fAA = exp (εAA/kBT ) − 1 and n(fAA) is the number of
association bonds in the cluster. Of course, it may be desirable
to include spherically symmetric attractions (Lennard-Jones,
square well, etc.) in addition to association interactions. These
are typically included in the high-temperature expansion
[27,28].

The challenge in applying TPT to a given system has now
been reduced to determining the relevant types of associated
clusters, evaluating the cluster averages 〈yHS(1 · · · n(v))〉v and
cluster partition functions Z̃v . For the case of a dimerizing
fluid, these quantities are easily obtained as

〈yHS(12)〉dimer = 4π
∫ rc

d
yHS(r)r2dr

4π
∫ rc

d
r2dr

= ξ

νb

Z̃dimer = vbκAA� (24)
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where vb is the volume of a spherical shell of thickness
rc − d, � = 4π is the total number of orientations, and κAA

is the probability that two spheres are oriented correctly for
association to occur

κAA = (1 − cos θc)2/4. (25)

When considering clusters larger than dimers n(v) > 2,
evaluation of the single-cluster averages and partition func-
tions become more complex. A particularly simple approxi-
mation, which will prove convenient, is to approximate the
cluster averages as

〈yHS(1 · · · n(v))〉v ≈ 〈yHS(12)〉n(fAA)
dimer =

(
ξ

vb

)n(fAA)

. (26)

In Eq. (26) we have approximated the multibody cavity
correlation functions by a superposition in which each pair
of spheres that share an association bond also receive a
pair cavity correlation function. This approximation treats
each association bond independently in regards to the cluster
averages, with multibody (>2) effects completely described
by the cluster partition functions. This is analogous to density
functional theories for polyatomic molecules, which treat
chain connectivity at the ideal level and add density depen-
dence in the excess terms [29–31]. Here, this approximation
will be exact in the low-density limit.

To evaluate the cluster partition functions we employ the
mean value theorem [32] to obtain

Z̃v = Z̃
n(v)−1
dimer P (v)

gen = (vbκAA�)n(v)−1P (v)
gen, (27)

where Z̃
n(v)−1
dimer is the total integration volume and P (v)

gen is a
generation probability, which is defined by Eq. (27) and eval-
uated using Monte Carlo integration techniques. Evaluation of
P (v)

gen for certain cluster classes will be discussed in Sec. IV.
Combining these results we obtain the final general form for
the cluster densities:

ρ
(v)
b

ρo

= n(v)

S(v)

(
fAAξ

vb

)n(fAA)

(ρovbκAA)n(v)−1P (v)
gen. (28)

Equations (16) and (28) provide a general starting point
for the development of perturbation theories for one-site
associating fluids. Application of the theory follows the
following steps:

(1) Identify the relevant types of associated clusters. For
each cluster type v the terms n(v), n(fAA), and S(v) are
obtained by simple inspection.

(2) For each cluster type v, the generation probability P (v)
gen

must be calculated using Monte Carlo integration. For patchy
hard spheres, P (v)

gen is independent of temperature and density,
so it only needs to be computed once for each choice of
ϑc and rc.P (v)

gen is the workhorse of the theory, encoding the
geometric constraints of forming multiple association bonds
per association site.

(3) The monomer densities are obtained self-consistently
through the relationship ρ = ρo + ∑all clusters

v ρ
(v)
b .

(4) Evaluate the Helmholtz free energy (or resulting
chemical potentials/pressure) through Eqs. (16) or (20).

In what follows, we demonstrate application of the theory
for the case of patchy hard spheres with divalent association
sites.

FIG. 2. (Color online) Dominant associated clusters for patchy
colloids with a single divalent patch. (a) An example of dimers
composed of two spheres with a singly bonded patch, (b) chains
of spheres where chain centers of doubly bonded patches, and (c)
triatomic rings where all three spheres have doubly bonded patches.

IV. DIVALENT ASSOCIATION SITES

One of the main assumptions in the development of
Wertheim’s first-order perturbation theory (TPT1) [33] is
that association sites are monovalent. Indeed, the entire two-
density formalism of Wertheim is constructed to enforce this
condition. For the case of hydrogen bonding, the assumption of
singly bondable sites is justified; however, for patchy colloids
it has been shown experimentally [3,5] that the number of
bonds per patch (association site) is dependent on the patch
size. If TPT is to describe these types of systems, the possibility
of multiple bonds per association site must be accounted for.
For the case of a pure component fluid of divalent single-
patch colloids, the dominant types of associated clusters are
illustrated in Fig. 2. We follow the recent approach of Marshall
[20] who summed over all possible chain lengths, in addition
to including the triatomic rings. Our purpose here is to demon-
strate how the cluster average perturbation theory allows for
the rapid development of theories for associating fluids.

Table I lists the relevant quantities needed to evaluate the
cluster densities, Eq. (28). Using the quantities in Table I, the
density of spheres bonded in triatomic rings is easily obtained
from Eq. (28) as

ρ
(ring)
b = 1

2vbκAA
(fAAξκAAρo)3P (ring)

gen , (29)

TABLE I. Structural quantities required to evaluate the cluster
densities.

V S(v) n(v) n(fAA)

Chains 2 m m - 1
Rings 6 3 3

062316-4



CLUSTER PERTURBATION THEORY FOR THE SELF- . . . PHYSICAL REVIEW E 90, 062316 (2014)

where P
(ring)
gen is evaluated using Eq. (27) and Monte Carlo integration as

P (ring)
gen =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

The probability that if the positions and orientations of two colloids are
generated such that they are positioned and oriented correctly to bond to
a third colloid, that there is no core overlap between the two generated
colloids and that these two generated colloids are oriented and positioned
such that they share an association bond.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(30)

For the densities of spheres bonded in chains of length m we have

ρ
(m)
b

ρo

= m

2
(ρofAAξκAA)m−1P (m)

gen . (31)

All that remains now is the approximation of P (m)
gen . For large chain lengths the rigorous evaluation of this generation probability

would be intractable. However, since the association of divalent colloids into chains longer than dimers is dominated by the
three-body generation probability P (3)

gen, P (m)
gen can be factored in terms of the triatomic generation probability as

P (m)
gen = (

P (3)
gen

)m−2
. (32)

The approximation Eq. (32) is similar to that made by Kalyuzhnyi et al. [13] [in their case the eHS(rk,k+2) functions are replaced
by hard-sphere reference Mayer functions fHS(rk,k+2)], which was shown by explicit comparison to Monte Carlo integration
results for the full chain partition function to be accurate. Finally, P (3)

gen is easily evaluated as

P (3)
gen =

⎧⎨
⎩

The probability that if the positions of two colloids are generated such
that they are correctly positioned to associate with a third colloid, that
there is no core overlap between the two generated colloids.

⎫⎬
⎭ (33)

Now the (infinite) cluster sum in Eq. (16) can be evaluated as

ρ

all clusters∑
v

X
(v)
b

n(v)
= 1

6vbκAA
(fAAξκAAρo)3P (ring)

gen + 1

2

ρ2
ofAAξκ

1 − fAAξκρoP
(3)
gen

. (34)

Similarly, the infinite sum in Eq. (13) can now be evaluated to yield the total density of bonded spheres, which when combined
with Eq. (4) gives a closed equation for the monomer density,

ρ = ρo + ρ2
ofAAξκAA

1 − fAAξκAAρoP
(3)
gen

+ 1

2
ρ3

oP
(3)
gen

(
fAAξκAA

1 − fAAξκAAρoP
(3)
gen

)2

+ 1

2νb

(ρofAAξ )3κ2
AAP (ring)

gen . (35)

Equations (16), (34), and (35) give the theory for single-patch divalent colloids and have been shown [20] to be accurate in
comparison to molecular simulation data. As can be seen, the final equations were obtained with relative ease as compared to the
approach of Marshall [20], which started with the free energy Eq. (5). Detailed numerical results for the generation probabilities
Eqs. (30) and (33) can be found in the original [20] work.

V. CONCLUSIONS

We have reorganized Wertheim’s thermodynamic pertur-
bation theory for one-site associating fluids into a general
form that may be applied to fluids that self-assemble into
complex structures. The derived theory allows for all possible
types of associated clusters. Equations (14) and (16) give the
general solutions for the cluster densities and free energy for
associating fluids with an arbitrary reference and association
pair potential, while Eq. (28) gives an approximate form of the
cluster densities for patchy hard spheres. To apply the patchy
hard-sphere theory, one needs to identify the possible cluster
types, identify their symmetry number, and calculate the single
cluster probabilities P (v)

gen.

Development of P (v)
gen for complex associated structures

is by no means a trivial task. For cases where di-
rect evaluation of P (v)

gen proves prohibitively complex, ap-
proximations may be employed as in Sec. IV. Alterna-
tively, since P (v)

gen is independent of density, it should be
possible to fit P (v)

gen to simulation data at low density
and use these generation probabilities for higher density
fluids.

The most significant contribution of this work is the
general reorganization of Wertheim’s perturbation theory,
such that familiarity with graph theory and the complexities
of Wertheim’s multidensity approach is not required for
application of the theory to new systems.
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